Skip to main content
. 2019 Dec 2;16(23):4842. doi: 10.3390/ijerph16234842

Table 4.

Predictive performance of each model for predicting HBV infection risk.

Algorithms AUC Standard Error 95% CI AUC Compared with LR
LR 0.742 0.006 (0.729, 0.754) -
DT 0.619 0.008 (0.603, 0.634) −0.123
RF 0.752 0.006 (0.740, 0.764) +0.010
XGBoost 0.779 0.006 (0.768, 0.791) +0.037
Borderline-SMOTE DT 0.715 0.007 (0.702, 0.729) −0.027
Borderline-SMOTE RF 0.759 0.006 (0.747, 0.771) +0.017
Borderline-SMOTE XGBoost 0.782 0.006 (0.771, 0.793) +0.040

LR: logistic regression; SMOTE: synthetic minority oversampling technique; AUC: the area under the receiver operating characteristic curve; CI: confidence interval.