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Abstract

Background: Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to
be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety
of low molecular weight carbon substrates that need to be funneled to product. Pseudomonas putida KT2440 has
emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, P
putida is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose.

Results: In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chro-
mosome of P, putida KT2440, using genes from several different organisms. We found that the galactonate catabolic
pathway alone (DgoKAD) supported slow growth of P putida on galactose. Further integration of genes to convert
galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h™'. Addi-
tionally, the best-performing strain was demonstrated to co-utilize galactose with glucose.

Conclusions: We have engineered P, putida to catabolize galactose, which will allow future engineered strains to
convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and
galactose, continuous bioconversion processes for mixed sugar streams are now possible.
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Background

The vast majority of global fuels and platform chemicals
are produced from petroleum. However, petroleum is a
finite resource, so synthesizing platform chemicals from
renewable feedstocks is needed for a sustainable future.
Biological valorization of sugars and lignin from plant-
based biomass to commodity chemicals is a potential
route to renewable and sustainable alternatives. Although
different feedstocks and pretreatment processes yield dif-
ferent available substrates for microbial conversion, sev-
eral sugars are regularly detected in hydrolysate streams
[1, 2]. While glucose is typically the most abundant,
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xylose, galactose, mannose, and arabinose are all present
as well at different concentrations. In order to effectively
convert these sugars to product, an ideal organism would
at a minimum require high tolerance to inhibitors and
rapid sugar catabolism.

Pseudomonas putida KT2440 is emerging as a new
favorite synthetic biology chassis for biocatalysis of
deconstructed biomass [3]. P putida KT2440 has a wide
range of genetic tools available [4-7], a well-character-
ized metabolism well suited for redox-intensive trans-
formations [8—11], demonstrated ability to host a variety
of heterologous pathways in vivo for a vastly enlarged
biochemical work space [12, 13], and established scale-
up capabilities. For example, P putida KT2440 has been
engineered to grow anoxically [14], to catabolize novel
substrates [15-17], and to synthesize a diverse array of
chemicals [3, 12]. Moreover, P. putida KT2440 has been
successfully engineered to utilize both of the common
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hemicellulosic pentoses: xylose and arabinose [18-20].
However, P. putida KT2440 has not been engineered to
catabolize galactose, the next most abundant sugar in
many hemicelluloses, which can be up to 3% of total sug-
ars in plant biomass [21]. It will be important to capture
this carbon for an efficient bioconversion process.

There are two common pathways for galactose catab-
olism in bacteria: the Leloir (LL) pathway and the De
Ley-Doudoroff (DLD) pathway [2]. In the LL pathway,
galactose is phosphorylated and then converted to glu-
cose-1-phosphate through a cyclic pair of transferase/
epimerase reactions with uridyl monophosphate inter-
mediates [22, 23]. The DLD pathway, on the other hand,
mirrors the Entner—Doudoroff (ED) pathway for glucose
catabolism used by P. putida KT2440, wherein the sugar
is ultimately converted to glyceraldehyde 3-phosphate
(G3P) and pyruvate (PYR) [24]. The DLD pathway can
be separated into three parts: transport (Fig. 1a), galac-
tose conversion to galactonate (Fig. 1b), and galactonate
to G3P and PYR (Fig. 1c). Transport of galactose into
the cell is relatively well studied with numerous sugar
transporters reported to have activity on galactose as
either a primary or secondary substrate; for example,
GalP from Escherichia coli is a sugar-proton symporter
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of both galactose and glucose [25]. The second portion
of the DLD pathway, where galactose is converted to
galactonate, is less well characterized. Some organisms
have been described to have these activities. Although
enzymes with dehydrogenase and lactonase activity on
galactose and 1,4-galactonolactone have been identi-
fied, such as AraAB from Burkholderia ambifaria, no
sequence of a specific galactonolactonase has been iden-
tified [26—-30]. For the last portion of the DLD pathway,
three enzymatic steps of dehydration, phosphorylation,
and subsequent aldol cleavage are performed by DgoD,
DgoK, and DgoA, respectively (Fig. 1c) [31]. Homologs of
these proteins are encoded in a wide variety of organisms,
including many pseudomonads such as Pseudomonas
fluorescens SBW25. Interestingly, these genes are even
encoded in some organisms that use the LL pathway like
E. coli, where the dgoKAD operon is a separately regu-
lated pathway only for galactonate catabolism. However,
to the best of our knowledge, the complete DLD pathway
has not been successfully introduced into an organism
that does not natively utilize galactose and allowed for
growth with galactose as the sole carbon source.

To expand the substrate range of P putida KT2440
to include galactose, in this study, we harness the less
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commonly used DLD pathway of galactose catabolism.
We chose this pathway because it is observed in pseu-
domonads, and the products of the DLD pathway (G3P
and PYR) are the same as the ED pathway natively used
by P putida KT2440 for glucose catabolism. Addition-
ally, the DLD pathway catabolizes galactose via different
metabolic intermediates relative to glucose, whereas the
Leloir pathway uses the exact same intermediates and
may compete for the same flux space. Therefore, the DLD
pathway might lead to better sugar co-utilization. Here
we built a functional DLD pathway using genes from E.
coli, P. fluorescens SBW25, and B. ambifaria. We then
demonstrated the ability of this strain to utilize galactose
alone and co-utilize galactose and glucose.

Results and discussion

Heterologous expression of DgoKAD allows growth

on galactose

Wild-type P. putida KT2440 does not grow on galactose
or galactonate, so we first explored what portions of the
DLD pathway were required for galactose catabolism
[32]. Glucose dehydrogenases in pseudomonads can have
a wide substrate range, and there are many uncharacter-
ized and promiscuous sugar transporters in P putida
KT2440 [18]. We therefore hypothesized that side activ-
ity of native enzymes may be sufficient for galactose
transport and conversion to galactonate. Therefore, we
introduced a galactonate conversion pathway into the
chromosome of P putida by expressing the dgoKAD
operon from P. fluorescens SBW25 under its native pro-
moter, creating strain QP603 (Fig. 2a, Table 1). We inocu-
lated strain QP603 into minimal medium with galactose
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as the sole carbon and energy source and observed slow
growth on galactose after a 52-h lag phase (Fig. 2b, Addi-
tional file 1: Table S1). No accumulation of galactonate
or any other molecule was seen in the supernatant by
HPLC. This demonstrates that expression of dgoKAD is
sufficient for galactose catabolism and that native sys-
tems must be capable of galactose transport and oxida-
tion to galactonate at a low level.

Growth rate improved by pathway expansion

We next examined improving the growth rate of strain
QP603. While the side activity of native enzymes could
perform the transport, dehydrogenase, and lactonase
activities of the DLD pathway, they could be rate limiting.
We therefore introduced enzymes to convert intracellular
galactose to galactonate. Because no galactose-specific
dehydrogenase and lactonase are yet to be identified,
we assembled our pathway using the best-characterized
galactonolactonase and its associated galactose dehydro-
genase that are currently known—an arabinose dehydro-
genase, AraA, and arabinonolactonase, AraB, from the
oxidative arabinose pathway of B. ambifaria [26, 27, 30].
We introduced codon-optimized versions of araA and
araB into strain QP603 at the end of the dgoKAD operon,
resulting in a longer operon of five genes dgoKAD:araAB
and a new strain QP604 (Fig. 2a). This strain grew 60%
faster than strain QP603 and had a substantially reduced
lag phase (Fig. 2b, Additional file 1: Table S1). Unfortu-
nately, strain QP604 still experienced a significant lag of
approximately 26 h, and the growth rate was still slower
than that of glucose catabolism despite having a similar
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Fig. 2 Schematic of strains constructed and their growth on galactose. a Pictorial representation of genotypes for strains QP603-QP608

(see "Materials and methods”for additional details). b Growth of each strain on MME media with 10 mM galactose as the sole carbon source.
Strains JE9O (parent strain), black; QP603 (JE90:dgoKAD), pink; QP604 (QP603:araAB), dark orange; QP605 (QP604:P5,5-galP), dark blue; QP606
(QP604:P;,,4-galP), green; QP607 (QP604:P ,~galP), light blue; QP608 (QP604:P,,-galP), yellow. The inset shows the measured growth rate for each
strain. Strains were grown at 30 °C aerobically in a 48-well microtiter plate in biological triplicate with measurements every 10 min
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Table 1 Strains and plasmids used in this study

Strains Genotype/plasmid Source
JE90 P putida KT2440 APP_4740:P,, BXB1int-attBsg, [17]
QP603 JE90 APP_0545::dgoKAD This work
QP604 JE90 APP_0545::dgoKAD:araAB This work
QP605 QP604 attBg,g,:pQP344 This work
QP606 QP604 attBg,g,:pQP345 This work
QP607 QP604 attBg,g,:pQP346 This work
QP608 QP604 attBg,g,:pQP347 This work
E coliFI° E.coliFI° NEB

Plasmids
pK18mobsacB pUC origin, KanR, origin of transfer, sacB counter selectable marker [18]
pJE1045 “Cargo” plasmid for chromosomal integration, BxB1 attP, pUC origin, KanR, and [17]

PacmNeongreen

pJE1553 pk18mobsacB based, for APP_0545:dgoKAD mutation This work
pQP348 pk18mobsacB based, for APP_0545::dgoKAD:araAB mutation This work
pQP344 PJE1045 with Ppp 1545:9aIP 000 This work
pQP345 PJE1045 with Pep_3576:9a1P 000 This work
pQP346 PJET1045 with P,2galP 0 This work
pQP347 PJET1045 with P, :galPyoqs This work

energetic yield and producing the same central metabo-
lites, G3P and PYR.

Because we had introduced all the catabolic parts
of the DLD pathway, we hypothesized that growth on
galactose may now be limited by substrate uptake. We
selected the E. coli GalP to study the impact of transport
on growth rate in strain QP604. A codon-optimized gal/P
was introduced into the BxB1 attB site of strain QP604
using site-specific recombination with four different
promoters to generate strains QP605-QP608 [6]. Pro-
moters of increasing strength were used to express galP,
including the upstream regions of PP_1548 and PP_3079
and the E. coli lac and tac promoters (Additional file 1:
Table S2), resulting in strains QP605 to QP608, respec-
tively. All four strains showed a significantly reduced
duration of lag phase (P value<0.001) and the growth
improved in strains QP606—QP608 (P value <0.01) when
compared to the parent QP604 for growth on galactose
(Fig. 2b, Additional file 1: Table S1). Expression of galP
with the /ac promoter in strain QP607 had the greatest
increase in growth rate relative to QP604, 41%, with an
overall growth rate of 0.37140.03 h™!. This expression
optimization for the galactose transporter suggests that
growth rate improves with higher galP expression up to
the strength of the lac promoter. However, growth rate
decreased when using the very highly expressed tac pro-
moter, suggesting that overexpression of this transporter
can become toxic to our engineered cells. Comparatively,
the WT grown under identical conditions but with glu-
cose as the carbon source grew at 0.8740.09 h™!, about

2.5-fold faster. Overall, while the introduction of dgoKAD
was sufficient to supply growth on galactose, the com-
plete DLD pathway including a transporter was required
for rapid catabolism of galactose as the sole carbon
source.

Galactose is co-utilized with glucose

Co-utilization allows for faster and potentially continu-
ous approaches to bioprocessing, making it important
for future commercialization. We therefore sought to
determine whether galactose could be co-utilized with
glucose. To test whether co-utilization indeed occurs,
we measured sugar utilization of strain QP607 in shake
flasks with equimolar amounts of glucose and galactose.
Both glucose and galactose were simultaneously utilized,
no additional peaks such as for galactonate accumula-
tion were observed in the supernatant quantification,
and the growth of strain QP607 did not have a diauxic
shape (Fig. 3). Together, this evidence demonstrates
co-utilization of glucose and galactose in strain QP607.
It is not surprising strain QP607 was able to co-utilize
galactose and glucose simultaneously. P putida does
not natively utilize galactose, so the heterologous DLD
pathway should be unregulated in P putida. Further-
more, the pathway produces the same products as the
natively utilized ED pathway for glucose catabolism, so it
was expected the DLD pathway would be able to seam-
lessly integrate into central metabolism when the strain
is growing on glucose. However, we did observe that glu-
cose was utilized more rapidly than galactose in QP607.
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Fig. 3 Shake flask characterization of strain QP607 growth on
glucose and galactose. HPLC data for glucose and galactose
concentrations are shown in magenta triangles, and cyan squares,
respectively. Bacterial growth, as measured by a change in optical
density, is shown in black circles

Fortunately, because galactose is a less abundant sugar
than glucose in lignocellulose (approximately 1:30 ratio
in corn stover hydrolysate [2]), the current slower utili-
zation rate of galactose should still be sufficient for most
real-world settings. Based on the similarity to the ED
pathway and the lack of detected products, the galactose
was presumably completely oxidized to CO, via the TCA
cycle in these strains.

While the current level of pathway functionality is
likely sufficient for most applications, additional research
could lead to faster galactose catabolism. In this work, we
primarily focused on tuning expression of the transporter
because although substrate uptake is critical, membrane
protein overexpression can be toxic. Similar tuning of the
rest of the genes in the pathway could further improve
the growth rate. Other approaches such as adaptive lab-
oratory evolution would also likely result in more rapid
galactose catabolism. Finally, metabolomics studies could
help reveal how the newly introduced DLD pathway inte-
grates with the cyclic EDEMP pathway, which may be
critical for future metabolic engineering efforts to divert
flux away from growth and toward product formation.

Conclusions

We have expanded the potential for total hydrolysate bio-
catalysis by P putida KT2440, an emerging model organ-
ism for synthetic biology and biomass valorization, by
introducing the DLD pathway for galactose catabolism.
In doing so, we have determined the enzymes required
for rapid catabolism and optimized the expression level
of galactose transport. Furthermore, we have shown that
this pathway allows co-consumption of galactose with a
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preferred substrate such as glucose. This work not only
further demonstrates the strength of P. putida as a modu-
lar biocatalysis chassis, but also benefits the community
developing bioprocesses for total hydrolysate conversion
by expanding the catabolic sugar profile of P putida. We
plan to expand this work in the future by incorporat-
ing the previously demonstrated catabolic pathways for
xylose and arabinose into our galactose utilizing strain.

Materials and methods

Strain construction

Pseudomonas putida strain JE9O (P putida KT2440
AhsdR::BxBlint-attB [6]) was the parent for all strains
made in this study. For the plasmids to insert dgoKAD and
araAB into the chromosome, the genes were cloned into
pK18mobsacB [33] flanked by 1 kb sequences identical to
the upstream and downstream region of PP_0545, a non-
specific aldehyde dehydrogenase. These regions are used
for homologous recombination to replace PP_0545 with
the pathway genes. Primers were from (Eurofins Genom-
ics, Louisville, KY), and gBlocks for codon-optimized
araAB from B. ambifaria ATCC BAA-244 and galP
from E. coli were synthesized by Integrated DNA Tech-
nologies. Genomic DNA was used to amplify dgoKAD,
and its native promoter from P. fluorescens SBW25 and
gDNA from P. putida strain JE90 was amplified using
Phusion High Fidelity Polymerase (Thermo Fisher Scien-
tific, Waltham, MA) when relevant. Plasmids were con-
structed via Gibson assembly with the NEBuilder HiFi
DNA assembly master mix (New England Biolabs (NEB),
Ipswich, MA), DNA was extracted from agarose gels with
Zymo gel extraction kit (Zymo Research, Irvine, CA) and
transformed into NEB FIR E. coli chemically competent
cells following the manufacturers guidelines (NEB). Plas-
mid sequences were confirmed via sequencing by Euro-
fins Genomics, and annotated plasmid sequences are
available in Additional files 2, 3, 4, 5, 6, and 7. Strain geno-
types and plasmids used in this study are listed in Table 1.
When necessary, all antibiotic selections were performed
with 50 pg/mL kanamycin. Plasmids were harvested with
the geneJET miniprep kit (Thermo Fisher Scientific). For
seamless chromosomal editing to introduce dgoKAD and
araAB cassettes into P putida, pK18mobsacB-derived
plasmids were transformed into P putida and mutants
were selected using kanamycin selection and sucrose
counter-selection as previously described [34]. The pro-
moter—transporter cassettes were integrated using BxB1
phage integration as previously described [6].

Growth medium

Utilization of galactose and glucose was tested aerobi-
cally in the MOPS-buffered minimal medium MME,
which consisted of (per liter): 1.6 g K,HPO,-3 H,O,
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4.2 g 3-(N-morpholino)propanesulfonic acid (MOPS),
0.25 g NaCl, 0.50 g NH,Cl, 0.10 g MgSO,-7 H,0, 0.01 g
CaCl,-2 H,O, and 1 mL of a 1000x trace element solu-
tion, which consisted of (per liter): 1.00 mL concentrated
HCl, 0.50 g Na,EDTA-H,0, 2 g FeCl,;, 0.05 g H;BO;,
0.05 g ZnCl,, 0.03 g CuCl,-2H,0, 0.05 g MnCl,-4H,0,
0.05 g (NH,)2MoQ,, 0.05 g CoCl,-6H,0, and 0.05 g
NiCl,-6H,0. Glucose and galactose were added as
growth substrates at the concentrations detailed below.

Plate reader growth assays

Strains were grown from single colonies in LB overnight
at 30 °C with shaking at 250 rpm. Cells were washed in
substrate-free MME medium and a 1% inoculum was
transferred to MME medium supplemented with 10 mM
galactose. After the cells had reached stationary phase,
10 pL of each sample were further passaged into 500 pL
MME medium supplemented with 10 mM galactose in a
48-well plate (Greiner Bio-One). Edge wells of the plate
were filled with 700 pL media and not used for data col-
lection to minimize the impact of evaporation. Data were
collected on an Epoch2 plate reader (BioTek, Winooski,
VT) with fast continuous double orbital shaking at 30 °C
aerobically. A temperature gradient of 1 °C was added
to minimize condensation. Measurement of ODg,, was
performed every 10 min. Growth rates were calculated
with CurveFitter software [35] using only linear regions
of growth on a log(ODy,) vs time plot, and only OD,
values below 25% ODg, max. The lag phase was also cal-
culated with the CurveFitter software. P values were cal-
culated with Student’s ¢ test.

Shake flask growth assay

Strain QP607 was grown to mid-log phase in MME
medium supplemented with 12 mM glucose and 12 mM
galactose. The cells were transferred to a 125-mL flask
containing 25 mL of the glucose—galactose MME
medium at 30 °C with 250-rpm shaking. The cells were
monitored for growth, and periodically 1 mL was sam-
pled to measure ODg, and for HPLC analysis.

Galactose and glucose HPLC quantification

Samples were filtered with 0.2-um Corning Costar Spin-
X centrifuge tube filters and then acidified with H,SO, to
a final concentration of 5 mM. The samples were run on
a Waters HPLC equipped with refractive index detector
and a Supelcogel H 6% column with a 0.6 mL/min flow
rate of 5 mM H,SO, in water as the running buffer at
60 °C. Sugar concentrations were determined by compar-
ison to a standard curve.
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Supplementary information accompanies this paper at https://doi.
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Additional file 1. Supplemental Methods and Tables.
Additional file 2. Plasmid map for pJE1553.
Additional file 3. Plasmid map for pQP348.
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Additional file 5. Plasmid map for pQP345.
Additional file 6. Plasmid map for pQP346.
Additional file 7. Plasmid map for pQP347.
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