
Slice-based Learning: A Programming Model for Residual
Learning in Critical Data Slices

Vincent S. Chen, Sen Wu, Zhenzhen Weng, Alexander Ratner, Christopher Ré
Stanford University

Abstract

In real-world machine learning applications, data subsets correspond to especially critical

outcomes: vulnerable cyclist detections are safety-critical in an autonomous driving task, and

“question” sentences might be important to a dialogue agent’s language understanding for product

purposes. While machine learning models can achieve high quality performance on coarse-grained

metrics like F1-score and overall accuracy, they may underperform on critical subsets—we define

these as slices, the key abstraction in our approach. To address slice-level performance,

practitioners often train separate “expert” models on slice subsets or use multi-task hard parameter

sharing. We propose Slice-based Learning, a new programming model in which the slicing
function (SF), a programming interface, specifies critical data subsets for which the model should

commit additional capacity. Any model can leverage SFs to learn slice expert representations,

which are combined with an attention mechanism to make slice-aware predictions. We show that

our approach maintains a parameter-efficient representation while improving over baselines by up

to 19.0 F1 on slices and 4.6 F1 overall on datasets spanning language understanding (e.g.

SuperGLUE), computer vision, and production-scale industrial systems.

1 Introduction

In real-world applications, some model outcomes are more important than others: for

example, a data subset might correspond to safety-critical but rare scenarios in an

autonomous driving setting (e.g. detecting cyclists or trolley cars [18]) or critical but lower-

frequency healthcare demographics (e.g. handling younger patients with certain cancers).

Traditional machine learning systems optimize for overall quality, which may be too coarse-

grained; models that achieve high overall performance might produce unacceptable failure

rates on slices of the data. In many production settings, the key challenge is to maintain

overall model quality while improving slice-specific metrics.

To formalize this challenge, we introduce the notion of slices: application-critical data

subsets, specified programmatically by machine learning practitioners, for which the we

would like to improve model performance. This leads to three technical challenges:

• Coping with Noise: Defining slices precisely can be challenging. While

engineers often have a clear intuition of a slice, typically as a result of an error

vincentsc@cs.stanford.edu.

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

Published in final edited form as:
Adv Neural Inf Process Syst. 2019 December ; 32: 9392–9402.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

analysis, translating that intuition into a machine-understandable description can

be a challenging problem, e.g., “the slice of data that contains a yellow light at
dusk.” As a result, any method must be able to cope with imperfect, overlapping

definitions of data slices, as specified by noisy or weak supervision.

• Stable Improvement of the Model: Given a description of a set of slices, we

want to improve the prediction quality on each of the slices without hurting

overall model performance. Often, these goals are in tension: in many baseline

approaches, steps to improve the slice-specific model performance would

degrade the overall model performance, and vice-versa.

• Scalability: There may be many slices. Indeed, in industrial deployments of

slicing-based approaches, hundreds of slices are commonly introduced by

engineers [29]. This suggests that any approach to slicing must be judicious with

adding parameters as the number of slices grow.

To improve fine-grained, i.e. slice-specific, performance, an intuitive solution is to create a

separate model for each slice. To produce a single prediction at test time, one often trains a

mixture of experts model (MoE) [17]. However, with the growing size of ML models, MoE

is often untenable due to runtime performance, as it could require training and deploying

hundreds of large models—one for each slice. Another strategy draws from multi-task

learning (MTL), in which slice-specific task heads are learned with hard-parameter sharing

[7]. This approach is computationally efficient but may not effectively share training data

across slices, leading to suboptimal performance. Moreover, in MTL, tasks are distinct,

while in Slice-based Learning, a single base task is refined by related slice tasks.

We propose a novel programming model, called Slice-based Learning, in which practitioners

provide slicing functions (SFs), a programming abstraction for heuristically targeting data

subsets of interest. SFs coarsely map input data to slice indicators, which specify data

subsets for which we should allocate additional model capacity. To improve slice-level

performance, we introduce slice-residual-attention modules (SRAMs) that explicitly model

residuals between slice-level and the overall task predictions. SRAMs are agnostic to the

architecture of any neural network model that they are added to— which we refer to as the

backbone model—and we demonstrate our approach on state-of-the-art text and image

models. Using shared backbone parameters, our model initializes slice “expert”

representations, which are associated with learning slice-membership indicators and class

predictors for examples in a particular slice. Then, slice indicators and prediction

confidences are used in an attention-mechanism to reweight and combine each slice expert

representation based on learned residuals from the base representation. This produces a

slice-aware featurizatino of the data, which can be used to make a final prediction.

Our work fits into an emerging class of programming models that sit on top of deep learning

systems [18, 27]. We are the first to introduce and formalize Slice-based Learning, a key

programming abstraction for improving ML models in real-world applications subject to

slice-specific performance objectives. Using an independent error analysis for the recent

GLUE natural language understanding benchmark tasks [35], by simply encoding the

identified error categories as slices in our framework, we show that we can improve the

Chen et al. Page 2

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

quality of state-of-the-art models by up to 4.6 F1 points, and we observe slice-specific

improvements of up to 19.0 points. We also evaluate our system on autonomous vehicle data

and show improvements up to 15.6 F1 points on context-dependent slices (i.e. presence of

bus, traffic light, etc.) and 2.3 F1 points overall. Anecdotally, when deployed in production

systems [29], Slice-based Learning provides a practical programming model with

improvements of up to 40 F1 points in critical test-time slices. On the SuperGlue [34]

benchmark, this procedure accounts for a 2.7 improvement in overall score using the same

architecture as a state-of-the-art modeling result. In addition to the proposal of SRAMs, we

perform an in-depth analysis to explain the mechanisms by which SRAMs improve quality.

We validate the efficacy of quality and noise estimation in SRAMs and compare to weak

supervision frameworks [27] that estimate the quality of supervision sources to improve

overall model accuracy. We show that by using SRAMs, we are able to produce accurate

quality estimates, which leads to higher downstream performance on such tasks by an

average of 1.1 overall F1 points.

2 Related Work

Our work draws inspiration from three main areas: mixture of experts, multi-task learning,

and weak supervision. Jacobs et. al [17] proposed a technique called mixture of experts that

divides the data space into different homogeneous regions, learns the regions of data
separately, and then combines results with a single gating network [33]. This work is a

generalization of popular ensemble methods, which have been shown to improve predictive

power by reducing overfitting, avoiding local optima, and combining representations to

achieve optimal hypotheses [32]. We were motivated in part by reducing the runtime cost

and parameter count for such models.

MTL models provide the flexibility of modular learning—specific task heads, layers, and

representations can be changed in an application-specific, ad hoc manner. Furthermore,

MTL models benefit from the computational efficiency and regularization afforded by hard

parameter sharing [7]. There are often also performance gains seen from adding auxiliary

tasks to improve representation learning objectives [8, 30]. While our approach draws high-

level inspiration from MTL, we highlight key differences: whereas tasks are disjoint in

MTL, slice tasks are formulated micro-tasks that are direct extensions of a base task—they

are designed specifically to learn deviations from the base-task representation. In particular,

sharing information, as seen in MTL cross-stitch networks [25], requires Ω(n2) weights

across n local tasks; our formulation only requires attention over O(n) weights, as slice tasks

operate on the same base task. For example, practitioners might specify yellow lights and

night-time images as important slices; the model learns a series of micro-tasks—based

solely on the data specification—to inform how its approach for the base task, object

detection, should change in these settings. As a result, slice tasks are not fixed ahead of time

by an MTL specification; instead, these micro-task boundaries are learned dynamically from

corresponding data subsets. This style of information sharing is adjacent to cross-task

knowledge in recent multi-task learning (MTL) models [31, 38], and we were inspired by

these methods.

Chen et al. Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Weak supervision has been viewed as a new way to incorporate data of varying accuracy

including domain experts, crowd sourcing, data augmentations, and external knowledge

bases [2, 5, 6, 11, 13, 20, 24, 26, 28]. We take inspiration from labeling functions [28] in

weak supervision as a programming paradigm, which has seen success in industrial

deployments [2]. In weak supervision, a key challenge is to assess the accuracy of a training

data point, which is a function of the sources that supervise it. In contrast, this work models

this accuracy in a fine-grained manner, based on a learned representation—this leads to

higher overall quality.

Weak supervision and multitask learning can be viewed as orthogonal to slicing: we have

observed them used alongside Slice-based Learning in academic projects and industrial

deployments [29].

3 Slice-based Learning

We propose Slice-based Learning as a programming model for training machine learning

models where users specify important data subsets to improve model performance. We

describe the core technical challenges that lead to our notion of slice-residual-attention
modules (SRAMs).

3.1 Problem statement

To formalize the key challenges of slice-based learning, we introduce some basic

terminology. In our base task, we use a supervised input, (x ∈ X, y ∈ Y), where the goal is to

learn according to a standard loss function. In addition, the user provides a set of k functions

called slicing functions (SFs), {λ1,…,λk}, in which λi: X → {0,1}. These SFs are not

assumed to be perfectly accurate; for example, SFs may be based on noisy or weak
supervision sources in functional form [28]. SFs can come from domain-specific heuristics,

distant supervision sources, or other off-the-shelf models, as seen in Figure 2. Ultimately,

the model’s goal is to improve (or avoid damaging) the overall accuracy on the base task

while improving the model on the specified slices.

Formally, each of k slices, denoted si=1,…,k, is an unobserved, indicator random variable, and

each user-specified SF, λi=1,…,k is a corresponding, noisy specification. Given an input tuple

(X,Y,{λi}i=1,…,k) consisting of a dataset (X,Y), and k different user-defined SFs λi, our goal

is to learn a model f w (·)—i.e. estimate model parameters w —that predicts P(Y |

{si}i=1,…,k,X) with high average slice-specific accuracy without substantially degrading

overall accuracy.

Example 1 A developer notices that their self-driving car is not detecting cyclists at night.

Upon error analysis, they diagnose that their state-of-the-art object detection model, trained

on an automobile detection dataset (X,Y) of images, is indeed underperforming on night and

cyclist slices. They write two SFs: λ1 to classify night vs. day, based on pixel intensity; and

λ2 to detect bicycles, which calls a pretrained object detector for a bicycle (with or without a

rider). Given these SFs, the developer leverages Slice-based Learning to improve model

performance on safety-critical subsets.

Chen et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our problem setup makes a key assumption: SFs may be non-servable during test-time—i.e,

during inference, an SF may be unavailable because it is too expensive to compute or relies

on private metadata [1]. In Example 1, the potentially expensive cyclist detection algorithm

is non-servable at runtime. When our model is served at inference, SFs are not necessary,

and we can rely on the model’s learned indicators.

3.2 Model Architecture

The Slice-based Learning architecture has six components. The key intuition is that we will

train a standard prediction model, which we call the base task. We then learn a

representation for each slice that explains how its predictions should differ from the

representation of the base task—i.e., a residual. An attention mechanism then combines

these representations to make a slice-aware prediction.

With this intuition in mind, the six components (Figure 2) are: (a) a backbone, (b) a set of k
slice-indicator heads, and (c) k corresponding slice expert representations, (d) a shared
slice prediction head, (e) a combined, slice-aware representation, and (f) a prediction
head. Each SRAM operates over any backbone architecture and represents a path through

components (b) through (e). We describe the architecture assuming a binary classification

task (output dim. c = 1):

(a) Backbone: Our approach is agnostic to the neural network architecture, which

we call the backbone, denoted f w, which is used primarily for feature extraction

(e.g. the latest transformer for textual data, CNN for image data). The backbone

maps data points x to a representation z ∈ ℝd.

(b) Slice indicator heads: For each slice, an indicator head will output an input’s

slice membership. The model will later use this to reweight the “expert” slice

representations based on the likelihood that an example is in the corresponding

slice. Each indicator head maps the backbone representation, z, to a logit

indicating slice-membership: qi i = 1, …, k
∈ 0, 1 Each slice indicator head is

supervised by the output of a corresponding SF, λi. For each example, we

minimize the multi-label binary cross entropy loss ℒCE between the

unnormalized logit output of each qi λi:𝓁ind = ∑i
k ℒCE qi, λi

(c) Slice expert representations: Each slice representation, {ri}i=1,…,k, will be

treated as an “expert” feature for a given slice. We learn a linear mapping from

the backbone, z, to each ri ∈ ℝh, where h is the size of all slice expert

representations.

(d) Shared slice prediction head: A shared, slice prediction head, g(·), maps each

slice expert representation, ri, to a logit, {pi}i=1,…,k, in the output space of the

base task: g ri = pi ∈ ℝc. where c = 1 for binary classification. We train slice

“expert” tasks using only examples belonging to the corresponding slice, as

specified by λi. Because parameters in g(·) are shared, each representation, ri, is

forced to specialize to the data belonging to its slice. We use the base task’s

Chen et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ground truth label, y, to train this head with binary cross entropy loss

𝓁pred = ∑i
k λiℒCE pi, y

(e) Slice-aware representation: For each example, the slice-aware representation is

the combinatino of several “expert” slice representations according to 1) the

likelihood that the input is in the slice and 2) the confidence of the slice

“expert’s” prediction. To explicitly model the residual from slice representations

to the base representation, we initialize a trivial “base slice” which consists of all
examples so that we have the corresponding indicators, qBASE, and predictions,

pBASE.

Let Q = q1, …, qk, qBASE ∈ ℝk + 1 be the vector of concatenated slice indicator logits,

P = p1, …, pk, pBASE ∈ ℝk + 1 be the vector of concatenated slice prediction logits, and

R = r1, …, rk, rBASE ∈ ℝh × k + 1 be the k + 1 stacked slice expert representations. We

compute our attention by combining the likelihood of slice membership, Q, and the slice

prediction confidence, which we interpret the absolute value of the binary logits, abs(P). We

then apply a Softmax to create soft attention weights over the k+1 slice expert

representations: a ∈ ℝk + 1 = Softmax(Q+abs(P)). Using a weighted sum, we then compute

the combined, slice-aware representation: z′ ∈ ℝh = Ra

(f) Prediction head Finally, we use our slice-aware representation z’ as the input to

a final linear layer, f(·), which we term the prediction head, to make a prediction

on the original, base task. During inference, this prediction head makes the final

prediction. To train the prediction head, we minimize the cross entropy between

the prediction head’s output, f(z’), and the base task’s ground truth labels,

y:𝓁base = ℒCE f z′ , y .

Overall, the model is trained using loss values from all task heads:

𝓁train = 𝓁base + 𝓁ind + 𝓁pred . In Figure 3, we show ablations of this architecture in a

synthetic experiment varying the components that are considered the reweighting

mechanism—specifically, our described attention approach outperforms using only indicator

outputs, only predictor confidences, or uniform weights to reweight the slice representations.

3.3 Synthetic data experiments

To understand the properties of Slice-based Learning, we validate our model and its

components (Figure 2) on a set of synthetic data. In the results demonstrated in Figure 1, we

construct a dataset 𝒳 ∈ ℝ2 with a 2-way classification problem in which over 95% of the

data are linearly separable. We introduce two minor perturbations along the decision

boundary, which we define as critical slices, s1 and s2. Intuitively, examples that fall within

these slices follow different distributions P 𝒴 |𝒳, si relative to the overall data (P(𝒴 |𝒳)).

For all models, the shared backbone is defined as a 2-layer MLP architecture with a

backbone representation size d = 13 and a final ReLU non-linearity. OURSis initialized with

a slice-representation size h = 13.

Chen et al. Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The model learns the slice-conditional label distribution P(Y |si,X) from noisy
SF inputs.—We show in Figure 1b that the slices at the perturbed decision boundary

cannot be learned in the general case, by a VANILLA model. As a result, we define two SFs,

λ1 and λ2, to target the slices of interest. Because our attention-based model (OURS) is

slice-aware, it outperforms VANILLA, which has no notion of slices (Figure 4, left).

Intuitively, if the model knows “where” in the 2-dim data space an example lives (as defined

by SFs), it can condition on slice information as it makes a final prediction. In Figure 5, we

observe our model’s ability to cope with noisy SF inputs: the indicator is robust to moderate

amounts of noise by ignoring noisy examples (middle); with extremely noisy inputs, it

disregards poorly-defined SFs by assigning relatively uniform weights (right).

Overall model performance does not degrade.—The primary goal of the slice-aware

model is to improve slice-specific performance without degrading the model’s existing

capabilities. We show that OURS improves the overall score by 1.36 F1 points by learning

the proportionally smaller perturbations in the decision boundary in addition to the more

general linear boundary (Figure 4, left). Further, we note that we do not regress on individual

slice heads.

Learning slice weights with features P(Y |si,X) improves over doing so with
only supervision source information P(Y |si).—A core assumption of our approach

asserts that if the model learns improved slice-conditional weights via λi, downstream slice-

specific performance will improve. Data programming (DP) [28] is a popular weak

supervision approach deployed at numerous Fortune 500 companies [2], in which the

weights of heuristics are learned solely from labeling source information. We emphasize that

our setting provides the model with strictly more information—in the data’s feature

representations—to learn such weights; we show in Figure 4 (right) that increasing

representation size allows us to significantly outperform DP.

Attention weights learn from noisy λi to combine slice residual
representations.—Given slice information, the model achieves improvements over

methods that do not aggregate slice information, as defined by each noisy λi. Both the

indicator outputs (Q) and prediction confidence (abs(P)) are robustly combined in the

attention mechanism. Even a noisy indicator will be upweighted if the predictions are high

confidence, and if the indicator has high signal, even a slice expert making poor predictions

can benefit from the underlying features. We show in Figure 4 that our method improves

over HPS, which is slice-aware, but has no way of combining slice information despite

increasingly noisy λi. In contrast, our attention-based architecture is able to combine slice

expert representations, and (OURS) sees improvements over VANILLA of 38.2 slice-level

F1 averaged across S1 and S2.

Our model demonstrates similar expressivity to MoE with much less cost.—
We come within 6.25 slice-level F1 averaged across S1 and S2 of MoE with approximately

half as many parameters (Figure 4). With large backbone architectures, characterized by M
parameters, and a large number of slices, k, MoE requires a quadratically large number of

Chen et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

parameters, because we initialize an entire backbone for each slice. In contrast, all other

models scale linearly in parameters with M.

4 Experiments

In several text and image-based applications, we demonstrate that using the same backbone

architecture as baselines, our approach succesfully models slice importance and significantly

improves slice-level performance without impacting overall model performance. Then, we

demonstrate our method’s advantages in aggregating noisy heuristics, compared to existing

weak supervision literature.

4.1 Applications

We compare our method to several baselines that capture alternatives we have seen in

practice or the literature and on natural language understanding (NLU) and computer vision

(CV) datasets.

4.1.1 Baselines—For each baseline, we first train the backbone parameters with a

standard hyperparameter search over learning rate and 𝓁2 regularization values. Then, each

method is initialized from the backbone weights and fine-tuned for a fixed number of epochs

and the optimal hyperparameters. We perform all empirical experiments on Google’s Cloud

infrastructure using NVIDIA V100 GPUs.

VANILLA: A vanilla neural network backbone is trained with a final prediction head to

make predictions. This baseline represents the de-facto approach used in deep learning

modeling tasks; it is unaware of the notion of slices and, as a result, neglects to model them.

MoE: We train a mixture of experts [17], where each expert is a separate VANILLA model

trained on a data subset specified by the SF, λi. A gating network [33] is then trained to

combine expert predictions into a final prediction.

HPS: In the style of multi-task learning, we model slices as separate task heads with a

shared backbone trained via hard parameter sharing. Each slice task performs the same

prediction task, but they are trained on subsets of data corresponding to λi. In this approach,

backpropagation from different slice tasks is intended to encourage a slice-aware

representation bias [7, 31].

MANUAL: To simulate the manual effort required to upweight hyperparameters for tuning

slice-specific representations, we leverage the same architecture as HPS and grid search over

multipliers for loss terms, α ∈ {2,20,50,100}, of underperforming slices (i.e. where

scoreoverall − scoreslice ≥ 5 F1 points in VANILLA).

4.1.2 Datasets

NLU Datasets.: We select slices based on independently-conducted error analyses [19]

(Appendix A1.2). In Corpus of Linguistic Acceptability (COLA) [36], the task is to

predict whether a sentence is linguistically acceptable (i.e. grammatically); we measure

Chen et al. Page 8

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

performance using the Matthews correlation coefficient [23]. Natural slices might occur as

questions or long sentences, as corresponding examples might consist of non-standard or

challenging sentence structure. Since ground truth test labels are not available for this task

(they are held out in evaluation servers [35]), we sample to create data splits with 7.2K/

1.3K/1K train/valid/test sentences, respectively. To properly evaluate slices of interest, we

ensure that the proportions of examples in ground truth slices are consistent across splits. In

Recognizing Textual Entailment (RTE) [3, 4, 10, 14, 35], the task is to predict whether or

not a premise sentence entails a hypothesis sentence. Similar to COLA, we create our own

data splits and use 2.25K/0.25K/0.275K train/valid/test sentences, respectively. Finally, in a

user study where we work with practitioners tackling the SuperGlue [34] benchmark, we

leverage Slice-based Learning to improve state-of-the-art model quality on benchmark

submissions.

CV Dataset.: In the image domain, we evaluate on an autonomous vehicle dataset called

Cyclist Detection for Autonomous Vehicles (CYDET) [21]. We leverage clips in a self-

driving video dataset to detect whether a cyclist (person plus bicycle) is present at each

frame. We select one independent clip for evaluation, and the remainder for training; for

valid/test splits, we select alternating batches of five frames each from the evaluation clip.

We preprocess the dataset with an open-source implementation of Mask R-CNN [22] to

provide metadata (e.g. presence of traffic lights, benches), which serve as slice indicators for

each frame.

4.1.3 Results

Slice-aware models improve slice-specific performance.: We see in Table 1 that each

slice-aware model (HPS, MANUAL, MoE, OURS) largely improves over the naive model.

OURS improves overall performance.: We also observe that OURS improves overall

performance for each of the datasets. This is likely because the chosen slices were explicitly

modeled from error analysis papers, and explicitly modeling “error” slices led to improved

overall performance.

OURS learns slice expert representations consistently.: While HPS and MANUAL

perform well on some slices, they exhibit much higher variance compared to OURS and

MoE (as denoted by the std. in Table 1). These baselines lack an attention mechanism to

reweight slice representations in a consistent way; instead, they rely purely on representation

bias from slice-specific heads to improve slice-level performance. Because these

representations are not modeled explicitly, improvements are largely driven by chance, and

this approach risks worsening performance on other slices or overall.

OURS improves performance with a parameter-efficient representation.: For CoLA
and RTE experiments, we used the BERT-base [12] architecture with 110M parameters; for

CyDet, we used ResNet-18 [15]. For each additional slice, OURS requires a 7% and 5%

increase in relative parameter count in the BERT and ResNet architectures, respectively

(total relative parameter increase reported in Table 1). As a comparison, HPS requires the

same relative increase in parameters per slice. MoE on the other hand, increases relative

Chen et al. Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

number of parameters by 100% for both architectures. With limited increase in model size,

OURS outperforms or matches all other baselines, including MoE, which requires an order

of magnitude more parameters.

OURS improves state-of-the-art quality models with slice-aware representations.: In a

submission to SuperGLUE benchmark evaluation servers, we leverage the same BERT-large

architecture of previous submissions and observe improvements of +3.8/+2.8 avg. F1/acc. on

CB, +2.4 acc. on COPA, +2.5 acc. on WiC; this amounts to an aggregate 2.7 point increase

in overall benchmark score.

4.2 Weak Supervision Comparisons

To contextualize our contributions in the weak supervision literature, we compare directly to

Data Programming (DP) [26], a popular approach for reweighting user-specified heuristics

using supervision source information [28]. We consider two text-based relation extraction

datasets: Chemical-Disease Relations (CDR),[37], in which we identify causal links

between chemical and disease entities in a dataset of PubMed abstracts, and Spouses [9], in

which we identify mentions of spousal relationships using preprocessed pairs of person

mentions from news articles (via Spacy [16]). In both datasets, we leverage the exact noisy

linguistic patterns and distant supervision heuristics provided in the opensource

implementation of DP. Rather than voting on a particular class, we repurpose the provided

labeling functions as binary slice indicators for our model. We then train our slice-aware

model on the probabilistic labels aggregated from these heuristics.

OURS improves over current weak supervision methods.: Treating the noisy heuristics

as slicing functions, we observe lifts of up to 1.3 F1 overall and 15.9 F1 on heuristically-

defined slices. We reproduce the DP [26] setup to obtain overall scores of F1=41.9 on

Spouses and F1=56.4 on CDR. Using Slice-based Learning, we improve to 42.8 (+0.9) and

57.7 (+1.3) F1, respectively. Intuitively, we can explain this improvement, because OURS

has access to features of the data belonging to slices whereas DP relies only on the source

information of each heuristic.

5 Conclusion

We introduced the challenge of improving slice-specific performance without damaging the

overall model quality, and introduced the first programming abstraction and machine

learning model to support these actions. We demonstrated that the model could be used to

push the state-of-the-art quality. In our analysis, we can explain consistent gains in the Slice-
based Learning paradigm because our attention mechanism has access to a rich set of deep

features, whereas existing weak supervision paradigms have no way to access this

information. We view this work in the context of programming models that sit on top of

traditional modeling approaches in machine learning systems.

Acknowledgements

We would like to thank Braden Hancock, Feng Niu, and Charles Srisuwananukorn for many helpful discussions,
tests, and collaborations throughout the development of slicing. We gratefully acknowledge the support of DARPA

Chen et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

under Nos. FA87501720095 (D3M), FA86501827865 (SDH), FA86501827882 (ASED), NIH under No.
U54EB020405 (Mobilize), NSF under Nos. CCF1763315 (Beyond Sparsity) and CCF1563078 (Volume to
Velocity), ONR under No. N000141712266 (Unifying Weak Supervision), the Moore Foundation, NXP, Xilinx,
LETI-CEA, Intel, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm,
Analog Devices, the Okawa Foundation, and American Family Insurance, Google Cloud, Swiss Re, and members
of the Stanford DAWN project: Teradata, Facebook, Google, Ant Financial, NEC, SAP, VMWare, and Infosys. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views, policies, or endorsements, either expressed or
implied, of DARPA, NIH, ONR, or the U.S. Government.

A1: Appendix

A1.1 Model Characteristics

We include summarized model characteristics and the associated baselines to supplement

Sections 3.3 and 4.1.1.

A1.2 Slicing Function (SF) Construction

We walk through specific examples of SFs written for a number of our applications.

Textual SFs For text-based applications (COLA, RTE), we write SFs over pairs of sentences

for each task. Following dataset convention, we denote the first sentence as the premise and

the second as the hypothesis where appropriate. Then, SFs are written, drawing largely from

existing error analysis [19]. For instance, we might expect certain questions to be especially

difficult to formulate in a language acceptability task. So, we write the following SF to

heuristically target where questions:

def SF_where_question(premise, hypothesis):

triggers if “where” appears in sentence

sentences = premise + hypothesis

return “where” in sentences.lower()

In some cases, we write SFs over both sentences at once. For instance, to capture possible

errors in article references (e.g. the Big Apple vs a big apple), we specify a slice where

multiple instances of the same article appear in provided sentences:

def SF_has_multiple_articles(premise, hypothesis):

triggers if a sentence has more than one occurrence of the same article

sentences = premise + hypothesis

multiple_a = sum([int(x == “a”) for x in sentences.split()]) > 1

multiple_an = sum([int(x == “an”) for x in sentences.split()]) > 1

multiple_the = sum([int(x == “the”) for x in sentences.split()]) > 1

return multiple_a or multiple_an or multiple_the

Chen et al. Page 11

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Image-based SFs For computer vision applications, we leverage image metadata and

bounding box attributes, generated from an off-the-shelf Mask R-CNN [22], to target slices

of interest.

def SF_bus(image):

triggers if a “bus” appears in the predictions of the noisy detector

outputs = noisy_detector(image)

return “bus” in outputs

We note that these potentially expensive detectors are non-servable—they run offline, and

our model uses learned indicators at inference time. Despite the detectors’ noisy predictions,

our model is able to to reweight representations appropriately.

A1.3 COLA SFs

COLA is a language acceptability task based on linguistics and grammar for individual

sentences. We draw from error analysis which introduces several linguistically imortance

slices for language acceptability via a series of challenge tasks. Each task consists of

synthetically generated examples to measure model evaluation on specific slices. We

heuristically define SFs to target subsets of data corresponding to each challenge, and

include the full set of SFs derived from each category of challenge tasks:

• Wh-words: This task targets sentences containing who, what, where, when, why,
how. We exclude why and how below because the COLA dataset does not have

enough examples for proper training and evaluation of these slices.

def SF_where_in_sentence(sentence):

return “where” in sentence

def SF_who_in_sentence(sentence):

return “who” in sentence

def SF_what_in_sentence(sentence):

return “what” in sentence

def SF_when_in_sentence(sentence):

return “when” in sentence

• Definite-Indefinite Articles: This challenge measures the model based on

different combinations of definite (the) and indefinite (a,an) articles in a sentence

(i.e. swapping definite for indefinite articles and vice versa). We target

containing multiple uses of a definite (the) or indefinite article (a, an):

def SF_has_multiple_articles(sentence):

triggers if a sentence has more than one occurrence of the same article

multiple_indefinite = sum([int(x == “a”) for x in sentence.split()]) > 1 or

Chen et al. Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sum([

int(x == “an”) for x in sentence.split()]) > 1

multiple_definite = sum([int(x == “the”) for x in sentence.split()]) > 1

return multiple_indefinite or multiple_definite

• Coordinating Conjunctions: This task seeks to measure correct usage of

coordinating conjunctions (and, but, or) in context. We target the presence of

these words in both sentences.

def and_in_sentence(sentence):

return “and” in sentence

def but_in_sentence(sentence):

return “but” in sentence

def or_in_sentence(sentence):

return “or” in sentence

• End-of-Sentence: This challenge task measures a model’s ability to identify

coherent sentences or sentence chunks after removing puctuation. We

heuristically target this slice by identifying particularly short sentences and those

that end with verbs and adverbs. We use off-the-shelf parsers (i.e. Spacy [16]) to

generate part-of-speech tags.

def SF_short_sentence(sentence):

triggered if sentence has fewer than 5 tokens

return len(sentence.split()) < 5

Spacy tagger

def get_spacy_pos(sentence):

import spacy

nlp = spacy.load(“en_core_web_sm”)

return nlp(sentence).pos_

def SF_ends_with_verb(sentence):

remove last token, which is always is punctuation

sentence = sentence[:−1]

return get_spacy_pos(sentence)[−1] == “VERB”

def SF_ends_with_adverb(sentence):

remove last token, which is always is punctuation

sentence = sentence[:−1]

return get_spacy_pos(sentence)[−1] == “ADVERB”

A1.4 RTE SFs

Similar to COLA, we use challenge tasks from NLI-based error analysis [19] to write SFs

over the textual entailment (RTE) dataset.

Chen et al. Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Prepositions: In one challenge, the authors swap prepositions in the dataset with

prepositions in a manuallycurated list. The list in its entirety spans a large

proportion of the RTE dataset, which would constitute a very large slice. We find

it more effective to separate these prepositions into temporal and possessive
slices.

def SF_has_temporal_preposition(premise, hypothesis):

temporal_prepositions = [“after”, “before”, “past”]

sentence = premise + sentence

return any([p in sentence for p in temporal_prepositions])

def SF_has_possessive_preposition(premise, hypothesis):

possessive_prepositions = [“inside of”, “with”, “within”]

sentence = premise + sentence

return any([p in sentence for p in possessive_prepositions])

• Comparatives: One challenge chooses sentences with specific comparative

words and mutates/negates them.

We directly target keywords identified in their approach.

def SF_is_comparative(premise, hypothesis):

comparative_words = [“more”, “less”, “better”, “worse”, “bigger”, “smaller”]

sentence = premise + hypothesis

return any([p in sentence for p in comparative_words])

• Quantification: One challenge tests natural language understanding with

common quantifiers. We target common quantifiers in both the combined

premise/hypothesis and in only the hypothesis.

def is_quantification(premise, hypothesis):

quantifiers = [“all”, “some”, “none”]

sentence = premise + hypothesis

return any([p in sentence for p in quantifiers])

def is_quantification_hypothesis(premise, hypothesis):

quantifiers = [“all”, “some”, “none”]

return any([p in hypothesis for p in quantifiers])

• Spatial Expressions: This challenge identifies spatial relations between entities

(i.e. A is to the left of B). We exclude this task from our slices, because such

slices do not account for enough examples in the RTE dataset.

• Negation: This challenge task identifies whether natural language inference

models can handle negations. We heuristically target this slice via a list of

common negation words from a top result in a web search.

Chen et al. Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

def SF_common_negation(premise, hypothesis):

Words from https://www.grammarly.com/blog/negatives/

negation_words = [

“no”,

“not”,

“none”,

“no one”,

“nobody”,

“nothing”,

“neither”,

“nowhere”,

“never”,

“hardly”,

“scarcely”,

“barely”,

“doesnt”,

“isnt”,

“wasnt”,

“shouldnt”,

“wouldnt”,

“couldnt”,

“wont”,

“cant”,

“dont”,

]

sentence = premise + hypothesis

return any([x in negation_words for x in sentence])

• Premise/Hypothesis Length: Finally, separate from the cited error analysis, we

target different length hypotheses and premises as an additional set of slicing

tasks. In our own error analysis of the RTE model, we found these represented

intuitive slices: long premises are typically harder to parse for key information,

and shorter hypotheses tend to share syntactical structure.

def SF_short_hypothesis(premise, hypothesis):

return len(hypothesis.split()) < 5

def SF_long_hypothesis(premise, hypothesis):

return len(hypothesis.split()) > 100

def SF_short_premise(premise, hypothesis):

return len(premise.split()) < 15

def SF_long_premise(premise, hypothesis):

return len(premise.split()) > 100

Chen et al. Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.grammarly.com/blog/negatives/

A1.5 CYDET SFs

For the cyclist detection dataset, we identify subsets that correspond to other objects in the

scene using a noisy detector (i.e. an off-the-shelf Mask R-CNN [22]).

define noisy detector

def noise_detector(image):

probs = mask_rcnn.forward(image)

threshold predictions

preds = []

for object in classes:

if probs[“object”] > 0.5:

preds.append(object)

return preds

Cyclist Detection SFs

def SF_bench(image):

outputs = noisy_detector(image)

return “bench” in outputs

def SF_truck(image):

outputs = noisy_detector(image)

return “truck” in outputs

def SF_car(image):

outputs = noisy_detector(image)

return “car” in outputs

def SF_bus(image):

outputs = noisy_detector(image)

return “bus” in outputs

def SF_person(image):

outputs = noisy_detector(image)

return “person” in outputs

def SF_traffic_light(image):

outputs = noisy_detector(image)

return “traffic light” in outputs

def SF_fire_hydrant(image):

outputs = noisy_detector(image)

return “fire hydrant” in outputs

def SF_stop_sign(image):

outputs = noisy_detector(image)

return “stop sign” in outputs

def SF_bicycle(image):

outputs = noisy_detector(image)

return “bicycle” in outputs

Chen et al. Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A1.6 Slice-specific Metrics

We visualize slice-specific metrics across each application dataset, for each method of

comparison. We report the corresponding aggregate metrics in Figure 1 (below).

In COLA, we see that MoE and OURS exhibit the largest slice-specific gains, and also

overfit on the same slice ends with adverb. In RTE, we see that OURS improves

performance on all slices except common negation, where it falls less than a point below

VANILLA. On CYDET, we see the largest gains for OURS on bench and bus slices—in

particular, we are able to improve in cases where the model might able to use the presence of

these objects to make more informed decisions about whether a cyclist is present. Note:

because the MoE model on CYDET encounters an “Out of Memory” error, the

corresponding (blue) data bar is not available for this dataset.

References

[1]. Stephen H Bach Daniel Rodriguez, Liu Yintao, Luo Chong, Shao Haidong, Xia Cassandra, Sen
Souvik, Ratner Alex, Hancock Braden, Alborzi Houman, et al. Snorkel drybell: A case study in
deploying weak supervision at industrial scale. In Proceedings of the 2019 International
Conference on Management of Data, pages 362–375. ACM, 2019.

[2]. Stephen H Bach Daniel Rodriguez, Liu Yintao, Luo Chong, Shao Haidong, Xia Cassandra, Sen
Souvik, Ratner Alexander, Hancock Braden, Alborzi Houman, et al. Snorkel drybell: A case
study in deploying weak supervision at industrial scale. arXiv preprint arXiv:1812.00417, 2018.

[3]. Roy Bar-Haim Ido Dagan, Dolan Bill, Ferro Lisa, Giampiccolo Danilo, Magnini Bernardo, and
Szpektor Idan. The second pascal recognising textual entailment challenge. In Proceedings of the
second PASCAL challenges workshop on recognising textual entailment, volume 6, pages 6–4.
Venice, 2006.

[4]. Bentivogli Luisa, Clark Peter, Dagan Ido, and Giampiccolo Danilo. The fifth pascal recognizing
textual entailment challenge. In TAC, 2009.

[5]. Berend Daniel and Kontorovich Aryeh. Consistency of weighted majority votes. In Proceedings of
the 27th International Conference on Neural Information Processing Systems, NIPS’14, pages
3446–3454, Cambridge, MA, USA, 2014 MIT Press.

[6]. Blum Avrim and Mitchell Tom. Combining labeled and unlabeled data with co-training. In
Proceedings of the eleventh annual conference on Computational learning theory, pages 92–100.
ACM, 1998.

[7]. Caruana Rich. Multitask learning. Machine learning, 28(1):41–75, 1997.

[8]. Cheng Hao, Fang Hao, and Ostendorf Mari. Open-domain name error detection using a multi-task
rnn. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 737–746, 2015.

[9]. Corney David, Albakour Dyaa, Miguel Martinez-Alvarez, and Samir Moussa. What do a million
news articles look like? In NewsIR@ ECIR, pages 42–47, 2016.

[10]. Dagan Ido, Glickman Oren, and Magnini Bernardo. The pascal recognising textual entailment
challenge In Machine Learning Challenges Workshop, pages 177–190. Springer, 2005.

[11]. Dalvi Nilesh, Dasgupta Anirban, Kumar Ravi, and Rastogi Vibhor. Aggregating crowdsourced
binary ratings. In Proceedings of the 22Nd International Conference on World Wide Web, WWW
‘13, pages 285–294, New York, NY, USA, 2013 ACM.

[12]. Devlin Jacob, Chang Ming-Wei, Lee Kenton, and Toutanova Kristina. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[13]. Mitchell Tet al. Never-ending learning. In AAAI, 2015.

[14]. Giampiccolo Danilo, Magnini Bernardo, Dagan Ido, and Dolan Bill. The third pascal recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pages 1–9. Association for Computational Linguistics, 2007.

Chen et al. Page 17

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[15]. He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[16]. Honnibal Matthew and Johnson Mark. An improved non-monotonic transition system for
dependency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1373–1378, Lisbon, Portugal, 9 2015 Association for Computational
Linguistics.

[17]. Jacobs Robert A, Jordan Michael I, Nowlan Steven J, and Hinton Geoffrey E. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991. [PubMed: 31141872]

[18]. Karpathy Andrej. Building the software 2.0 stack, 2019.

[19]. Kim Najoung, Patel Roma, Poliak Adam, Wang Alex, Xia Patrick, R Thomas McCoy Ian Tenney,
Ross Alexis, Linzen Tal, Van Durme Benjamin, et al. Probing what different nlp tasks teach
machines about function word comprehension. arXiv preprint arXiv:1904.11544, 2019.

[20]. Mann GS and McCallum A. Generalized expectation criteria for semi-supervised learning with
weakly labeled data. JMLR, 11(Feb):955–984, 2010.

[21]. Masalov Alexerand, Ota Jeffrey, Corbet Heath, Lee Eric, and Pelley Adam. Cydet: Improving
camerabased cyclist recognition accuracy with known cycling jersey patterns. In 2018 IEEE
Intelligent Vehicles Symposium (IV), pages 2143–2149. IEEE, 2018.

[22]. Massa Francisco and Girshick Ross. maskrcnn-benchmark: Fast, modular reference
implementation of Instance Segmentation and Object Detection algorithms in PyTorch. https://
github.com/facebookresearch/maskrcnn-benchmark, 2018 Accessed: Feb 2019.

[23]. Matthews Brian W. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2):442–451, 1975.

[24]. Mintz M, Bills S, Snow R, and Jurafsky D. Distant supervision for relation extraction without
labeled data. In Proc ACL, pages 1003–1011, 2009.

[25]. Misra Ishan, Shrivastava Abhinav, Gupta Abhinav, and Hebert Martial. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3994–4003, 2016.

[26]. Ratner AJ, Bach SH, Ehrenberg H, Fries J, Wu S, and Ré C. Snorkel: Rapid training data creation
with weak supervision. In VLDB, 2018.

[27]. Ratner Alexander, Hancock Braden, and Christopher Ré. The role of massively multi-task and
weak supervision in software 2.0. 2019.

[28]. Ratner Alexander J, De Sa Christopher M, Wu Sen, Selsam Daniel, and Ré Christopher. Data
programming: Creating large training sets, quickly. In Advances in neural information processing
systems, pages 3567–3575, 2016. [PubMed: 29872252]

[29]. Christopher Ré Feng Niu, Gudipati Pallavi, and Srisuwananukorn Charles. Overton: A data
system for monitoring and improving machine-learned products. 2019.

[30]. Rei Marek. Semi-supervised multitask learning for sequence labeling. arXiv preprint arXiv:
1704.07156, 2017.

[31]. Ruder Sebastian. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[32]. Sagi Omer and Rokach Lior. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 8(4):e1249, 2018.

[33]. Sigaud Olivier, Masson Clément, Filliat David, and Stulp Freek. Gated networks: an inventory.
arXiv preprint arXiv:1512.03201, 2015.

[34]. Wang Alex, Pruksachatkun Yada, Nangia Nikita, Singh Amanpreet, Michael Julian, Hill Felix,
Levy Omer, and Bowman Samuel R. Superglue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint arXiv:1905.00537, 2019.

[35]. Wang Alex, Singh Amapreet, Michael Julian, Hill Felix, Levy Omer, and Samuel R Bowman.
Glue: A multitask benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[36]. Warstadt Alex, Singh Amanpreet, and Samuel R Bowman. Neural network acceptability
judgments. arXiv preprint arXiv:1805.12471, 2018.

Chen et al. Page 18

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark

[37]. Wei Chih-Hsuan, Peng Yifan, Leaman Robert, Allan Peter Davis, Carolyn J Mattingly, Jiao Li,
Thomas C Wiegers, and Zhiyong Lu. Overview of the biocreative v chemical disease relation
(cdr) task. In Proceedings of the fifth BioCreative challenge evaluation workshop, pages 154–
166, 2015.

[38]. Yang Yongxin and Hospedales Timothy. Deep multi-task representation learning: A tensor
factorisation approach. arXiv preprint arXiv:1605.06391, 2016.

Chen et al. Page 19

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1: Slice-based Learning via synthetically generated data:
(a) The data distribution contains critical slices, s1, s2, that represent a small proportion of

the dataset. (b) A vanilla neural network correctly learns the general, linear decision

boundary but fails to learn the perturbed slice boundary. (c) A user writes slicing functions
(SFs), λ1, λ2, to heuristically target critical subsets. (d) The model commits additional

capacity to learn slice expert representations. Upon reweighting slice expert representations,

the slice-aware model learns to classify the fine-grained slices with higher F1 score.

Chen et al. Page 20

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2: Model Architecture:
A developer writes SFs (λi=1,…,k) over input data and specifies any. (a) backbone
architecture (e.g. ResNet [15], BERT [12]) as a feature extractor. Extracted features are

shared parameters for k slice-residual attention modules; each learns a (b) slice indicator
head, which is supervised by a corresponding λi, and a (c) slice expert representation,

which is trained only on examples belonging to the slice using a (d) shared slice prediction
head. An attention mechanism reweights these representations into a combined, (e) slice-
aware representation. A final (f) prediction head makes model predictions based on the

slice-aware representation.

Chen et al. Page 21

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3: Architecture Ablation:
Using a synthetic, two-class dataset (Figure, left) with four randomly specified (size, shape,

location) slices (Figure, middle), we specify corresponding, noisy SFs (Figure, right) and

ablate specific model components by modifying the reweighting mechanism for slice expert

representations. We compare overall/slice performance for uniform, indicator output,

prediction confidence weighting, and the proposed attention weighting using all

components. Our FULL ATTENTION approach performs most consistently on slices without

worsening overall performance.

Chen et al. Page 22

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4: Scaling with hidden feature representation dimensions.
We plot model quality versus the hidden dimension size. The slice-aware model (OURS)

improves over hard parameter sharing (HPS) on both slices at a fixed hidden dimension size,

while being close to mixture of experts (MoE).

Note: MoE has significantly more parameters overall, as it copies the entire model.

Chen et al. Page 23

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5: Coping with Noise:
We test the robustness of our approach on a simple synthetic example. In each panel, we

show noisy SFs (left) as binary points and the corresponding slice indicator’s output (right)

as a heatmap of probabilities. We show that the indicator assigns low relative probabilities

on noisy (40%, middle) samples and ignores a very noisy (80%, right) SF, assigning

relatively uniform scores to all samples.

Chen et al. Page 24

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
For each application dataset (Section 4.1) we report all relative, slice-level metrics compared

to VANILLA for each model.

Chen et al. Page 25

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 26

Table 1:
Application Datasets:

We compare our model to baselines averaged over 5 runs with different seeds in natural language

understanding and computer vision applications and note the relative increase in number of params for each

method. We report the overall score and maximum relative improvement (i.e. Lift) over the VANILLA model for

each of the slice-aware baselines. For some trials of MoE, our system ran out of GPU memory (i.e. OOM).

Dataset COLA (Matthews Corr. [23]) RTE (F1 Score) CYDET (F1 Score)

Param
Inc. Overall (std)

Slice Lift Param
Inc.

Overall
(std)

Slice Lift Param
Inc.

Overall
(std)

Slice Lift

Max Avg Max Avg Max Avg

VANILLA - 57.8 (±1.3) - - - 67.0 (±1.6) - - - 39.4 (±-5.4) - -

HPS [7] 12% 57.4 (±2.1) +12.7 1.1 10% 67.9 (±1.8) +12.7 +2.9 10% 37.4 (±3.6) +6.3 −0.7

MANUAL 12% 57.9 (±1.2) +6.3 +0.4 10% 69.4 (±1.8) +10.7 +4.2 10% 36.9 (±4.2) +6.3 −1.7

MoE [17] 100% 57.2 (±0.9) +20.0 +1.3 100% 69.2 (±1.5) +10.9 +3.9 100% OOM OOM OOM

Ours 12% 58.3 (±0.7) +19.0 +2.5 10% 69.5 (±0.8) +10.9 +4.6 10% 40.9 (±3.9) +15.6 +2.3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 27

Table 2:
Model characterizations:

We characterize each model’s advantages/limitations and compute the number of parameters for each baseline

model, given k slices, M backbone parameters, feature representation z dimension r, and slice expert

representation pi dimension h.

Method Slice-aware No manual
tuning

Weighted
slice info.

Avoids copies of
model (M params) Num. Params

VANILLA ✓ ✓ O(M+r)

HPS ✓ ✓ ✓ O(M+kr)

MANUAL ✓ ✓ ✓ O(M+kr)

MoE ✓ ✓ ✓ O(kM+kr)

OURS ✓ ✓ ✓ ✓ O(M+krh)

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.

	Abstract
	Introduction
	Related Work
	Slice-based Learning
	Problem statement
	Model Architecture
	Synthetic data experiments
	The model learns the slice-conditional label distribution P(Y |si,X) from noisy SF inputs.
	Overall model performance does not degrade.
	Learning slice weights with features P(Y |si,X) improves over doing so with only supervision source information P(Y |si).
	Attention weights learn from noisy λi to combine slice residual representations.
	Our model demonstrates similar expressivity to MoE with much less cost.

	Experiments
	Applications
	Baselines
	VANILLA:
	MoE:
	HPS:
	MANUAL:

	Datasets
	NLU Datasets.
	CV Dataset.

	Results
	Slice-aware models improve slice-specific performance.
	OURS improves overall performance.
	OURS learns slice expert representations consistently.
	OURS improves performance with a parameter-efficient representation.
	OURS improves state-of-the-art quality models with slice-aware representations.

	Weak Supervision Comparisons
	OURS improves over current weak supervision methods.: Treating the noisy heuristics as slicing functions, we observe lifts of up to 1.3 F1 overall and 15.9 F1 on heuristically-defined slices. We reproduce the DP [26] setup to obtain overall scores of F1=41.9 on Spouses and F1=56.4 on CDR. Using Slice-based Learning, we improve to 42.8 (+0.9) and 57.7 (+1.3) F1, respectively. Intuitively, we can explain this improvement, because OURS has access to features of the data belonging to slices whereas DP relies only on the source information of each heuristic.
	OURS improves over current weak supervision methods.

	Conclusion
	Appendix
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:

