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Abstract

In real-world machine learning applications, data subsets correspond to especially critical 

outcomes: vulnerable cyclist detections are safety-critical in an autonomous driving task, and 

“question” sentences might be important to a dialogue agent’s language understanding for product 

purposes. While machine learning models can achieve high quality performance on coarse-grained 

metrics like F1-score and overall accuracy, they may underperform on critical subsets—we define 

these as slices, the key abstraction in our approach. To address slice-level performance, 

practitioners often train separate “expert” models on slice subsets or use multi-task hard parameter 

sharing. We propose Slice-based Learning, a new programming model in which the slicing 
function (SF), a programming interface, specifies critical data subsets for which the model should 

commit additional capacity. Any model can leverage SFs to learn slice expert representations, 

which are combined with an attention mechanism to make slice-aware predictions. We show that 

our approach maintains a parameter-efficient representation while improving over baselines by up 

to 19.0 F1 on slices and 4.6 F1 overall on datasets spanning language understanding (e.g. 

SuperGLUE), computer vision, and production-scale industrial systems.

1 Introduction

In real-world applications, some model outcomes are more important than others: for 

example, a data subset might correspond to safety-critical but rare scenarios in an 

autonomous driving setting (e.g. detecting cyclists or trolley cars [18]) or critical but lower-

frequency healthcare demographics (e.g. handling younger patients with certain cancers). 

Traditional machine learning systems optimize for overall quality, which may be too coarse-

grained; models that achieve high overall performance might produce unacceptable failure 

rates on slices of the data. In many production settings, the key challenge is to maintain 

overall model quality while improving slice-specific metrics.

To formalize this challenge, we introduce the notion of slices: application-critical data 

subsets, specified programmatically by machine learning practitioners, for which the we 

would like to improve model performance. This leads to three technical challenges:

• Coping with Noise: Defining slices precisely can be challenging. While 

engineers often have a clear intuition of a slice, typically as a result of an error 
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analysis, translating that intuition into a machine-understandable description can 

be a challenging problem, e.g., “the slice of data that contains a yellow light at 
dusk.” As a result, any method must be able to cope with imperfect, overlapping 

definitions of data slices, as specified by noisy or weak supervision.

• Stable Improvement of the Model: Given a description of a set of slices, we 

want to improve the prediction quality on each of the slices without hurting 

overall model performance. Often, these goals are in tension: in many baseline 

approaches, steps to improve the slice-specific model performance would 

degrade the overall model performance, and vice-versa.

• Scalability: There may be many slices. Indeed, in industrial deployments of 

slicing-based approaches, hundreds of slices are commonly introduced by 

engineers [29]. This suggests that any approach to slicing must be judicious with 

adding parameters as the number of slices grow.

To improve fine-grained, i.e. slice-specific, performance, an intuitive solution is to create a 

separate model for each slice. To produce a single prediction at test time, one often trains a 

mixture of experts model (MoE) [17]. However, with the growing size of ML models, MoE 

is often untenable due to runtime performance, as it could require training and deploying 

hundreds of large models—one for each slice. Another strategy draws from multi-task 

learning (MTL), in which slice-specific task heads are learned with hard-parameter sharing 

[7]. This approach is computationally efficient but may not effectively share training data 

across slices, leading to suboptimal performance. Moreover, in MTL, tasks are distinct, 

while in Slice-based Learning, a single base task is refined by related slice tasks.

We propose a novel programming model, called Slice-based Learning, in which practitioners 

provide slicing functions (SFs), a programming abstraction for heuristically targeting data 

subsets of interest. SFs coarsely map input data to slice indicators, which specify data 

subsets for which we should allocate additional model capacity. To improve slice-level 

performance, we introduce slice-residual-attention modules (SRAMs) that explicitly model 

residuals between slice-level and the overall task predictions. SRAMs are agnostic to the 

architecture of any neural network model that they are added to— which we refer to as the 

backbone model—and we demonstrate our approach on state-of-the-art text and image 

models. Using shared backbone parameters, our model initializes slice “expert” 

representations, which are associated with learning slice-membership indicators and class 

predictors for examples in a particular slice. Then, slice indicators and prediction 

confidences are used in an attention-mechanism to reweight and combine each slice expert 

representation based on learned residuals from the base representation. This produces a 

slice-aware featurizatino of the data, which can be used to make a final prediction.

Our work fits into an emerging class of programming models that sit on top of deep learning 

systems [18, 27]. We are the first to introduce and formalize Slice-based Learning, a key 

programming abstraction for improving ML models in real-world applications subject to 

slice-specific performance objectives. Using an independent error analysis for the recent 

GLUE natural language understanding benchmark tasks [35], by simply encoding the 

identified error categories as slices in our framework, we show that we can improve the 
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quality of state-of-the-art models by up to 4.6 F1 points, and we observe slice-specific 

improvements of up to 19.0 points. We also evaluate our system on autonomous vehicle data 

and show improvements up to 15.6 F1 points on context-dependent slices (i.e. presence of 

bus, traffic light, etc.) and 2.3 F1 points overall. Anecdotally, when deployed in production 

systems [29], Slice-based Learning provides a practical programming model with 

improvements of up to 40 F1 points in critical test-time slices. On the SuperGlue [34] 

benchmark, this procedure accounts for a 2.7 improvement in overall score using the same 

architecture as a state-of-the-art modeling result. In addition to the proposal of SRAMs, we 

perform an in-depth analysis to explain the mechanisms by which SRAMs improve quality. 

We validate the efficacy of quality and noise estimation in SRAMs and compare to weak 

supervision frameworks [27] that estimate the quality of supervision sources to improve 

overall model accuracy. We show that by using SRAMs, we are able to produce accurate 

quality estimates, which leads to higher downstream performance on such tasks by an 

average of 1.1 overall F1 points.

2 Related Work

Our work draws inspiration from three main areas: mixture of experts, multi-task learning, 

and weak supervision. Jacobs et. al [17] proposed a technique called mixture of experts that 

divides the data space into different homogeneous regions, learns the regions of data 
separately, and then combines results with a single gating network [33]. This work is a 

generalization of popular ensemble methods, which have been shown to improve predictive 

power by reducing overfitting, avoiding local optima, and combining representations to 

achieve optimal hypotheses [32]. We were motivated in part by reducing the runtime cost 

and parameter count for such models.

MTL models provide the flexibility of modular learning—specific task heads, layers, and 

representations can be changed in an application-specific, ad hoc manner. Furthermore, 

MTL models benefit from the computational efficiency and regularization afforded by hard 

parameter sharing [7]. There are often also performance gains seen from adding auxiliary 

tasks to improve representation learning objectives [8, 30]. While our approach draws high-

level inspiration from MTL, we highlight key differences: whereas tasks are disjoint in 

MTL, slice tasks are formulated micro-tasks that are direct extensions of a base task—they 

are designed specifically to learn deviations from the base-task representation. In particular, 

sharing information, as seen in MTL cross-stitch networks [25], requires Ω(n2) weights 

across n local tasks; our formulation only requires attention over O(n) weights, as slice tasks 

operate on the same base task. For example, practitioners might specify yellow lights and 

night-time images as important slices; the model learns a series of micro-tasks—based 

solely on the data specification—to inform how its approach for the base task, object 

detection, should change in these settings. As a result, slice tasks are not fixed ahead of time 

by an MTL specification; instead, these micro-task boundaries are learned dynamically from 

corresponding data subsets. This style of information sharing is adjacent to cross-task 

knowledge in recent multi-task learning (MTL) models [31, 38], and we were inspired by 

these methods.
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Weak supervision has been viewed as a new way to incorporate data of varying accuracy 

including domain experts, crowd sourcing, data augmentations, and external knowledge 

bases [2, 5, 6, 11, 13, 20, 24, 26, 28]. We take inspiration from labeling functions [28] in 

weak supervision as a programming paradigm, which has seen success in industrial 

deployments [2]. In weak supervision, a key challenge is to assess the accuracy of a training 

data point, which is a function of the sources that supervise it. In contrast, this work models 

this accuracy in a fine-grained manner, based on a learned representation—this leads to 

higher overall quality.

Weak supervision and multitask learning can be viewed as orthogonal to slicing: we have 

observed them used alongside Slice-based Learning in academic projects and industrial 

deployments [29].

3 Slice-based Learning

We propose Slice-based Learning as a programming model for training machine learning 

models where users specify important data subsets to improve model performance. We 

describe the core technical challenges that lead to our notion of slice-residual-attention 
modules (SRAMs).

3.1 Problem statement

To formalize the key challenges of slice-based learning, we introduce some basic 

terminology. In our base task, we use a supervised input, (x ∈ X, y ∈ Y), where the goal is to 

learn according to a standard loss function. In addition, the user provides a set of k functions 

called slicing functions (SFs), {λ1,…,λk}, in which λi: X → {0,1}. These SFs are not 

assumed to be perfectly accurate; for example, SFs may be based on noisy or weak 
supervision sources in functional form [28]. SFs can come from domain-specific heuristics, 

distant supervision sources, or other off-the-shelf models, as seen in Figure 2. Ultimately, 

the model’s goal is to improve (or avoid damaging) the overall accuracy on the base task 

while improving the model on the specified slices.

Formally, each of k slices, denoted si=1,…,k, is an unobserved, indicator random variable, and 

each user-specified SF, λi=1,…,k is a corresponding, noisy specification. Given an input tuple 

(X,Y,{λi}i=1,…,k) consisting of a dataset (X,Y), and k different user-defined SFs λi, our goal 

is to learn a model f w (·)—i.e. estimate model parameters w —that predicts P(Y |

{si}i=1,…,k,X) with high average slice-specific accuracy without substantially degrading 

overall accuracy.

Example 1 A developer notices that their self-driving car is not detecting cyclists at night. 

Upon error analysis, they diagnose that their state-of-the-art object detection model, trained 

on an automobile detection dataset (X,Y) of images, is indeed underperforming on night and 

cyclist slices. They write two SFs: λ1 to classify night vs. day, based on pixel intensity; and 

λ2 to detect bicycles, which calls a pretrained object detector for a bicycle (with or without a 

rider). Given these SFs, the developer leverages Slice-based Learning to improve model 

performance on safety-critical subsets.
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Our problem setup makes a key assumption: SFs may be non-servable during test-time—i.e, 

during inference, an SF may be unavailable because it is too expensive to compute or relies 

on private metadata [1]. In Example 1, the potentially expensive cyclist detection algorithm 

is non-servable at runtime. When our model is served at inference, SFs are not necessary, 

and we can rely on the model’s learned indicators.

3.2 Model Architecture

The Slice-based Learning architecture has six components. The key intuition is that we will 

train a standard prediction model, which we call the base task. We then learn a 

representation for each slice that explains how its predictions should differ from the 

representation of the base task—i.e., a residual. An attention mechanism then combines 

these representations to make a slice-aware prediction.

With this intuition in mind, the six components (Figure 2) are: (a) a backbone, (b) a set of k 
slice-indicator heads, and (c) k corresponding slice expert representations, (d) a shared 
slice prediction head, (e) a combined, slice-aware representation, and (f) a prediction 
head. Each SRAM operates over any backbone architecture and represents a path through 

components (b) through (e). We describe the architecture assuming a binary classification 

task (output dim. c = 1):

(a) Backbone: Our approach is agnostic to the neural network architecture, which 

we call the backbone, denoted f w, which is used primarily for feature extraction 

(e.g. the latest transformer for textual data, CNN for image data). The backbone 

maps data points x to a representation z ∈ ℝd.

(b) Slice indicator heads: For each slice, an indicator head will output an input’s 

slice membership. The model will later use this to reweight the “expert” slice 

representations based on the likelihood that an example is in the corresponding 

slice. Each indicator head maps the backbone representation, z, to a logit 

indicating slice-membership: qi i = 1, …, k
∈ 0, 1  Each slice indicator head is 

supervised by the output of a corresponding SF, λi. For each example, we 

minimize the multi-label binary cross entropy loss ℒCE  between the 

unnormalized logit output of each qi λi:𝓁ind = ∑i
k ℒCE qi, λi

(c) Slice expert representations: Each slice representation, {ri}i=1,…,k, will be 

treated as an “expert” feature for a given slice. We learn a linear mapping from 

the backbone, z, to each ri ∈ ℝh, where h is the size of all slice expert 

representations.

(d) Shared slice prediction head: A shared, slice prediction head, g(·), maps each 

slice expert representation, ri, to a logit, {pi}i=1,…,k, in the output space of the 

base task: g ri = pi ∈ ℝc. where c = 1 for binary classification. We train slice 

“expert” tasks using only examples belonging to the corresponding slice, as 

specified by λi. Because parameters in g(·) are shared, each representation, ri, is 

forced to specialize to the data belonging to its slice. We use the base task’s 
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ground truth label, y, to train this head with binary cross entropy loss 

𝓁pred = ∑i
k λiℒCE pi, y

(e) Slice-aware representation: For each example, the slice-aware representation is 

the combinatino of several “expert” slice representations according to 1) the 

likelihood that the input is in the slice and 2) the confidence of the slice 

“expert’s” prediction. To explicitly model the residual from slice representations 

to the base representation, we initialize a trivial “base slice” which consists of all 
examples so that we have the corresponding indicators, qBASE, and predictions, 

pBASE.

Let Q = q1, …, qk, qBASE ∈ ℝk + 1 be the vector of concatenated slice indicator logits, 

P = p1, …, pk, pBASE ∈ ℝk + 1 be the vector of concatenated slice prediction logits, and 

R = r1, …, rk, rBASE ∈ ℝh × k + 1 be the k + 1 stacked slice expert representations. We 

compute our attention by combining the likelihood of slice membership, Q, and the slice 

prediction confidence, which we interpret the absolute value of the binary logits, abs(P). We 

then apply a Softmax to create soft attention weights over the k+1 slice expert 

representations: a ∈ ℝk + 1 = Softmax(Q+abs(P)). Using a weighted sum, we then compute 

the combined, slice-aware representation: z′ ∈ ℝh = Ra

(f) Prediction head Finally, we use our slice-aware representation z’ as the input to 

a final linear layer, f(·), which we term the prediction head, to make a prediction 

on the original, base task. During inference, this prediction head makes the final 

prediction. To train the prediction head, we minimize the cross entropy between 

the prediction head’s output, f(z’), and the base task’s ground truth labels, 

y:𝓁base = ℒCE f z′ , y .

Overall, the model is trained using loss values from all task heads: 

𝓁train = 𝓁base + 𝓁ind + 𝓁pred . In Figure 3, we show ablations of this architecture in a 

synthetic experiment varying the components that are considered the reweighting 

mechanism—specifically, our described attention approach outperforms using only indicator 

outputs, only predictor confidences, or uniform weights to reweight the slice representations.

3.3 Synthetic data experiments

To understand the properties of Slice-based Learning, we validate our model and its 

components (Figure 2) on a set of synthetic data. In the results demonstrated in Figure 1, we 

construct a dataset 𝒳 ∈ ℝ2 with a 2-way classification problem in which over 95% of the 

data are linearly separable. We introduce two minor perturbations along the decision 

boundary, which we define as critical slices, s1 and s2. Intuitively, examples that fall within 

these slices follow different distributions P 𝒴 |𝒳, si  relative to the overall data (P(𝒴 |𝒳)). 

For all models, the shared backbone is defined as a 2-layer MLP architecture with a 

backbone representation size d = 13 and a final ReLU non-linearity. OURSis initialized with 

a slice-representation size h = 13.
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The model learns the slice-conditional label distribution P(Y |si,X) from noisy 
SF inputs.—We show in Figure 1b that the slices at the perturbed decision boundary 

cannot be learned in the general case, by a VANILLA model. As a result, we define two SFs, 

λ1 and λ2, to target the slices of interest. Because our attention-based model (OURS) is 

slice-aware, it outperforms VANILLA, which has no notion of slices (Figure 4, left). 

Intuitively, if the model knows “where” in the 2-dim data space an example lives (as defined 

by SFs), it can condition on slice information as it makes a final prediction. In Figure 5, we 

observe our model’s ability to cope with noisy SF inputs: the indicator is robust to moderate 

amounts of noise by ignoring noisy examples (middle); with extremely noisy inputs, it 

disregards poorly-defined SFs by assigning relatively uniform weights (right).

Overall model performance does not degrade.—The primary goal of the slice-aware 

model is to improve slice-specific performance without degrading the model’s existing 

capabilities. We show that OURS improves the overall score by 1.36 F1 points by learning 

the proportionally smaller perturbations in the decision boundary in addition to the more 

general linear boundary (Figure 4, left). Further, we note that we do not regress on individual 

slice heads.

Learning slice weights with features P(Y |si,X) improves over doing so with 
only supervision source information P(Y |si).—A core assumption of our approach 

asserts that if the model learns improved slice-conditional weights via λi, downstream slice-

specific performance will improve. Data programming (DP) [28] is a popular weak 

supervision approach deployed at numerous Fortune 500 companies [2], in which the 

weights of heuristics are learned solely from labeling source information. We emphasize that 

our setting provides the model with strictly more information—in the data’s feature 

representations—to learn such weights; we show in Figure 4 (right) that increasing 

representation size allows us to significantly outperform DP.

Attention weights learn from noisy λi to combine slice residual 
representations.—Given slice information, the model achieves improvements over 

methods that do not aggregate slice information, as defined by each noisy λi. Both the 

indicator outputs (Q) and prediction confidence (abs(P)) are robustly combined in the 

attention mechanism. Even a noisy indicator will be upweighted if the predictions are high 

confidence, and if the indicator has high signal, even a slice expert making poor predictions 

can benefit from the underlying features. We show in Figure 4 that our method improves 

over HPS, which is slice-aware, but has no way of combining slice information despite 

increasingly noisy λi. In contrast, our attention-based architecture is able to combine slice 

expert representations, and (OURS) sees improvements over VANILLA of 38.2 slice-level 

F1 averaged across S1 and S2.

Our model demonstrates similar expressivity to MoE with much less cost.—
We come within 6.25 slice-level F1 averaged across S1 and S2 of MoE with approximately 

half as many parameters (Figure 4). With large backbone architectures, characterized by M 
parameters, and a large number of slices, k, MoE requires a quadratically large number of 
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parameters, because we initialize an entire backbone for each slice. In contrast, all other 

models scale linearly in parameters with M.

4 Experiments

In several text and image-based applications, we demonstrate that using the same backbone 

architecture as baselines, our approach succesfully models slice importance and significantly 

improves slice-level performance without impacting overall model performance. Then, we 

demonstrate our method’s advantages in aggregating noisy heuristics, compared to existing 

weak supervision literature.

4.1 Applications

We compare our method to several baselines that capture alternatives we have seen in 

practice or the literature and on natural language understanding (NLU) and computer vision 

(CV) datasets.

4.1.1 Baselines—For each baseline, we first train the backbone parameters with a 

standard hyperparameter search over learning rate and 𝓁2 regularization values. Then, each 

method is initialized from the backbone weights and fine-tuned for a fixed number of epochs 

and the optimal hyperparameters. We perform all empirical experiments on Google’s Cloud 

infrastructure using NVIDIA V100 GPUs.

VANILLA:  A vanilla neural network backbone is trained with a final prediction head to 

make predictions. This baseline represents the de-facto approach used in deep learning 

modeling tasks; it is unaware of the notion of slices and, as a result, neglects to model them.

MoE:  We train a mixture of experts [17], where each expert is a separate VANILLA model 

trained on a data subset specified by the SF, λi. A gating network [33] is then trained to 

combine expert predictions into a final prediction.

HPS:  In the style of multi-task learning, we model slices as separate task heads with a 

shared backbone trained via hard parameter sharing. Each slice task performs the same 

prediction task, but they are trained on subsets of data corresponding to λi. In this approach, 

backpropagation from different slice tasks is intended to encourage a slice-aware 

representation bias [7, 31].

MANUAL:  To simulate the manual effort required to upweight hyperparameters for tuning 

slice-specific representations, we leverage the same architecture as HPS and grid search over 

multipliers for loss terms, α ∈ {2,20,50,100}, of underperforming slices (i.e. where 

scoreoverall − scoreslice ≥ 5 F1 points in VANILLA).

4.1.2 Datasets

NLU Datasets.: We select slices based on independently-conducted error analyses [19] 

(Appendix A1.2). In Corpus of Linguistic Acceptability (COLA) [36], the task is to 

predict whether a sentence is linguistically acceptable (i.e. grammatically); we measure 
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performance using the Matthews correlation coefficient [23]. Natural slices might occur as 

questions or long sentences, as corresponding examples might consist of non-standard or 

challenging sentence structure. Since ground truth test labels are not available for this task 

(they are held out in evaluation servers [35]), we sample to create data splits with 7.2K/

1.3K/1K train/valid/test sentences, respectively. To properly evaluate slices of interest, we 

ensure that the proportions of examples in ground truth slices are consistent across splits. In 

Recognizing Textual Entailment (RTE) [3, 4, 10, 14, 35], the task is to predict whether or 

not a premise sentence entails a hypothesis sentence. Similar to COLA, we create our own 

data splits and use 2.25K/0.25K/0.275K train/valid/test sentences, respectively. Finally, in a 

user study where we work with practitioners tackling the SuperGlue [34] benchmark, we 

leverage Slice-based Learning to improve state-of-the-art model quality on benchmark 

submissions.

CV Dataset.: In the image domain, we evaluate on an autonomous vehicle dataset called 

Cyclist Detection for Autonomous Vehicles (CYDET) [21]. We leverage clips in a self-

driving video dataset to detect whether a cyclist (person plus bicycle) is present at each 

frame. We select one independent clip for evaluation, and the remainder for training; for 

valid/test splits, we select alternating batches of five frames each from the evaluation clip. 

We preprocess the dataset with an open-source implementation of Mask R-CNN [22] to 

provide metadata (e.g. presence of traffic lights, benches), which serve as slice indicators for 

each frame.

4.1.3 Results

Slice-aware models improve slice-specific performance.: We see in Table 1 that each 

slice-aware model (HPS, MANUAL, MoE, OURS) largely improves over the naive model.

OURS improves overall performance.: We also observe that OURS improves overall 

performance for each of the datasets. This is likely because the chosen slices were explicitly 

modeled from error analysis papers, and explicitly modeling “error” slices led to improved 

overall performance.

OURS learns slice expert representations consistently.: While HPS and MANUAL 

perform well on some slices, they exhibit much higher variance compared to OURS and 

MoE (as denoted by the std. in Table 1). These baselines lack an attention mechanism to 

reweight slice representations in a consistent way; instead, they rely purely on representation 

bias from slice-specific heads to improve slice-level performance. Because these 

representations are not modeled explicitly, improvements are largely driven by chance, and 

this approach risks worsening performance on other slices or overall.

OURS improves performance with a parameter-efficient representation.: For CoLA 
and RTE experiments, we used the BERT-base [12] architecture with 110M parameters; for 

CyDet, we used ResNet-18 [15]. For each additional slice, OURS requires a 7% and 5% 

increase in relative parameter count in the BERT and ResNet architectures, respectively 

(total relative parameter increase reported in Table 1). As a comparison, HPS requires the 

same relative increase in parameters per slice. MoE on the other hand, increases relative 
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number of parameters by 100% for both architectures. With limited increase in model size, 

OURS outperforms or matches all other baselines, including MoE, which requires an order 

of magnitude more parameters.

OURS improves state-of-the-art quality models with slice-aware representations.: In a 

submission to SuperGLUE benchmark evaluation servers, we leverage the same BERT-large 

architecture of previous submissions and observe improvements of +3.8/+2.8 avg. F1/acc. on 

CB, +2.4 acc. on COPA, +2.5 acc. on WiC; this amounts to an aggregate 2.7 point increase 

in overall benchmark score.

4.2 Weak Supervision Comparisons

To contextualize our contributions in the weak supervision literature, we compare directly to 

Data Programming (DP) [26], a popular approach for reweighting user-specified heuristics 

using supervision source information [28]. We consider two text-based relation extraction 

datasets: Chemical-Disease Relations (CDR),[37], in which we identify causal links 

between chemical and disease entities in a dataset of PubMed abstracts, and Spouses [9], in 

which we identify mentions of spousal relationships using preprocessed pairs of person 

mentions from news articles (via Spacy [16]). In both datasets, we leverage the exact noisy 

linguistic patterns and distant supervision heuristics provided in the opensource 

implementation of DP. Rather than voting on a particular class, we repurpose the provided 

labeling functions as binary slice indicators for our model. We then train our slice-aware 

model on the probabilistic labels aggregated from these heuristics.

OURS improves over current weak supervision methods.: Treating the noisy heuristics 

as slicing functions, we observe lifts of up to 1.3 F1 overall and 15.9 F1 on heuristically-

defined slices. We reproduce the DP [26] setup to obtain overall scores of F1=41.9 on 

Spouses and F1=56.4 on CDR. Using Slice-based Learning, we improve to 42.8 (+0.9) and 

57.7 (+1.3) F1, respectively. Intuitively, we can explain this improvement, because OURS 

has access to features of the data belonging to slices whereas DP relies only on the source 

information of each heuristic.

5 Conclusion

We introduced the challenge of improving slice-specific performance without damaging the 

overall model quality, and introduced the first programming abstraction and machine 

learning model to support these actions. We demonstrated that the model could be used to 

push the state-of-the-art quality. In our analysis, we can explain consistent gains in the Slice-
based Learning paradigm because our attention mechanism has access to a rich set of deep 

features, whereas existing weak supervision paradigms have no way to access this 

information. We view this work in the context of programming models that sit on top of 

traditional modeling approaches in machine learning systems.
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A1: Appendix

A1.1 Model Characteristics

We include summarized model characteristics and the associated baselines to supplement 

Sections 3.3 and 4.1.1.

A1.2 Slicing Function (SF) Construction

We walk through specific examples of SFs written for a number of our applications.

Textual SFs For text-based applications (COLA, RTE), we write SFs over pairs of sentences 

for each task. Following dataset convention, we denote the first sentence as the premise and 

the second as the hypothesis where appropriate. Then, SFs are written, drawing largely from 

existing error analysis [19]. For instance, we might expect certain questions to be especially 

difficult to formulate in a language acceptability task. So, we write the following SF to 

heuristically target where questions:

def SF_where_question(premise, hypothesis):

# triggers if “where” appears in sentence

sentences = premise + hypothesis

return “where” in sentences.lower()

In some cases, we write SFs over both sentences at once. For instance, to capture possible 

errors in article references (e.g. the Big Apple vs a big apple), we specify a slice where 

multiple instances of the same article appear in provided sentences:

def SF_has_multiple_articles(premise, hypothesis):

# triggers if a sentence has more than one occurrence of the same article

sentences = premise + hypothesis

multiple_a = sum([int(x == “a”) for x in sentences.split()]) > 1

multiple_an = sum([int(x == “an”) for x in sentences.split()]) > 1

multiple_the = sum([int(x == “the”) for x in sentences.split()]) > 1

return multiple_a or multiple_an or multiple_the
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Image-based SFs For computer vision applications, we leverage image metadata and 

bounding box attributes, generated from an off-the-shelf Mask R-CNN [22], to target slices 

of interest.

def SF_bus(image):

# triggers if a “bus” appears in the predictions of the noisy detector

outputs = noisy_detector(image)

return “bus” in outputs

We note that these potentially expensive detectors are non-servable—they run offline, and 

our model uses learned indicators at inference time. Despite the detectors’ noisy predictions, 

our model is able to to reweight representations appropriately.

A1.3 COLA SFs

COLA is a language acceptability task based on linguistics and grammar for individual 

sentences. We draw from error analysis which introduces several linguistically imortance 

slices for language acceptability via a series of challenge tasks. Each task consists of 

synthetically generated examples to measure model evaluation on specific slices. We 

heuristically define SFs to target subsets of data corresponding to each challenge, and 

include the full set of SFs derived from each category of challenge tasks:

• Wh-words: This task targets sentences containing who, what, where, when, why, 
how. We exclude why and how below because the COLA dataset does not have 

enough examples for proper training and evaluation of these slices.

def SF_where_in_sentence(sentence):

return “where” in sentence

def SF_who_in_sentence(sentence):

return “who” in sentence

def SF_what_in_sentence(sentence):

return “what” in sentence

def SF_when_in_sentence(sentence):

return “when” in sentence

• Definite-Indefinite Articles: This challenge measures the model based on 

different combinations of definite (the) and indefinite (a,an) articles in a sentence 

(i.e. swapping definite for indefinite articles and vice versa). We target 

containing multiple uses of a definite (the) or indefinite article (a, an):

def SF_has_multiple_articles(sentence):

# triggers if a sentence has more than one occurrence of the same article

multiple_indefinite = sum([int(x == “a”) for x in sentence.split()]) > 1 or 
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sum([

int(x == “an”) for x in sentence.split()]) > 1

multiple_definite = sum([int(x == “the”) for x in sentence.split()]) > 1

return multiple_indefinite or multiple_definite

• Coordinating Conjunctions: This task seeks to measure correct usage of 

coordinating conjunctions (and, but, or) in context. We target the presence of 

these words in both sentences.

def and_in_sentence(sentence):

return “and” in sentence

def but_in_sentence(sentence):

return “but” in sentence

def or_in_sentence(sentence):

return “or” in sentence

• End-of-Sentence: This challenge task measures a model’s ability to identify 

coherent sentences or sentence chunks after removing puctuation. We 

heuristically target this slice by identifying particularly short sentences and those 

that end with verbs and adverbs. We use off-the-shelf parsers (i.e. Spacy [16]) to 

generate part-of-speech tags.

def SF_short_sentence(sentence):

# triggered if sentence has fewer than 5 tokens

return len(sentence.split()) < 5

# Spacy tagger

def get_spacy_pos(sentence):

import spacy

nlp = spacy.load(“en_core_web_sm”)

return nlp(sentence).pos_

def SF_ends_with_verb(sentence):

# remove last token, which is always is punctuation

sentence = sentence[:−1]

return get_spacy_pos(sentence)[−1] == “VERB”

def SF_ends_with_adverb(sentence):

# remove last token, which is always is punctuation

sentence = sentence[:−1]

return get_spacy_pos(sentence)[−1] == “ADVERB”

A1.4 RTE SFs

Similar to COLA, we use challenge tasks from NLI-based error analysis [19] to write SFs 

over the textual entailment (RTE) dataset.
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• Prepositions: In one challenge, the authors swap prepositions in the dataset with 

prepositions in a manuallycurated list. The list in its entirety spans a large 

proportion of the RTE dataset, which would constitute a very large slice. We find 

it more effective to separate these prepositions into temporal and possessive 
slices.

def SF_has_temporal_preposition(premise, hypothesis):

temporal_prepositions = [“after”, “before”, “past”]

sentence = premise + sentence

return any([p in sentence for p in temporal_prepositions])

def SF_has_possessive_preposition(premise, hypothesis):

possessive_prepositions = [“inside of”, “with”, “within”]

sentence = premise + sentence

return any([p in sentence for p in possessive_prepositions])

• Comparatives: One challenge chooses sentences with specific comparative 

words and mutates/negates them.

We directly target keywords identified in their approach.

def SF_is_comparative(premise, hypothesis):

comparative_words = [“more”, “less”, “better”, “worse”, “bigger”, “smaller”]

sentence = premise + hypothesis

return any([p in sentence for p in comparative_words])

• Quantification: One challenge tests natural language understanding with 

common quantifiers. We target common quantifiers in both the combined 

premise/hypothesis and in only the hypothesis.

def is_quantification(premise, hypothesis):

quantifiers = [“all”, “some”, “none”]

sentence = premise + hypothesis

return any([p in sentence for p in quantifiers])

def is_quantification_hypothesis(premise, hypothesis):

quantifiers = [“all”, “some”, “none”]

return any([p in hypothesis for p in quantifiers])

• Spatial Expressions: This challenge identifies spatial relations between entities 

(i.e. A is to the left of B). We exclude this task from our slices, because such 

slices do not account for enough examples in the RTE dataset.

• Negation: This challenge task identifies whether natural language inference 

models can handle negations. We heuristically target this slice via a list of 

common negation words from a top result in a web search.
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def SF_common_negation(premise, hypothesis):

# Words from https://www.grammarly.com/blog/negatives/

negation_words = [

“no”,

“not”,

“none”,

“no one”,

“nobody”,

“nothing”,

“neither”,

“nowhere”,

“never”,

“hardly”,

“scarcely”,

“barely”,

“doesnt”,

“isnt”,

“wasnt”,

“shouldnt”,

“wouldnt”,

“couldnt”,

“wont”,

“cant”,

“dont”,

]

sentence = premise + hypothesis

return any([x in negation_words for x in sentence])

• Premise/Hypothesis Length: Finally, separate from the cited error analysis, we 

target different length hypotheses and premises as an additional set of slicing 

tasks. In our own error analysis of the RTE model, we found these represented 

intuitive slices: long premises are typically harder to parse for key information, 

and shorter hypotheses tend to share syntactical structure.

def SF_short_hypothesis(premise, hypothesis):

return len(hypothesis.split()) < 5

def SF_long_hypothesis(premise, hypothesis):

return len(hypothesis.split()) > 100

def SF_short_premise(premise, hypothesis):

return len(premise.split()) < 15

def SF_long_premise(premise, hypothesis):

return len(premise.split()) > 100
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A1.5 CYDET SFs

For the cyclist detection dataset, we identify subsets that correspond to other objects in the 

scene using a noisy detector (i.e. an off-the-shelf Mask R-CNN [22]).

# define noisy detector

def noise_detector(image):

probs = mask_rcnn.forward(image)

# threshold predictions

preds = []

for object in classes:

if probs[“object”] > 0.5:

preds.append(object)

return preds

# Cyclist Detection SFs

def SF_bench(image):

outputs = noisy_detector(image)

return “bench” in outputs

def SF_truck(image):

outputs = noisy_detector(image)

return “truck” in outputs

def SF_car(image):

outputs = noisy_detector(image)

return “car” in outputs

def SF_bus(image):

outputs = noisy_detector(image)

return “bus” in outputs

def SF_person(image):

outputs = noisy_detector(image)

return “person” in outputs

def SF_traffic_light(image):

outputs = noisy_detector(image)

return “traffic light” in outputs

def SF_fire_hydrant(image):

outputs = noisy_detector(image)

return “fire hydrant” in outputs

def SF_stop_sign(image):

outputs = noisy_detector(image)

return “stop sign” in outputs

def SF_bicycle(image):

outputs = noisy_detector(image)

return “bicycle” in outputs
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A1.6 Slice-specific Metrics

We visualize slice-specific metrics across each application dataset, for each method of 

comparison. We report the corresponding aggregate metrics in Figure 1 (below).

In COLA, we see that MoE and OURS exhibit the largest slice-specific gains, and also 

overfit on the same slice ends with adverb. In RTE, we see that OURS improves 

performance on all slices except common negation, where it falls less than a point below 

VANILLA. On CYDET, we see the largest gains for OURS on bench and bus slices—in 

particular, we are able to improve in cases where the model might able to use the presence of 

these objects to make more informed decisions about whether a cyclist is present. Note: 

because the MoE model on CYDET encounters an “Out of Memory” error, the 

corresponding (blue) data bar is not available for this dataset.
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Figure 1: Slice-based Learning via synthetically generated data:
(a) The data distribution contains critical slices, s1, s2, that represent a small proportion of 

the dataset. (b) A vanilla neural network correctly learns the general, linear decision 

boundary but fails to learn the perturbed slice boundary. (c) A user writes slicing functions 
(SFs), λ1, λ2, to heuristically target critical subsets. (d) The model commits additional 

capacity to learn slice expert representations. Upon reweighting slice expert representations, 

the slice-aware model learns to classify the fine-grained slices with higher F1 score.
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Figure 2: Model Architecture:
A developer writes SFs (λi=1,…,k) over input data and specifies any. (a) backbone 
architecture (e.g. ResNet [15], BERT [12]) as a feature extractor. Extracted features are 

shared parameters for k slice-residual attention modules; each learns a (b) slice indicator 
head, which is supervised by a corresponding λi, and a (c) slice expert representation, 

which is trained only on examples belonging to the slice using a (d) shared slice prediction 
head. An attention mechanism reweights these representations into a combined, (e) slice-
aware representation. A final (f) prediction head makes model predictions based on the 

slice-aware representation.
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Figure 3: Architecture Ablation:
Using a synthetic, two-class dataset (Figure, left) with four randomly specified (size, shape, 

location) slices (Figure, middle), we specify corresponding, noisy SFs (Figure, right) and 

ablate specific model components by modifying the reweighting mechanism for slice expert 

representations. We compare overall/slice performance for uniform, indicator output, 

prediction confidence weighting, and the proposed attention weighting using all 

components. Our FULL ATTENTION approach performs most consistently on slices without 

worsening overall performance.
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Figure 4: Scaling with hidden feature representation dimensions.
We plot model quality versus the hidden dimension size. The slice-aware model (OURS) 

improves over hard parameter sharing (HPS) on both slices at a fixed hidden dimension size, 

while being close to mixture of experts (MoE).

Note: MoE has significantly more parameters overall, as it copies the entire model.
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Figure 5: Coping with Noise:
We test the robustness of our approach on a simple synthetic example. In each panel, we 

show noisy SFs (left) as binary points and the corresponding slice indicator’s output (right) 

as a heatmap of probabilities. We show that the indicator assigns low relative probabilities 

on noisy (40%, middle) samples and ignores a very noisy (80%, right) SF, assigning 

relatively uniform scores to all samples.
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Figure 6: 
For each application dataset (Section 4.1) we report all relative, slice-level metrics compared 

to VANILLA for each model.
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Table 1:
Application Datasets:

We compare our model to baselines averaged over 5 runs with different seeds in natural language 

understanding and computer vision applications and note the relative increase in number of params for each 

method. We report the overall score and maximum relative improvement (i.e. Lift) over the VANILLA model for 

each of the slice-aware baselines. For some trials of MoE, our system ran out of GPU memory (i.e. OOM).

Dataset COLA (Matthews Corr. [23]) RTE (F1 Score) CYDET (F1 Score)

Param
Inc. Overall (std)

Slice Lift Param
Inc.

Overall 
(std)

Slice Lift Param
Inc.

Overall 
(std)

Slice Lift

Max Avg Max Avg Max Avg

VANILLA - 57.8 (±1.3) - - - 67.0 (±1.6) - - - 39.4 (±-5.4) - -

HPS [7] 12% 57.4 (±2.1) +12.7 1.1 10% 67.9 (±1.8) +12.7 +2.9 10% 37.4 (±3.6) +6.3 −0.7

MANUAL 12% 57.9 (±1.2) +6.3 +0.4 10% 69.4 (±1.8) +10.7 +4.2 10% 36.9 (±4.2) +6.3 −1.7

MoE [17] 100% 57.2 (±0.9) +20.0 +1.3 100% 69.2 (±1.5) +10.9 +3.9 100% OOM OOM OOM

Ours 12% 58.3 (±0.7) +19.0 +2.5 10% 69.5 (±0.8) +10.9 +4.6 10% 40.9 (±3.9) +15.6 +2.3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 December 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 27

Table 2:
Model characterizations:

We characterize each model’s advantages/limitations and compute the number of parameters for each baseline 

model, given k slices, M backbone parameters, feature representation z dimension r, and slice expert 

representation pi dimension h.

Method Slice-aware No manual
tuning

Weighted
slice info.

Avoids copies of
model (M params) Num. Params

VANILLA ✓ ✓ O(M+r)

HPS ✓ ✓ ✓ O(M+kr)

MANUAL ✓ ✓ ✓ O(M+kr)

MoE ✓ ✓ ✓ O(kM+kr)

OURS ✓ ✓ ✓ ✓ O(M+krh)
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