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Abstract

Identifying anomalies in data is central to the advancement of science, national security, and 

finance. However, privacy concerns restrict our ability to analyze data. Can we lift these 

restrictions and accurately identify anomalies without hurting the privacy of those who contribute 

their data? We address this question for the most practically relevant case, where a record is 

considered anomalous relative to other records.

We make four contributions. First, we introduce the notion of sensitive privacy, which 

conceptualizes what it means to privately identify anomalies. Sensitive privacy generalizes the 

important concept of differential privacy and is amenable to analysis. Importantly, sensitive 

privacy admits algorithmic constructions that provide strong and practically meaningful privacy 

and utility guarantees. Second, we show that differential privacy is inherently incapable of 

accurately and privately identifying anomalies; in this sense, our generalization is necessary. 

Third, we provide a general compiler that takes as input a differentially private mechanism (which 

has bad utility for anomaly identification) and transforms it into a sensitively private one. This 

compiler, which is mostly of theoretical importance, is shown to output a mechanism whose utility 

greatly improves over the utility of the input mechanism. As our fourth contribution we propose 

mechanisms for a popular definition of anomaly ((β, r)-anomaly) that (i) are guaranteed to be 

sensitively private, (ii) come with provable utility guarantees, and (iii) are empirically shown to 

have an overwhelmingly accurate performance over a range of datasets and evaluation criteria.
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1 INTRODUCTION

At the forefront of today’s research in medicine and natural sciences is the use of data 

analytics to discover complex patterns from vast amounts of data [11, 23, 39]. While this 

approach is incredibly useful, it raises serious privacy-related ethical and legal concerns [5, 

7, 20, 21] because inferences can be drawn from the analysis of the person’s data to the 
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person’s identity, causing a privacy breach [19, 24, 26, 27, 37]. In this work, we focus 

specifically on the problem of identifying anomalous records, which has fundamental 

applications in many domains and is also crucial for scientific advancements [1, 3, 30, 40, 

42]. For example, to treat cancer, we must tell if a tumor is malignant; to stop bank fraud, we 

must flag the suspicious transactions; and to counter terrorism, we must identify the 

individuals exhibiting extreme behavior. Note that in such settings, it is imperative to 

accurately identify the anomalies, e.g., it is critical to identify the fraudulent transactions. 

However, in all these situations, it is still essential to protect the privacy of the normal (i.e., 

non-anomalous) records [7, 21] (e.g., customers with a legitimate transaction or patients 

with a benign tumor) while not sacrificing accuracy (e.g., labeling a malignant tumor as 

benign).

We solve the problem of accurate, private, and algorithmic anomaly identification (i.e., 

labeling a record as anomalous or normal by an algorithm) with an emphasis on reducing 

false negative – labeling an anomaly as normal – rate. The current methods for protecting 

privacy work well for doing statistics and other aggregate tasks [17, 18], but they are 

inherently unable to identify anomalous records accurately. Furthermore, the modern 

methods of anomaly identification label a record as anomalous (or normal) based on its 

degree of dissimilarity from the other existing records [1, 3, 8, 35]. Consequently, the 

labeling of a record as anomalous is specific to a dataset, and knowing that a record is 

anomalous can leak a significant amount of information about the other records. This type of 

privacy leakage is the core obstacle that any privacy-preserving anomaly identification 

method must overcome. This work is the first to develop methods (in a general setting where 

anomalies are data-dependent) to accurately identify if a record is anomalous while 

simultaneously guaranteeing privacy by making it statistically impossible to infer if a non-

anomalous record was included in the dataset.

We formalize a notion of privacy appropriate for anomaly detection and identification and 

develop general constructions to achieve this. Note that we assume a trusted curator, who 

performs the anomaly identification. If the data is distributed and the trusted curator is not 

available, one can employ secure multiparty computation to simulate the trusted curator [9], 

where now the same methodology as in the previous setting can be used.

Although the privacy definitions and constructions we develop are not tied to any specific 

anomaly definition, we instantiate them for a specific kind of anomaly: (β, r)-anomaly [35], 

which is a widely prevalent model for characterizing anomalies and generalizes many other 

definitions of anomalies [3, 22, 34, 35]. These technical instantiations naturally extend to the 

other well-known variants of this formalization [1]. Under this anomaly definition, a record 

(which lives in a metric space) is considered anomalous if there are at most β records similar 

to it, i.e., within distance r. The parameters β and r are given by domain experts [35] or 

found through exploratory analysis by possibly using differentially private methods [17, 18] 

(since these parameters can be obtained by minimizing an aggregate statistic, e.g., risk or 

average error) to protect privacy in this process.
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1.1 Why do we need a new privacy notion?

We consider the trusted curator setting for the privacy. The trusted curator has access to the 

database, and it answers the anomaly identification queries using a mechanism. The privacy 

of an individual is protected if the output of an anomaly identification mechanism is 

unaffected by the presence or the absence of the individual’s record in the database (which is 

the input to the mechanism). This is the notion of privacy (i.e. protection) of a record that we 
consider here; it protects the individual against any risk incurred due to the presence of its 

information and was first formalized in the seminal work of differential privacy [15, 17] 

(where privacy is quantified by a parameter ε > 0: the smaller the ε, the higher the privacy) 

and can informally be stated as follows: a randomized mechanism that takes a database as 

input is ε-differentially private if for any two input databases differing by one record, the 

probabilities (corresponding to the two databases) of occurrence of any event are within a 

multiplicative factor eε (i.e., are almost the same in all cases). Unfortunately, simply 

employing differential privacy does not address the need for both privacy and practically 

meaningful accuracy guarantees in our case. For example, providing privacy equally to 

everyone severely degrades accuracy in identifying anomalies. For a database, the addition 

of a record in a region which is sparse in terms of data points creates an anomaly. 

Conversely, the removal of an anomalous record typically removes the anomaly altogether. 

Therefore, the accuracy achievable for anomaly identification via differential privacy is 

limited as explained below.

Differential privacy for binary functions f :𝒟 0, 1 , such as the anomaly identification, 

comes with inherent limitations that can be explained through the graph of Figure 1a. Fix 

any mechanism M that is supposed to compute f, with the property that this mechanism is 

differentially private. The mere fact that f is binary and M is differentially private has the 

following effect. For any two databases x and y that differ in one record say that f (x) = 0 

and f (y) = 1. Now, a simple calculation shows that the differential privacy constraints create 

a tradeoff: whenever M makes a small error in computing f (x) then it is forced to err a lot 

when computing on its “neighbor” y and vice-versa. Moreover, the higher the privacy 

requirements are (i.e. for smaller ε) the stricter this tradeoff is, as depicted on Figure 1a. 

Formally, we state this fact as follows.

Claim 1. Fix ε > 0, f :𝒟 0, 1 , and ε − DP M :𝒟 0, 1  arbitrarily. For every x and y, if f 
(x) ≠ f (y) and ‖x − y‖1 = 1, then P (M (x) ≠ f (x)) ≥ 1/(1 + eε) or P (M (y) ≠ f (y)) ≥ 1/(1 + 

eε).

What happens to this inherent tradeoff when x and y differ in more than one record? As 

shown on Figure 1b this tradeoff is relaxed. We note that for deriving the tradeoff, there was 

nothing specific to the ℓ1 metric (used for differential privacy), but instead we could have 

used any metric over the space of databases; other works that considered general metrics are 

e.g., [25, 33]. Our work proposes a distance metric which is appropriate for anomaly 

identification, in conjunction to an appropriate relaxation of differential privacy. This way 

we will lay out a practically meaningful (but also amenable to analysis) privacy setting.
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1.2 What do we want from the new notion?

We want to relax differential privacy since affording protection for everyone severely 

degrades the accuracy for anomaly identification. One possible relaxation, suitable for the 

problem at hand, is providing protection only for a subset of the records. We note that such a 

relaxation is backed by privacy legislation, e.g., GDPR allows for giving up privacy for an 

illegal activity [21]. Protecting a prefixed set of records, which is decided independent of the 

database, works when anomalies are defined independent of the other records. However, for 

a data-dependent anomaly definition, such a notion of privacy fails to protect the normal 

records. Here the problem arises due to the fixed nature of the set that is database-specific. 

In the case of a data-dependent definition of anomaly, if we wish to provide privacy 

guarantee to the normal – call them sensitive – records that are present in the database, then 

specifying the set of sensitive records itself leaks information and can lead to a privacy 

breach. Thus, sensitive records must be defined based on a more fundamental premise to 

reduces such dependencies. This notion of sensitive record plays a pivotal role in defining a 

notion of privacy, named sensitive privacy, which is appropriate for the problem identifying 

anomaly.

We remark that although anomaly identification method provide binary labeling, they assign 

scores to represent how outlying a record is [1, 3]; thus these models (implicitly or 

explicitly) assign a records a degree of outlyingness with respect to the other records, which 

the following discussion takes into account.

An appropriate notion of privacy in our setting must allow a privacy mechanism to have the 

following two important properties. First, the more outlying (or non-outlying) a record is, 

the higher the accuracy the privacy mechanism can achieve for anomaly identification, 

which is in contrast to DP (Figure 2c). Second, all the sensitive records should have DP like 

privacy guarantee for the same value of privacy parameter.

The mechanisms that are private under sensitive privacy achieve both the properties (see 

Figure 2, which gives the indicative experimental results on the example data; see Section A.

1 for the details on the experiment and the values of the parameters). Furthermore, it has an 

additional property: in a typical setting, the anomalies do not lose privacy altogether; instead 

the more outlying a record is the lesser privacy it has (Figure 2d).

1.3 How do we define the new privacy notion?

To define privacy, we need a metric space over the databases since a private mechanism 

needs to statistically blur the distinction between databases that are close in the metric space. 

While differential privacy uses the ‖ · ‖1 − metric, we utilize a different metric over 

databases, which can be defined using the notion of sensitive record. Informally, we say a 

record is sensitive with respect to a database if it is normal or becomes normal under a small 

change—we formalize this in Section 3. We argue that this notion of sensitive record is quite 

natural, and it is inspired from the existing anomaly detection literature [1, 3]. Since, by 

definition, an anomalous record significantly diverges from other records in the database [1, 

3], a small change in the database should not affect the label of an anomalous record. Given 

the definition of sensitive record, a graph over the databases is defined by adding an edge 
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between two databases if and only if they differ in a sensitive record. The metric over the 

databases is now given by the shortest path length between the databases in this graph. This 

metric space has the property that databases differing by a sensitive record are closer 

compared to the databases differing in a non-sensitive record. We use the proposed metric 

space to define sensitive privacy, which enables us to fine-tune the tradeoff between 

accuracy and privacy.

2 PRELIMINARIES AND NOTATION

Database:

We consider a database as a multiset of elements from a set 𝒳, which is the set of possible 

values of records. In a database, we assume each record is associated with a distinct 

individual. We represent a database x as a histogram in 𝒟 = y ∈ ℕ𝒳:‖y‖1 < ∞ , where 𝒟 is 

the set all possible database, ℕ = 0, 1, 2, … , and xi is the number of records in x that are 

identical to i.

Definition 2.1 (differential privacy [15, 17]). For ε > 0, a mechanism M with domain 𝒟 is ε-

differentially private if for every x, y ∈ 𝒟 such that ‖x − y‖1 ≤ 1, and every R ⊆ Range (M),

P(M(x) ∈ R) ≤ eεP(M(y) ∈ R) .

We implicitly assume that the R’s are chosen such that the events “M (x) ∈ R” are 

measurable.

Anomalies:

For any database x, record i ∈ 𝒳, r ≥ 0, and a distance function d :𝒳 × 𝒳 ℝ ≥ 0, 

Bx(i, r) = ∑ j ∈ 𝒳:d(i, j) ≤ r x j, and define (β, r)-anomaly as follows.

Definition 2.2 ((β, r)-anomaly [35]). For a given database x and record i, we say i is a (β, r)-
anomaly in the database x if i is present in x, i.e. xi > 0, and there are at most β records in x 
that are within distance r from i, i.e. Bx (i, r) ≤ β.

Whenever we refer to a (β, r)-anomaly, we assume there is an arbitrary distance function d 
over 𝒳 × 𝒳.

Anomaly identification:

Let us now introduce the important and related notion of anomaly identification function, 

g:𝒳 × 𝒟 {0,1}, such that for a given anomaly definition, every record i ∈ 𝒳 and database 

x ∈ 𝒟, g(i, x) = 1 if and only if i is present in x as an anomalous record (note that no change 

is made to x). This formulation is extensible to the case where the database over which 

anomaly identification is performed is considered to include the record for which anomaly 

identification is desired. Here, the anomaly identification for a record i over a data x can be 

computed over the database that consists of all the records in x as well as the record i1.
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Private anomaly identification query (AIQ):.

Here, all the private mechanisms we consider have domain 𝒟. Thus, we will consider the 

anomaly identification query to be for a fixed record. We will specify this by the pair (i, g), 

where i is a record and g an anomaly identification function. Now a private anomaly 

identification mechanism, M :𝒟 0, 1 , for a fixed AIQ, (i, g), can be represented by its 

distribution, where for every x, P (M (x) = g(i, x)) is the probability the M output correctly, 

and P (M (x) ≠ g(i, x)) is the probability that M errs on x.

3 SENSITIVE PRIVACY

Our notion of sensitive privacy requires privacy protection of every record that may be 

normal under a small change in the database. We use the notion of normality property p to 

identify the normal records that exist in the database. Formally, for a given definition of 

anomaly, a normality property, p:𝒳 × 𝒟 0, 1 , is such that for every record i and database 

x, p (i, x) = 1 if and only if i is present in x as a normal record. Note that the normality 

property is not the negation of anomaly identification function because for the absent 

records p = 0 (same as those which do not satisfy the property). We formalize the notion of 

small change in the database as the addition or removal of k records from the database. We 

consider this change to be typical and want to protect the privacy of every record that may 

become normal under this small change in the database.

We now formalize the key notion of sensitive record. For a fixed normality property, all the 

records whose privacy must be protected are termed as sensitive records.

Definition 3.1 (sensitive record). For k ≥ 1 and a normality property p, we say a record i is k 
-sensitive with respect to a database x if, for a database y, ‖x − y‖1 ≤ k and p (i, y) = 1.

Next, we give a couple of definitions of the graphs we consider here. A neighborhood graph, 

𝔾 = (𝒟, E), is a simple graph such that for every x and y in 𝒟, (x, y) ∈ E ⇔ ‖x − y‖1 = 1. 

One of the important notions in this work is k-sensitive neighborhood graph, GS = 𝒟, E′ , 

for k ≥ 1 and a normality property, which is a subgraph of the neighborhood graph, 

𝔾 = (𝒟, E), such that for every (x, y) ∈ E, (x, y) ∈ E′ ⇔ for some i ∈ 𝒳, |xi − yi| = 1 and i is 

k-sensitive with respect to x or y. Further, the two databases connected by an edge in a 

(sensitive) neighborhood graph are called neighbors. With this, we can state the notion of 

sensitive privacy. Note that the k-sensitive neighborhood graph is tied to the normality 

property, and hence, the anomaly definition.

Definition 3.2 (sensitive privacy). For ε > 0, k ≥ 1, and normality property, a mechanism M 
with domain 𝒟 is (ε, k)-sensitively private if for every two neighboring databases x and y in 

k-sensitive neighborhood graph, and every R ⊆ Range (M),

P(M(x) ∈ R) ≤ eεP(M(y) ∈ R)

1Note that alternatively one could have defined g without predicating on the existence of i in x. By dropping the predicate on the 
existence of i, we in effect blur the distinction between the notion of a void spot (that in a different database could have been occupied 
by a record) in the database and the notion of an anomaly.
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We omit k when it is clear from the context. The above condition necessitates that for every 

two neighbors, any test (i.e., event) one may be concerned about, should occur with “almost 

the same probability”, that is, the presence or the absence of a sensitive record should not 

affect the likelihood of occurrence of any event. Here, “almost the same probability” means 

that the above probabilities are within a multiplicative factor eε. The guarantees provided by 

sensitive privacy are similar to that of differential privacy. Sensitive privacy guarantees that 

given the output of the private mechanism, an adversary cannot infer the presence or the 

absence of a sensitive record. Thus for neighboring databases in a sensitive neighborhood 

graph (GS), the guarantee is exactly the same as in differential privacy. If x and y differ by 

one record, which is not sensitive, then they are not neighbors in GS, and the guarantee 

provided by sensitive privacy is weaker2 than differential privacy, nevertheless, has the same 

form. So, intuitively, if we only consider the databases, where all the records are sensitive, 

then differential privacy and sensitive privacy provide exactly the same guarantee. In 

general, every (ε, k)-SP mechanism M for GS satisfies P(M(x) ∈ R) ≤ P(M(y) ∈ R)e
εdGS

(x, y)

for every x, y and R, where dGS
 is the shortest path length metric over GS.

Similar to differential privacy, ε is the privacy parameter: the lower its value, the higher the 

privacy guarantee. The parameter k, which is associated with the sensitive neighborhood 

graph, provides a way to quantify what is deemed as a small change in the database, which 

varies from field to field, but nevertheless in many common cases can be quantified over an 

appropriate metric space.3. When we increase the value of k, we move the boundary 

between what is considered sensitive and what is non-sensitive (Figure 3, where the plots are 

similar to the ones given in Figure 2d for the same parameter values but for varying k): 

higher the value of k, the more records are considered sensitive, and therefore, must be 

protected. This is due to the fact that, for any k ≥ 1, if a record is k-sensitive with respect to a 

database x, it is also (k + 1)-sensitive with respect to x. For example, with respect to a 

database x, a 2-sensitive record, may not be 1-sensitive, but a 1-sensitive record will also be 

2-sensitive.

3.1 Composition

Our formalization of sensitive privacy enjoys the important properties of composition and 

post-processing [18], which a good privacy definition should have [32]. Hence, we can 

quantify how much privacy may be lost (in terms of the value of ε) if one asks multiple 

queries or post-processes the result of a private mechanism. Here, we recall that sensitive 

privacy is defined with respect to the k-sensitive neighborhood graph for the privacy 

parameter ε. Thus, the privacy composes with respect to both, the privacy parameter (i.e. ε) 

and the sensitive neighborhood graph.

Sequential composition provides the privacy guarantee over multiple queries over the same 

database, where the same record(s) in the database may be used to answer more than one 

2“Weaker” means that every mechanism which is ε-DP is also ε-SP, but in general not the other way around.
3The metric space we are using for anomaly identification has a rather complicated structure, but it is induced by formalizing our 
intuition for sensitive records.
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query. Consider two mechanisms M1:𝒟 R, which is ε1-sensitively private for k1-sensitive 

neighborhood graph GS1
= 𝒟, E1 , and M2:𝒟 × R R′, which is ε2-sensitively private for 

k2-sensitive neighborhood graph GS2
= 𝒟, E2 , with independent sources of randomness. 

Recall that for a private mechanisms for AIQ, (i, g), is fixed; thus M1 and M2 may 

correspond to different records and anomaly identification function. Now, M2 (x, M1(x)) (for 

every database x) is (ε1 + ε2)-sensitively private for GS = 𝒟, E1 ∩ E2  (Claim 3). One 

application of this is that for a fixed GS, even performing multiple queries interactively will 

lead to at most a linear loss (in terms of ε) in privacy in the number of queries—in an 

interactive query over a database x, one firstly gets the answer of M1, i.e., M1(x), and based 

on the answer, one selects M2 and gets its answer. Furthermore, for a fixed normality 

property, if k1 ≤ k2 then GS1
 is a subgraph of GS2

, then M2 is (ε1 + ε2)-sensitively private for 

GS1
.

Parallel composition deals with multiple queries, each of which only uses non-overlapping 

partition of the database. Let 𝒳 = Y1 ∪ Y2 such that Y1 ∩ Y2 = ∅. Now, consider M1 and 

M2, each with domain 𝒟, that are respectively ε1-sensitively private for GS1
 and ε2-

sensitively private for GS2
, where GS1

 is a subgraph of GS2
. Further, M1 and M2 only depend 

on their randomness (each with its independent source) and records in Y1 and Y2 

respectively. In this setting, a mechanism M (x) = (M1(x), M2 (x)) is max (ε1, ε2)-sensitively 

private for GS1
, or in general case for sensitive neighborhood graph 𝒟, E1 ∩ E2  (Claim 4), 

where E1 and E2 are the sets of edges for GS1
 and GS2

 respectively.

We also remark that privacy is maintained under post-processing.

Example:

Consider composition for sensitive privacy for the case of multiple (β, r)-AIQs. Let us say 

we answer anomaly identification queries for records i1, i2, … , in respectively for (β1, r1), 

(β2, r2), … ,(βn, rn) anomalies over the database x, while providing sensitive privacy. Let the 

mechanism for answering (βt, rt)-AIQ for it be εt-SP for kt-sensitive neighborhood graph 

corresponding to (βt, rt)-anomaly, and assume it depends on the partition of the database that 

contains the records within distance rt of it (because it suffices to compute (βt, rt)-AIQ) and 

its independent source of randomness. Let k = min(k1, … , kn), β = max(β1, … , βn), and r = 

min(r1, … , rn). In this case, the sensitive privacy guarantee for answering all of the queries 
is m ε for k-sensitive neighborhood graph corresponding to (β, r)-anomaly, where m is the 

maximum number of it’s that are within any ball of radius max(r1, … , rn) (Claim 5).

Thus, from the above, it follows that if we fix β, r and k and allow a querier to ask m many 

(β′, r)-AIQ’s (each may have a different value for β′) such that β′ ≤ β, then we can answer 

all of the queries with sensitive privacy mε in the worst case for k-sensitive neighbor for to 

(β, r)-anomaly. The same is true if the queries are for (β, r′) with r′ ≥ r. Furthermore, for 
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fixed β, r and k, answering (β, r)-AIQ for i and i′ such that d (i, i′) > 2r still maintains (ε, 

k)-SP. One may employ this to query adaptively to carry out the analysis while providing 

sensitive privacy guarantees over analysis as a whole.

4 PRIVACY MECHANISM CONSTRUCTIONS

In this section we will show how to construct a private mechanisms for (β, r)-anomaly 

identification. Specifically, (i) we will give an SP mechanism that errs with exponentially 

small probability on most of the typical inputs (Theorem 4.6), (ii) we will provide a DP 

mechanism construction for (β, r)-AIQ, which we will prove is optimal (Theorem 4.4), (iii) 

we will present a compiler construction that can compile a “bad” DP mechanism for AIQ to 

a “good” SP mechanism (Theorem 4.7) – here good and bad are indicative of utility. We will 

use these mechanism to evaluate the performance of our method over real world and 

synthetic datasets.

Recall that a privacy mechanism, M :𝒟 0, 1 , for a fixed AIQ, (i, g), will output the labels 

of i for the given database, where g is an anomaly identification function and i is a record. 

The sensitive privacy requires that the shorter the distance between any two databases, x and 

y, in the sensitive neighborhood graph (GS), the closer the probabilities of any output (R) of 

the mechanism M corresponding to the two databases should be, that is, 

e
−ε dGS

(x, y)
≤ P(M(x) = R)/P(M(y) = R) ≤ e

ε dGS
(x, y)

. Thus, for an x, the greater is the distance 

to the closest y such that g(i, x), ≠ g(i, y), the higher accuracy a private mechanism can 

achieve on the input x for answering g(i, x). We capture this metric-based property by the 

minimum discrepant distance (mdd) function. Fix an anomaly identification function g. For 

a given sensitive neighborhood graph GS, ΔGS
 is mdd-function, if for every i and x,

ΔGS
(i, x) = min

y ∈ 𝒟:g(i, y) ≠ g(i, x)
dGS

(x, y) (1)

A simple and efficient mechanism for anomaly identification that is both accurate and 

sensitively private can be given if g and the ΔGS
 (the corresponding mdd-function) can be 

computed efficiently. However, computing the mdd-function efficiently for an arbitrary 

anomaly definition is a non-trivial task. This is because the metric, dGS
, which gives rise to 

the metric-based property captured by the mdd-function, is induced by (a) the definition of 

anomaly (e.g. specific values of β and r) and (b) the metric over the records. Thus, making it 

exceedingly difficult to analyze it in general.

We use the example given in Figure 4 to explain the above mentioned relationships of mdd-

function. This figure depicts a subgraph of 1-sensitive neighborhood graph for (β = 3, r = 1)-

anomaly. One can appreciate the conceptual difficulty in calculating mdd-function, ΔGS
 (for 

this setting) by for example thinking the value of ΔGS
(5, (3, 0, 0, 0, 1)) (and recall that this is 

just a 1-sensitive neighborhood graph). Next, note that for a given database x and a record i, 
the shorter is the distance of the closest sensitive record from i, the smaller the value of 
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ΔGS
(i, x), e.g. ΔGS

(5, (3, 0, 0, 0, 1)) > ΔGS
(5, (3, 2, 1, 0, 1)). Furthermore, the presence of non-

sensitive records can also influence the value of the mdd-function, e.g. 

ΔGS
(5, (3, 0, 0, 0, 1)) > ΔGS

(5, (3, 0, 1, 0, 1)) although the closest sensitive record to 5 is the same 

in both the databases. In addition, the values of β and r also affect the value of mdd-function, 

and in most realistic settings, the size of 𝒳 is large, and the sensitive neighborhood graph is 

quite complex.

Below, we provide our constructions that uses a lower bound on the mdd-function to give 

sensitively private mechanism, which does not depend upon any particular definition of 

anomaly. Thus it can be used to give private mechanisms for AIQ’s as long as one is able to 

compute the lower bound.

4.1 Construction: SP-mechanism for AIQ by lower bounding mdd-function

Here, we show how to construct an SP mechanism for identifying anomalies by using a 

lower bound, λ, for the mdd-function. Our construction (Construction 1) will be 

parameterized by λ, which is associated with a sensitive neighborhood graph. Since the 

sensitive neighborhood graph is tied to an anomaly definition, it will become concrete once 

we give the definition of anomaly (e.g., see Section 4.1.1 and Section 4.1.2).

For any fixed AIQ, (i, g), and given λ, Construction 1 provably gives an SP mechanism as 

long as λ fulfills the following two properties: (1) for every i and x, λ(i, x) ≥ 1 and (2) λ is 

1-Lipschitz continuous lower bound on the mdd-function (Theorem 4.1).

For a sensitive neighborhood graph, GS, we say a function f :𝒳 × 𝒟 ℝ is α-Lipschitz 
continuous if for every i ∈ 𝒳 and neighboring databases x and y in GS, |f (i, x) − f (i, y)| ≤ α.

We remark that although at first it appears that the Lipschitz continuity condition is some 

side technicality, in fact bounding its value constitute the main part of our argument for 

privacy of our mechanisms. Thus giving an SP mechanism for (i, g) via Construction 1 

reduces to giving a Lipschitz continuous lower bound for the mdd-function corresponding to 

g.

Construction 1. Uλ

1. Input x ∈ 𝒟.

2. Set t = e−ε(λ (i, x)−1)/(1 + eε).

3. Sample b from {0, 1} such that P (b ≠ g(i, x)) = t.

4. Return b.

Note that the above is a family of constructions parameterized by λ (as mentioned above), 

i.e., one construction, Uλ, for each λ. This construction is very efficiently realizable as long 

as we can efficiently compute g and λ. Furthermore, the error of the mechanism, yielded by 

the construction, for any input is exponentially small in λ (Claim 2, which immediately 

follows from the construction).
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Claim 2. For given ε, (i, g), and λ, Uλ (Construction 1) is such that P (U (x) ≠ g(i, x)) = e
−ε (λ (i, x)−1)/(1 + eε) for every x.

Theorem 4.1 (Uλ IS SP). For any given ε, AIQ, and a 1-Lipschitz continuous lower bound λ 
on the corresponding mdd-function for k-sensitive neighborhood graph, GS, such that λ ≥ 1, 
Construction 1 yields an (ε, k)-sensitively private mechanism.

In order to show that the theorem holds, it suffices to verify that for every i and every two 

neighboring x and y in GS, the privacy constraints hold. For any AIQ, (i, g), this is 

immediate when g(i, x) = g(i, y) because λ is 1-Lipschitz continuous. When g(i, x) ≠ g(i, y), 

λ(i, x) = λ(i, y) = 1 because ΔGS
(i, x) = ΔGS

(i, y) = 1 and λ ≥ 1. Thus, the constraints are 

satisfied in this case as well. The complete proof for Theorem 4.1 is given in Appendix A.4. 

Additionally, a simple observation on the proof of Theorem 4.1, shows that if the given λ is 
α-Lipschitz continuous with α ≥ 1, then Construction 1 yields an (ε · α)-sensitively private 
mechanism.

In the following two sections, we instantiate Construction 1 to give differentially private and 

sensitively private mechanisms for performing (β, r)-anomaly identification query. We will 

use these mechanisms in our empirical evaluation over real world datasets.

4.1.1 Optimal DP-mechanism for (β, r)-AIQ.—Here, we show how to use 

Construction 1 to give an optimal differentially private mechanism for (β, r)-AIQ. Note that 

we will use this mechanism in experimental evaluation (Section 5) and compare its 

performance with our SP mechanism (which we will present shortly). We begin by restating 

the definition of DP in terms of the neighborhood graph. This restatement will immediately 

establish that SP generalizes DP, a fact we will use to build DP mechanism.

Definition 4.2 (DP restated with neighborhood graph). For ε > 0, a mechanism, M, with 

domain 𝒟, is ε-differentially private if for every two neighboring databases, x and y, in the 

neighborhood graph, and every R ⊆ Range (M),

P(M(x) ∈ R) ≤ eεP(M(y) ∈ R) .

From Definition 3.2 (of sensitive privacy) and Definition 4.2, it is clear that differential 

privacy is a special case of sensitive privacy, when the k-sensitive neighborhood graphs, GS, 

is the same as neighborhood graph, 𝔾, i.e., GS = 𝔾. Thus, for GS = 𝔾, a mechanism is ε-

differentially private if and only if it is ε-sensitively private. This observation is sufficient to 

give a differentially private mechanism for AIQ by using Construction 1.

We use λ = Δ𝔾 in Construction 1 to give the DP mechanism for (β, r)-AIQ, where Δ𝔾 (mdd-

function) for an arbitrary β, r, i and x is given below. This will yield a DP mechanism as 

long as the given Δ𝔾 for (β, r)-AIQ is 1-Lipschitz continuous, a fact that immediately 

follows from the above observation and Theorem 4.1. We claim that for any given β and r, 
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Δ𝔾 (given by (2)) is mdd-function for the (β, r)-AIQ and is 1-Lipschitz continuous (Lemma 

4.3).

Δ𝔾(i, x) =

1 xi = 0 ∧ Bx(i, r) < β

2 + Bx(i, r) − β xi = 0 ∧ Bx(i, r) ≥ β

min xi, β + 1 − Bx(i, r) xi > 0 ∧ Bx(i, r) ≤ β

Bx(i, r) − β xi > 0 ∧ Bx(i, r) > β

(2)

Lemma 4.3. For any fixed (β, r)-AIQ, (i, g), the Δ𝔾 given by (2) is mdd-function for g and is 

1-Lipschitz continuous.

The proof of Lemma 4.3 can be found in Appendix A.5.

We claim that for any fixed (β, r)-AIQ, (i, g), UΔ𝔾
 (given by our construction) is 

differentially private and errs minimum for all the inputs (Theorem 4.4), namely, it is pareto 
optimal. We say UΔ𝔾

 is pareto optimal ε-DP mechanism if (a) it is ε-DP and (b) for every ε-

DP mechanism M :𝒟 0, 1  and every database x ∈ 𝒟, 

P UΔ𝔾
(x) = g(i, x) ≥ P(M(x) = g(i, x)). Particularly, this implies that of all the DP mechanisms 

yielded by Construction 1, each corresponding to a different λ, the “best” mechanism is for 
λ = Δ𝔾.

Theorem 4.4 (UΔ𝔾
 is OPTIMAL AND DP). For any fixed (β, r)-AIQ, UΔ𝔾

 (Construction 1) is 

pareto optimal ε-differentially private mechanism, where Δ𝔾 is given by (2).

4.1.2 SP-mechanism for (β, r)-AIQ.—We employ Construction 1 to give a (ε, k)-

sensitively private mechanism for (β, r)-AIQ. We provide λk below, which is 1-Lipschitz 

continuous lower bound on the mdd-function for the k-sensitive neighborhood graph for (β, 

r)-anomaly (Lemma 4.5). For the λk, Construction 1 yields Uλk
 that is (ε, k)-SP mechanism, 

and for non-sensitive records Uλk
 can have exponentially small error in β (Theorem 4.6).

λk(i, x) =
Δ𝔾(i, x) Bx(i, r) ≥ β + 1 − k

β + 1 − Bx(i, r) + min 0, xi − k Bx(i, r) < β + 1 − k
(3)

Lemma 4.5. Arbitrarily fix k, β ≥ 1 and r ≥ 0. Let g be (β, r)-anomaly identification function 
and ΔGS

 be the mdd-function for g, where GS is the k-sensitive neighborhood graph for (β, 

r)-anomaly. The λk given by (3) is 1-Lipschitz continuous lower bound on ΔGS
.

The proof of Lemma 4.5 is given in Appendix A.7.
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It is clear form the definition of λk (given by 3) that when a record, i, is k-sensitive with 

respect to x, λk(i, x) = Δ𝔾(i, x), which implies that there is no gain in utility (i.e. accuracy) 

compared to the optimal DP mechanism (in Section 4.1.1). However, when a record is not 

sensitive, λ(i, x) > Δ𝔾(i, x), our SP mechanism achieves much higher utility compared to the 

optimal DP mechanism, which is especially true for strong (β, r)-anomalies (i.e. the records 

that lie in a very sparse region).

Theorem 4.6 (ACCURACY AND PRIVACY OF Uλk
). Fix any (β, r)-AIQ, (i, g). The mechanism, Uλk

(Construction 1 for λk above) is (ε, k)-SP such that for every i and x, if i not sensitive for x, 
then

P Uλk
(x) ≠ g(i, x) ≤ e

−ε|β + 1 − k − Bx(i, r)|
.

The privacy claim follows from Lemma 4.5 and Theorem 4.1, while the accuracy claim is an 

immediate implication from Construction 1 based on the definitions of Δ𝔾 and λk – note that 

Bx (i, r) < β + 1 − k implies i is not sensitive for x (Lemma A.2).

We give an example to show that Uλk
 achieves high accuracy in typical settings. Fix k ≤ 

β/10. Now for any record i in a database x, satisfying Bx (i, r) ≤ β/2 is an outlier for which 

Uλk
 will err with probability less that e−2ε β/5.

4.2 Compiler for SP-mechanism for AIQ

In this section, we present a construction compiler, which compiles a differentially private 

mechanism for an anomaly identification query into a sensitively private one. This SP 

mechanism can outperform the differentially private mechanism. Furthermore, our compiler 

is not specific to any particular definition of anomaly or any specific DP mechanism. The 

differentially private mechanism, which the compiler takes, is given in terms of its 

distribution over the outputs for every input. The compiled SP mechanism comparatively has 

much better accuracy for the non-sensitive records; however, for the sensitive records, the SP 

and the input DP mechanism err by the same amount.

It is noteworthy that for many problems, we already know the distributions given by 

differentially private mechanisms [15, 17, 18]. Thus, our construction can be employed 

using these mechanism as long as the distributions given by the differentially private 

mechanism are not too “wild”, for example, the probability of the wrong answer for any 

input is not too high (we formalize this below), which is typically true.

The compiler construction is parameterized by δ. This δ must be a non-negative lower 

bound on ΔGS
− ΔG that is also 2-Lipschitz continuous (ΔGS

 and Δ𝔾 are the mdd-functions 

for an arbitrarily fixed g, and GS is the k-sensitive neighborhood graph for anomaly 

definition for g). The non-negativity constraint is a side technicality; however, bounded 
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divergence (i.e., the Lipschitz continuity constraint) and the lower bound constraint play a 

pivotal role in arguing bout the privacy of the compiled mechanism. Given below is our 

construction, and it will be useful when obtaining δ is easier than λ, and we already know 

the distributions of a DP mechanism for the problem.

Construction 2. Uδ

1. Input x ∈ 𝒟.

2.
Set t = P (M(x) ≠ g(i, x))/e

ε
4δ(i, x)

.

3. Sample b from {0, 1} such that P (b ≠ g(i, x)) = t.

4. Return b.

The differentially private mechanism (in terms of its distributions) that can be transformed 

(with provable guarantees) through our compiler is termed as a valid mechanism. For ε > 0 

and any fixed AIQ, (i, g), we say an ε-DP mechanism, M :𝒟 0, 1 , is valid if for every 

two neighbors x and y in the neighborhood graph with g(i, x) = g(i, y) = b for some b ∈ {0, 

1}, the following holds

1 − P(M(x) ≠ b)e−ε ≤ e2ε(1 − P(M(y) ≠ b)) .

Note that any ε-differentially private mechanism, M, for a fixed AIQ, (i, g), that satisfies P 

(M (x) ≠ g(i, x)) ≤ e2ε/(1 + e2ε) for every x is valid – this is shown below for ε > 0 and two 

arbitrary neighbors x and y such that b = g(i, x) = g(i, y); hence the notion of valid 

differentially private mechanism is well defined.

P(M(y) ≠ b) ≤ e2ε

e2ε + 1
P(M(y) ≠ b)e4ε − P(M(y) ≠ b) ≤ e2ε e2ε − 1

since M is ε-DP, it follows from the above

P(M(y) ≠ b)e4ε − P(M(x) ≠ b)eε ≤ e2ε e2ε − 1 1 − P(M(x) ≠ b)e−ε ≤ e2ε(1 − P(M(y) ≠ b))

We claim that for a given valid differentially private mechanism, M, for a fixed AIQ, (i, g), 

and non-negative 2-Lipschitz continuous lower bound δ on ΔGS
− Δ𝔾, Construction 2 

complies M into a sensitively private mechanism, Uδ (Theorem 4.7). We stress that for the 

compiled SP mechanism, the probability of error can be exponentially smaller compared to 

the input DP mechanism. which is especially true for the non-sensitive records. This leads to 

an improvement in accuracy. Clearly, as the input mechanism, M, to the compiler becomes 

better (i.e., has lower error) so does the compiled sensitively private mechanism, Uδ, since 

the error of Uδ, is never more than that of M.
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Theorem 4.7. For k ≥ 1 and a given valid ε/2-DP mechanism, M, for any AIQ, (i, g), and 
non-negative 2-Lipschitz continuous lower bound, δ, on ΔGS

− ΔG, Construction 2 yields an 

ε-SP mechanism, Uδ, for k-sensitive neighborhood graph corresponding to the anomaly 
definition for g such that

P Uδ(x) ≠ g(i, x) = P(M(x) ≠ g(i, x))e
− ε

4δ(i, x)
.

To confirm the above claim, we show that the mechanism, Uδ, given by the construction 

above indeed satisfies the privacy constraints imposed by the sensitive privacy definition for 

every two neighboring databases in k-sensitive neighborhood graph. We can accomplish this 

by showing that the privacy constraints are satisfied by any two arbitrarily picked neighbors, 

x and y, for an arbitrarily picked valid ε/2-differentially private mechanism, M, for an 

anomaly identification query, (i, g) and a δ as specified above. We can divide the argument 

into two cases, and confirm in each case that the privacy constraints are satisfied. Case 1: δ 
(i, x) = δ (i, y) = 0, which follows due to M being differentially private; because if M is ε/2-

differentially private then it is also ε-differentially private. Case 2: δ (i, x) > δ (i, y) ≥ 0 — 

this is without loss of generality since x and y are picked arbitrarily. This case holds because 

of the following: M is valid ε/2-differentially private, δ is non-negative and 2-Lipschitz 

continuous, g(i, x) = g(i, y) (because for neighboring x and y, ΔGS
(i, x) − Δ𝔾(i, x) ≥ δ(i, x) > 0

implies ΔGS
(i, x) ≥ 2 . We give the complete proof of Theorem 4.7 in Appendix A.8.

We highlight the effectiveness of the compiler by instantiating it for δ(i, x) = λ1(i, x) − Δ𝔾(i, x)

for every i and x for (β, r)-anomaly. Figure 5 shows the compilation of two DP mechanisms 

for (β, r)-AIQ, which widely differ in their performance. As expected, the compiled SP-

mechanism outperforms the input DP-mechanism.

In Figure 5a, the input DP mechanism, M, has a constant error for every input database, that 

is, 1/(1 + eε) for fixed ε = 0.25. Clearly, this mechanism has extremely bad accuracy. This is 

a difficult case even for the compiled mechanism, which nevertheless, attains exponential 

gain in accuracy for non-sensitive records. However, when we input the DP-mechanism 

given in Section 4.1.1, which is much better than the one in Figure 5a, the compiled 

mechanism is clearly superior compared to the one in Figure 5a (Figure 5b).

Note that the δ in Figure 5 is a non-negative 2-Lipschitz continuous lower bound on 
ΔGS

− ΔG (as required by Theorem 4.7), where λ1 is given by (3) for k = 1 and Δ𝔾 is given 

by (2). δ = λ1 − Δ𝔾 ≥ 0 follows because ΔGS
≥ λ1 ≥ Δ𝔾. The first inequality follows from 

Lemma 4.5. The second one trivially holds true for all the cases except for xi ≥ 1 and Bx (i, 
r) < β, where λ1(i, x) = β + 1 − Bx (i, r) and Δ𝔾(i, x) = min xi, β + 1 − Bx(i, r) ; thus, even in 

this case, we get δ (i, x) = max(β + 1 Bx(i, r) − xi, 0) ≥ 0. The 2-Lipschitz continuity of δ 
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follows from the λ1 and Δ𝔾 being 1-Lipschitz continuous (Lemma 4.5 and Lemma 4.3). 

Thus, for any i and two neighbors x and y in GS (1-sensitive neighborhood graph),

|δ(i, x) − δ(i, y) | ≤ |λ1(i, x) − λ1(i, y)| + |Δ𝔾(i, x) − Δ𝔾(i, y)| ≤ 2.

Remark:

We emphasize that both of our constructions are not tied to any specific definition of 

anomaly, and even the requirement of Lipschitz continuity is due to privacy constraints.

5 EMPIRICAL EVALUATION

To evaluate the performance of the SP-mechanism for (β, r)-anomaly identification, we carry 

out several experiments on synthetic dataset and real-world datasets from diverse domains: 

Credit Fraud [10] (available at Kaggle [23]), Mammography and Thyroid (available at 

Outlier Detection DataSets Library [41]), and APS Trucks (APS Failure at Scania Trucks, 

available at UCI machine learning repository [14]). Table 1 provides the datasets 

specifications.

To generate the synthetic data, we followed the strategy of Dong et al. [12], which is 

standard in the literature. The synthetic data was generated from a mixed Gaussian 

distribution, given below, where I is the identity matrix of dimension d × d, σ << 1, and eit is 

a standard base. In our experiments, we used ρ = .01 and a = 5, and chose a standard bases 

uniformly at random.

(1 − ρ)𝒩(0, I) + ∑
t = 1

a
(ρ/a) 1

2𝒩 d /ρeit
, σ2I + 1

2𝒩 − d /ρeit
, σ2I

The aim of this work is to study the effect of privacy in identifying anomalies. So we keep 

the focus on evaluating the proposed approach for achieving privacy for this problem, and 

how it compares to differential privacy in real world settings. Our experiments make use of 

(popular) (β, r) notion of anomaly.

Following the standard practice for identifying outliers in the data with higher dimension [1, 

28], we carried out the principal component analysis (PCA) to reduce the dimension of the 

three datasets with higher dimension. We chose, top 6, 9, and 12 features for the Credit 

Fraud, Synthetic, and APS Trucks datasets respectively. Next, we obtain the values of β and 

r, which typically are provided by the domain experts [35]. Here, we employed the protocol 

outlined in Appendix A.2 to find β and r; this protocol follows the basic idea of parameter 

selection presented in the work [35] that proposed the notion of (β, r)-anomaly. Table 1 gives 

the values of β and r, which we found through the protocol, along with the number of true 

(β, r)-anomalies (true anomalies identifiable by (β, r)-anomaly method for the given 

parameter values).
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Error:

We measure the error of a private mechanism (which is a randomized algorithm) as its 

probability of outputting the wrong answer—recall that in the case of AIQ, there are only 

two possible answers, i.e. 0 or 1. For each AIQ for a fixed record, we estimate the error by 

the average number of mistakes over m trials. So for our experiments we choose m to be 

10000.

For each dataset, we find all the true (β, r)-anomalies and for each of them perform private 

anomaly identification query using SP-mechanism (given in Section 4.1.2) and DP-

mechanism (given in Section 4.1.1) for ε = 0.01, 0.1, and 1 and compute the error, which we 

give by the box plot in Figure 6. The reason we only considered our DP mechanism for this 

part is that it is the best among the baselines (see Table 3) and it also has strong accuracy 

guarantees (Theorem 4.4). The error of SP-mechanism, in many cases, is so small (e.g. of 

the order 10−15 or even smaller for larger values of ε) that it can be considered zero for all 

practical purposes. Furthermore, as the data size increases (and correspondingly the value of 

β), the error of SP-mechanism reduces. However, in the case of anomalies, the error of DP-

mechanism is consistently close to that of random coin flip (i.e. selecting 0 or 1 with 

probability 1/2) except for a few anomalous records in some cases – we will shortly explain 

the reason for this. The error of the SP-mechanism was overwhelmingly concentrated about 

zero (Figure 6), which is also true for the smaller values of ε. Thus, we can have higher 
privacy guarantee for sensitive records, while still being able to accurately identify 
anomalies. Also, note that as the size of the dataset increases, not only does the error of SP-

mechanism reduces (for anomalies), but also its divergence. Thus, it indicates that our 

methodology is even more appropriate for big data settings. On the other hand, for 

anomalies, the errors of DP-mechanism are concentrated about 1/(1 + eε) (Figure 7). This is 

in accordance with our theoretical results and the assumption that the databases are typically 

sparse.

Next, we evaluated the performance over the normal records. Here, both the SP and the DP 

mechanisms performed equally (Figure 8). For the same value of ε, every sensitive record in 

the database has the same level of privacy under sensitive privacy as all the records under 

differential privacy; thus the same level of accuracy should be achievable under both the 

privacy notions. Here we see again that datasets with larger sizes exhibit very small error.

To evaluate the performance over future queries, we picked n records uniformly at random 

from the space of possible (values of) records for each dataset – n was set to be 20% of the 

size of the dataset. Here too the SP-mechanism outperforms the DP-mechanism significantly 

(Table 2). This is because most of the randomly picked records are anomalous as per the (β, 

r)-anomaly, which is due to the sparsity of the databases. This fact becomes very clear when 

we compare the mean error over the random records to the mean error over the anomalous 

records in the randomly picked records (see the second and the last column of Table 2). 

Since the probability of observing a mistake is extremely small (e.g., 1 in 1010 trials), in 

Table 2, the mean is computed over the actual probability of error of the mechanism instead 

of the estimated error.
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We already saw that by increasing k we move the boundary between sensitive and non-

sensitive records (Figure 3). So to observe the effect of varying values of k on real world 

datasets, we carried out experiments on the datasets with k = ⌊0.1β⌋, ⌊0.2β⌋, and ⌊0.3β⌋ – 

recall that a record is considered k-sensitive with respect to a database if the record is normal 

or becomes normal under the addition and (or) deletion of at most k records from the 

database. Note that if k ≥ β + 1 then every record will be sensitive regardless of the database. 

The results are provided in Figure 9. Here we conclude that even for the higher values of k 
SP-mechanism performs reasonably well. Further, if the size of dataset is large enough, then 

the loss in accuracy for most of the records is negligible.

We see that for Credit Fraud and APS Trucks datasets, differentially private AIQ for some of 

the anomalous records give smaller error. We explain this deviation using the Credit Fraud 

dataset as an example. The above mentioned deviation in the error occurs whenever the 

anomalous record is not unique (Figure 10a–b), which is typically rare (Figure 10c). The 

reason DP-mechanism’s error remains constant in most cases is that the anomalies lie in a 

very sparse region of space and mostly do not have any duplicates (i.e., other records with 

the same value – xi ≈ 1).

Finally, to evaluate the overall performance of our SP-mechanism, we computed precision, 

recall, and F1-score [1]. We also provide a comparison with two different baseline 

mechanisms, B1, B2 in addition to pareto optimal DP mechanism (see Table 3).

B1 and B2 are the best performing mechanisms (i.e., with the highest F1-score) from two 

families of mechanisms. Each mechanism in each of the family is identified by a threshold t, 
where 0 ≤ t ≤ 1. Below, we describe the mechanisms from both the families for fixed ε, 

threshold t, record i ∈ 𝒳, and database x ∈ 𝒟. The mechanism in the first family is given as 

B1,t (x) = 1 if and only if 𝒪(x) + Lap(1/ε) > t × ‖x‖1 + Lap(1/ε) ; here 𝒪(x) gives the number 

of anomalies in x and Lap(1/ε) is independent noise from Laplace distribution of mean zero 

and scale 1/ε. The mechanism in the second family is given as B2,t (x) = 1 if and only if 

𝒪(x) + Lap(β/ε) > t × ‖x‖1 + Lap(1/ε) . Note that, the mechanism from the first family are ε1-

DP, where ε1 ≥ βε. This is due to the fact that maxx, y ∈ 𝒟: | | x − y||1 = 1 |𝒪(x) − 𝒪(y) | = β [15]. 

However the mechanism from the second family are ε2-DP,| where ε2 ≥ ε.

Our mechanism outperforms all the baselines. Furthermore, DP-mechanism largely 

outperforms the rest of the baselines.

6 RELATED WORK

To our knowledge, there has been no work that formally explores the privacy-utility trade-off 

in privately identifying anomalies, where sensitive records (which include the normal 

records defined in a data-dependent fashion) are protected against inference attacks about 

their presence or absence in the database used.

Differential privacy [15, 17] has shaped the field of private data analysis. This notion aims to 

protect everyone, and in a sense, many of the DP mechanisms (e.g. Laplace mechanism) 

achieve privacy by protecting anomalies; and in doing so perturb the information regarding 
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anomalies greatly. This adversely affects the accuracy of anomaly detection and 

identification. Furthermore, differential privacy is a special case of sensitive privacy (Section 

4.1.1).

Variants of the notion of differential privacy address important practical challenges. In 

particular, personalized differential privacy [29], protected differential privacy [31], relaxed 

differential privacy [6], and one-sided differential privacy [13] have a reversed order of 

quantification compared to sensitive privacy. Sensitive privacy, quantifies sensitive records 

and their privacy after quantifying the database, which is in contrast to the previous work. 

Thus, under sensitive privacy, it is possible for a record of some value to be sensitive in one 

database and not in the other, while this cannot be the case in the above mentioned 

definitions. On the other hand, by labeling records independent to the database (as in the 

previous work) one can solve a range of privacy problems such as counting queries and 

releasing histograms. Hence, this work solves the open problem (in [31]). Next, we present 

an individual comparison with each of the above mentioned previous work along with some 

other relevant ones from the literature.

Protected differential privacy [31] proposes an algorithm for social networks to search for 

anomalies that are fixed and are defined independent of the database. This is not extensible 

to the case, where anomalies are defined relative to the other records [31]. Similarly, the 

proposed relaxed DP mechanism [6] is only applicable to anomalies defined in data-

independent manner.

One-sided differential privacy (OSDP) [13] is a general framework, and is useful for the 

applications, where one can define the records to be protected independent of the database. 

Note that the notion of sensitive record in OSDP is different from the one considered here. 

Further, due to its asymmetric nature of the privacy constrains, OSDP fails to protect against 

the inference about the presence/absence of a sensitive record (in general), which is not the 

case with sensitive privacy (see Appendix A.10.1).

Tailored differential privacy (TDP) [36] provides varying levels of privacy for a record, 

which is given by a function, α, of the record’s value and the database. However, the work is 

restricted to releasing histograms, where outliers are provided more privacy. Whereas our 

focus is identifying anomalies, where anomalies may have lesser privacy. Further, the notion 

of anomaly used in the work [36] is the simple (β, 0)-anomaly. Extending it to the case of r > 

0 is a non-trivial task since, here, changing a record in the database may affect the label 

(outlyingness) of another record with a different value. We also note that sensitive privacy is 

a specialized case of tailored differential privacy (see Appendix A.10.2.)

Blowfish privacy (BP) [25] and Pufferfish privacy (PP) [33] are general frameworks, and 

provide no concrete methodology or direction to deal with anomaly detection or 

identification, where anomalies are defined in a data-dependent fashion. Sensitive privacy is 

a specialized class of definitions under these frameworks.

Thus, in term of definition, our contribution in comparison with OSDP [13], TDP [36], BP 

[25], and PP [33], is defining the the notion of sensitive record and the sensitive 
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neighborhood graph that is appropriate and meaningful for anomalies (when defined relative 

to the other records) and giving constructions and mechanisms for identifying anomalies.

Finally, [4] proposed a method for searching outliers, which can depend on data, but this is 

done in a rather restricted setting, which has theoretical value (in [4] the input databases are 

guaranteed to have only one outlier, a structure not present in the typical available datasets; 

this is in addition to other input database restrictions required by [4]).

Other relaxations of differential privacy such as [2] is specifically for location privacy and 

[16] is to achieve fairness in classification to prevent discrimination against individuals 

based on their membership in some group and as such are not applicable to the problem we 

consider here.

7 KEY TAKEAWAYS AND CONCLUSION

This work is the first to lay out the foundations of the privacy-preserving study of data 

dependent anomalies and develop general constructions to achieve this. It is important to 

reiterate that the formalization and conceptual development is independent of any particular 

definition of anomaly. Indeed, the definition of sensitive privacy (Definitions 3.1 and 3.2), 

and the constructions to achieve it (Construction 1 and Construction 2) are general and work 

for an arbitrary definition of anomaly (Theorem 4.1 and Theorem 4.7).

We noted earlier that sensitive privacy generalizes differential privacy. Thus, the guarantees 

provided by sensitive privacy are similar to that of differential privacy, and in fact, 

Construction 1 can be employed to give differentially private mechanisms for computing 

anomaly identification query or any binary function. However, in general, the guarantee 

provided by sensitive privacy to any two databases differing by one record could be 

correspondingly weaker than that offered by differential privacy depending on the distance 

between the databases in the sensitive neighborhood graph. There is also a divergence in 

guarantees in terms of composition. In differential privacy, composition is only in terms of 

the privacy parameter, ε. However, for sensitive privacy, composition needs to take into 

account not only the privacy parameter ε, but also the sensitive neighborhood graphs 

corresponding to the queries being composed. Nevertheless, the composition and post-

processing properties (Section 3.1) hold regardless of the notion of the anomaly.

An extensive empirical study carried out over data from diverse domains overwhelmingly 

supports the usefulness of our method. The sensitively private mechanism consistently 

outperforms differentially private mechanism with exponential gain in accuracy in almost all 

cases. Although it is easy to come up with example datasets where a differentially private 

mechanism also performs well (e.g., (β, r)-AIQ for i and x when xi = Bx (i, r) = β/2), the 

experiments with real data show that such cases are unlikely to occur in practice. Indeed, the 

experiments show that most of the anomalies occur in the setting, where an ε-DP 

mechanism performs the worst, that is, its error is close to 1/(1 + eε) (a lower bound on the 

error of any ε-DP mechanism and follows from Claim 1).

To conclude, in this paper, we develop methods for anomaly identification that provide a 

provable privacy guarantee to all records, which is calibrated to their degree of being 
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anomalous (in a data-dependent sense), while enabling the accurate identification of 

anomalies. We stress that the currently available methodologies for protecting privacy in 

data analysis are fundamentally unsuitable for the task at hand: they either fail to stop 

identity inference from the data, or lack the ability to deal with the data-dependent definition 

of anomaly. Note that anomaly identification is only the first step to tackling the problem of 

anomaly detection (finding all the anomalous records in a dataset). In the future, we plan to 

tackle this and instantiate our framework for other anomaly detection models.
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APPENDIX

A

A A.1: Empirical evaluation protocols

Evaluation over normally distributed data: If the data is from one dimensional normal 

distribution with mean μ and standard deviation σ then a record i is anomalous (or 

equivalently an outlier) if |i − μ| ≥ 3σ, and is statistically equivalent to (β = 1.2×10−3n, r = 

0.13σ)-anomaly [35], where n is the size of the database.

To adapt this result for 2D normal distribution in Figure 2, set r = 0.13 σ1
2 + σ2

2 and compute 

β in a similar fashion as above. Next, take 30 samples of size 20K, i.e. n = 20, 000, from the 

2D normal distribution, N (μ, Σ), where μ = (0, 0) and ∑ = 2 0
0 2 , and run SP-mechanism 

(given in Section 4.1.2) and DP-mechanism (given in Section 4.1.1) for (β, r)-anomaly 

identification query to compute accuracy, which is measured by the probability of outputting 

the correct answer by the private mechanism, and average the results over the samples for 

each query. We then plot the average accuracy and interpolate the results using one-degree 

polynomial in the two coordinates (Figure 2b–c). We used the “ListPlot3D” function of 

Mathematica with the argument “InterpolationOrder” set to 1.

In Figure 2d–e and Figure 3, we plot the level of privacy (in term of ε) that each record 

(point) has under private anomaly identification query. Here, the level of privacy for a record 

in a given database is measured by the maximum divergence divergence in the probability of 

outputting a label when we add or remove the record from the database. For ε-SP-

mechanism, U, to compute the value of the privacy parameter, ε, for a record i in a given 

database x, consider databases y and z. y and z are same as x except for y has one more 

record of value i and z has one less record of value i—if there is no record of value i in x 
then z will be the same as x. Now we can calculate eε for record i be by (4).
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eε = max
w ∈ y, z

max
b ∈ 0, 1

P(U(x) = b)
P(U(w) = b) , P(U(w) = b)

P(U(x) = b) (4)

A A.2: Protocol for (β, r) selection

The main idea is to fix a value of β, for a dataset of size n, as (1 − p) ×n, where p is close to 

1, and then search for an appropriate value of r. It is recommended [35] that for the datasets 

of sizes 103 and 106, β be (1 − 0.995) ×103 and (1−0.99995) ×106. By assuming that p is 

linearly related to n, one can use the provided values to find the value of β for any given 

dataset. For a fixed value of β, a search is performed to find r that maximize the F1-score 

(also known as balanced F-measure), which is a popular performance metric for imbalanced 

datasets [38], and it is the harmonic mean of precision and recall. We used the following 

protocol to select the value of r. Initialize rmin = .001, rmax = 40 (or the value that is not 

smaller than the maximum distance between any two points in the given dataset), r = 0, and 

S = 0. Next, set r1 = rmin + (rmax − rmin)/4, r2 = rmin + 3(rmax − rmin)/4, pick α from [0, 1] 

uniformly at random and set r3 = α r1 + (1 − α) r2. Compute F1-score for each of the r′s, i.e. 

Sr1
, Sr2

, and Sr3
. Let Srt

 be the maximum of the computed scores. If Srt
 is greater than S then 

set S = Srt
 and r = rt; further, if Sr2

< S and r2 > r then set rmax = r2 but if it is not the case and 

Sr1
< S and r1 < r then set rmin = r1, otherwise do nothing. Repeat this process, except for the 

initialization step, until the improvement in S becomes insignificant. In our experiments, 

repeating the process for ten iterations generally sufficed.

A A.3: Proof of Claim 1

Proof. Arbitrarily fix ε > 0, f :𝒟 0, 1 , ε-differentially private mechanism M :𝒟 0, 1 , 

and x, y ∈ 𝒟 such that f (x) ≠ f (y) and ‖x – y‖1 = 1; and let b = f (x).

If P (M (y) = b) ≤ 1/(1 + eε) then, by differential privacy constraints, we get that P (M (x) = 

b) ≤ eε/(1+eε); thus P (M (x) = 1 − b) ≥ 1/(1+eε). Similarly, P (M (x) = 1 − b) ≤ 1/(1+eε) 

implies P (M (y) = b) ≥ 1/(1 + eε). Hence, from the above, it follows that

max (P(M(x) ≠ f (x)), P(M(y) ≠ f (y))) ≥ 1/ 1 + eε .

Since M, x and y were fixed arbitrarily, the claim follows, and this completes the proof. □

A A.4: Proof of Theorem 4.1

Proof. Fix arbitrary ε > 0 and a definition of anomaly. Let g be the anomaly identification 

function and GS be the k-sensitive neighborhood graph corresponding to it for an arbitrary 

value of k ≥ 1. Fix λ to be 1-Lipschitz continuous lower bound on the mdd-function, ΔGS
, 

for g such that λ ≥ 1. Let Uλ be as given by Construction 1. Next, fix an anomaly 
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identification query, (i, g), and x, y ∈ 𝒟 that are neighbors (i.e. connected by a direct edge) 

in GS.

If g(i, x) = g(i, y) = b from some b ∈ {0, 1} then

P Uλ(x) ≠ b

P Uλ(y) ≠ b
= eε( − λ(i, x) + λ(i, y))

≤ eε | − λ(i, x) + λ(i, y) |

≤ eε since λ is 1 ‐Lipschitz continuous)

and

P Uλ(x) = b

P Uλ(y) = b
=

1 − P Uλ(x) ≠ b

1 − P Uλ(y) ≠ b

= 1 + eε − e−ε(λ(i, x) − 1)

1 + eε − e−ε(λ(i, y) − 1)

=
eελ(i, y) 1 + eε − eε(λ(i, y) − λ(i, x) + 1)

eℰλ(i, y) 1 + eε − eε

since λ is 1-Lipschitz continuous, it follows that

P Uλ(x) = b

P Uλ(y) = b
=

eελ i, y 1 + eε − 1
eελ i, y 1 + eε − eε ≤

1 + eε − 1
1 + eε − eε = eε

The first inequality holds because λ is 1-Lipschitz continuous, and the second one holds 

since λ ≥ 1.

On the other hand, if g(i, x) ≠ g(i, y), then λ(i, x) = λ(i, y) = 1. This holds because x and y 
are neighbors, i.e. dGS

x, y = 1, and hence, ΔGS
(i, x) = ΔGS

(i, y) = 1 and λ is such that 

ΔGS
( j, z) ≥ λ( j, z) ≥ 1 for every j ∈ 𝒳 and z ∈ 𝒟. Thus, in this case, the privacy constraints 

trivially hold. This concludes the formal argument. □

A A.5: Proof of Lemma 4.3

Proof. Let 𝔾 be the neighborhood graph over 𝒟, d be the distance metric over 𝒳 × 𝒳, d𝔾 be 

the shortest path length metric over 𝔾, and g be the anomaly identification function for (β, 

r)-anomaly for arbitrarily fixed values of β ≥ 1 and r ≥ 0.

Firstly, we prove the correctness of the Δ𝔾-function given by (2) for (β, r)-AIQ. Arbitrarily 

fix i ∈ 𝒳 and any database x ∈ 𝒟. We know that the value of g(i, x) only depends upon xi 

Asif et al. Page 23

Conf Comput Commun Secur. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Bx (i, r)—recall that g(i, x) = 1 ⇔ xi ≥ 1 and Bx (i, r) β. Further, d𝔾(x, y) = ‖x − y‖1
since every two databases that differ by exactly one record are directly connected by an 

edge. Hence, it follows that for Ci = j ∈ 𝒳:d(i, j) ≤ r ,

Δ𝔾(i, x) = min
y:g(i, y) ≠ g(i, x)

‖x − y‖1 = min
y:g(i, y) ≠ g(i, x)

∑
j ∈ Ci

|x j − y j| . (5)

We will consider four cases based on the condition (given in the Δ𝔾-function) that x 

satisfies. From (5), we know that Δ𝔾(i, x) is the same as the minimum number of records by 

which a database y differs such that g(i, x) ≠ g(i, y). Thus in the proof we will modify the 

database x by adding or (and) removing records from x, and show that minimum number of 

changes required in x to change the output of g is given by Δ𝔾-function.

Case 1: When x satisfies the first condition, g(i, x) = 0. For any database y such that g(i, y) = 

1, it must hold that yi ≥ 1 and By (i, r) ≤ β. So we obtain a y by adding one record of value i 
to x. Thus Δ𝔾(i, x) = 1.

Case 2: When x satisfies the second condition, here again similar to the case above, g(i, x) = 

0, and for any database y such that g(i, y) = 1, it must hold that yi ≥ 1 and By (i, r) β. So we 

will have to add one record of value i to x to obtain a database y′, but now By′ (i, r) ≥ β + 1. 

Thus, to obtain a y, we will have to remove By′ (i, r) − β = Bx (i, r) + 1 – β records of values 

Ci\ {i} from y′ (or x). Thus, Δ𝔾(i, x) = 1 + Bx(i, r) + 1 − β.

Case 3: Here we assume that x satisfies the third condition; hence g(i, x) = 1. For a y such 

that g(i, y) = 0, either yi = 0 or By (i, r) ≥ β + 1. Thus Δ𝔾(i, x) will be the minimum of xi 

(which corresponds to the number of records of value i present in x that we will have to 

remove) and β + 1 − Bx (i, r) (which corresponds to the number of records of values in Ci 

that we will have to add to x).

Case 4: In this case, g(i, x) = 0 because Bx (i, r) > β. Thus, we will have to remove Bx (i, r) 
− β records of values in Ci from x such that there is at least on record of value i in the 

modified x. Hence, Δ𝔾(i, x) = Bx(i, r) − β.

Further, in all the cases, Δ𝔾(i, x) ≥ 1. Therefore, we conclude the Δ𝔾-function is correct.

Next, we prove that the Δ𝔾-function is 1-Lipschitz continuous. Arbitrary fix i and any two 

neighboring databases, x and y in 𝔾. Let the (k, l) represent that x and y respectively satisfy 

the kth and lth conditions in the Δ𝔾-function, where k, l ∈ [4] such that k ≤ l. We will prove 

that for each (k, l), the Δ𝔾-function satisfies the 1-Lipschitz continuity condition. Here, note 

that if the Δ𝔾-function satisfies the 1-Lipschitz continuity condition under (k, l) then it also 

satisfies the condition under (l, k) because |Δ𝔾(i, x) − Δ𝔾(i, y)| = |Δ𝔾(i, y) − Δ𝔾(i, x)|.
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For (1, 1), |Δ𝔾(i, x) − Δ𝔾(i, y)| = 0, and for (2, 2) and (4, 4), |Δ𝔾(i, x) − Δ𝔾(i, y)| ≤ 1 since 

|Bx(i, r) − By(i, r)| ≤ 1. Below, we consider rest of the cases.

(3, 3): The case, when Bx (i, r) = By (i, r), is trivial. So, let Bx (i, r) = 1 + By (i, r)—this is 

without loss of generality since ‖x − y‖1 = 1 and |Δ𝔾(i, x) − Δ𝔾(i, y)| = |Δ𝔾(i, y) − Δ𝔾(i, x)|. 

Thus, Δ𝔾(i, x) = min xi, β − By(i, r)  and Δ𝔾(i, y) = min yi, β + 1 −By(i, r) . All the subcases, 

except for the following, trivially follow from ‖x − y‖1 = 1.

a. Δ𝔾(i, x) = xi and Δ𝔾(i, y) = β + 1 − By(i, r)

b. Δ𝔾(i, x) = β − By(i, r) and Δ𝔾(i, y) = yi

(a) is not possible as it requires xi < yi; this cannot happen because ‖x − y‖1 = 1 and Bx (i, r) 
= 1 + By (i, r). As for (b), the following holds for t = Δ𝔾(i, x) − Δ𝔾(i, y):

−1 ≤ β − By(i, r) − β + 1 − By(i, r) ≤ t ≤ xi − yi ≤ 1

Thus, it follows that 1-Lipschitz continuity condition is satisfied in this case.

(1, 2): This happens when Bx (i, r) = β − 1 and By (i, r) = β, which is sufficient for the 

condition to be satisfied.

(1, 3): It is possible when yi = 1 and 1 ≤ By (i, r) ≤ β; hence Δ𝔾(i, y) = yi and the case holds.

(1, 4): This case is not possible since ‖x − y‖1 = 1, and the case requires Bx (i, r) < β and By 

(i, r) > β.

(2, 3): This case too is not possible since it requires Bx (i, r) ≥ By (i, r) and xi < yi, when ‖x − 

y‖1 = 1.

(2, 4): Here, Bx (i, r) − By (i, r) = −1 (since xi = 0 and yi ≥ 1); hence the case follows.

(3, 4): Here, it must hold that Bx (i, r) = β and By (i, r) = β + 1. Hence, Δ𝔾(i, x) = 1 (since xi 

≥ 1) and Δ𝔾(i, y) = 1, and the case follows.

Since the Δ𝔾-function satisfies 1-Lipschitz continuity condition under all the cases for 

arbitrary i and arbitrary neighbors, x and y, in the neighborhood graph, it holds for every i 
and every two neighbors. Thus the claim follows. This completes the proof. □

A A.6: Proof of Theorem 4.4

Proof. Arbitrarily fix ε and a (β, r)-AIQ, (i, g). Let Δ𝔾 be as given by (2) and UΔ𝔾
 be as 

given by Construction 1.

Asif et al. Page 25

Conf Comput Commun Secur. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Firstly, note that UΔ𝔾
 is ε-DP. It follows from the facts that Δ𝔾 ≥ 1, is 1-Lipschitz 

continuous (Lemma 4.3), and SP generalizes DP.

Next, we prove the optimality claim. We prove the claim using its contrapositive, that is, if 

there is a mechanism that is “better” than UΔ𝔾
, then it must not be ε-DP.

Assume there exits a DP mechanism M such that for every x, 

P M(x) = gi(x) ≥ P UΔ𝔾
(x) = gi(x)  and for a database y, P M(y) = gi(y) > P UΔ𝔾

(y) = gi(y)

(i.e. UΔ𝔾
 is not pareto optimal); fix this y. Note that gi (·) = g(i, ·). We will prove that M 

cannot be ε-DP.

Let z be such that d𝔾(y, z) = Δ𝔾(i, y) and gi (z) ≠ gi (y). Let w be a neighbor of z such that 

d𝔾(y, w) = Δ𝔾(i, y) − 1 and b = gi (w) = gi (y). Now, assume that M ε-DP. It follows that

P(M(w) ≠ b) ≤ e
εd𝔾(y, w)P(M(y) ≠ b) = e

ε Δ𝔾(i, y) − 1
P(M(y) ≠ b) < 1/ 1 + eε (6)

The First inequality is due to the DP constrains on M. The second inequality is due to the 

fact that M is strictly better than UΔ𝔾
 on y and the fact that 

P UΔ𝔾
(y) ≠ gi(y) = e

−ε Δ𝔾(i, y) − 1
/ 1 + eε . Now if M is ε-DP, then P (M (z) ≠ 1 − b) ≥ e−ε P 

(M (w) ≠ 1 − b), which together with (6) gives us P (M (z) ≠ gi (z)) > 1/(1 + eε); 

alternatively, P (M (z) = gi (z)) < eε/ (1 + eε). Since we know that M is “better” than UΔ𝔾
, 

and in particular, P M(z) = gi(z) ≥ P UΔ𝔾
(z) = gi(z) = eε/ 1 + eε , the above implies that M is 

not ε-DP. Thus, we conclude the UΔ𝔾
 is pareto optimal. □

A A.7: Proof of Lemma 4.5

Lemma A.1. Arbitrarily fix a graph, G, that contains all the nodes and a subset of edges of 
the neighborhood graph, 𝔾, and an X ⊆ 𝒳. If dG is the shortest path length metric over G, 
then for every x, y ∈ 𝒟,

dG(x, y) ≥ ‖x − y‖1 ≥ ∑
j ∈ X

|x j − y j| ≥ ∑
j ∈ X

x j − y j .

Proof. Let 𝔾 be the neighborhood graph over 𝒟. Arbitrarily fix G, dG, and X as specified 

above (in the lemma). Since G contains all the nodes and a subset of edges of 𝔾, 

dG(x, y) ≥ d𝔾(x, y), where d𝔾 is the shortest path length metric over 𝔾 and it is same as ℓ1-

metric over the databases. Hence, it follows that dG (x, y) ≥ ‖x – y‖1. The second inequality 
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holds since X ⊆ 𝒳 and ‖x − y‖1 = ∑ j ∈ X |x j − y j|. The Third inequality follows from the 

reverse triangle inequality. This completes the proof. □

Proof of Lemma 4.5. Arbitrarily fix β, k ≥ 1, r ≥ 0. Let λk be as given by (3), the Δ𝔾-

function be corresponding to the neighborhood graph, 𝔾, the ΔGS
-functions be 

corresponding to the k-sensitive neighborhood graph, GS, for (β, r)-anomaly, and g be the (β, 

r)-anomaly identification function. Next, arbitrarily fix a record i and a node (database) x in 

GS.

We first show that ΔGS
. Below, we show that ΔGS

(i, x) ≥ Δ𝔾(i, x).

ΔGS
(i, x) = min

y ∈ 𝒟:g(i, x) ≠ g(i, y)
dGS

(x, y) ≥ min
y ∈ 𝒟:g(i, x) ≠ g(i, y)

d𝔾(x, y) = Δ𝔾(i, x)

The first inequality follows from the fact that GS contains all the nodes and a subset of edges 

of 𝔾. Hence, from Lemma 4.3, we conclude that if Bx (i, r) ≥ β + 1 − k then 

ΔGS
(i, x) ≥ λk(i, x) ≥ 1.

We now let Bx (i, r) < β + 1 − k and b = g(i, x). Here, it is clear that λk (i, x) ≥ 1. Fix any y 
in GS such that g(i, y) ≠ b and ΔGS

(i, x) = dGS
(x, y).

Consider the case of xi = 0. Here, it must hold that yi ≥ 1 and By (i, r) ≤ β. Now, on any of 

the shortest path from x to y, we will first reach a database z, where i is k-sensitive, and 

hence, Bz (i, r) ≥ β + 1 − k (from Lemma A.2). Thus, for this z, we get

ΔGS
(i, x) = dGS

(x, z) + dGS
(z, y)

≥ dGS
(x, z)

≥ Bz(i, r) − Bx(i, r)

≥ β + 1 − k − Bx(i, r) = λk(i, x) .

The second inequality follows from Lemma A.1, and the third one follows because Bz (i, r) 
≥ β + 1 − k.

In the case, when xi ≥ 1, it must hold that either yi = 0 or By (i, r) ≥ β + 1. If yi = 0, or By (i, 
r) ≥ β + 1. If yi = 0, then on any of the shortest path from x to y, we will first reach a 

database z, where i becomes k-sensitive, i.e., Bz (i, r) ≥ β + 1 − k (from Lemma A.2). If z is 

the first such database, then zi ≥ xi. Thus, we get the following.

dGS
x, y = dGS

x, y + dGS
z, y ≥ Bz(i, r) − Bx(i, r) + |zi − yi| ≥ 1 + β − k − Bx

(i, r) + xi . (7)
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The first inequality follows from Lemma A.1, and the second one follows from the fact that 

Bz (i, r) ≥ β + 1 – k and xi ≤ zi. But if By (i, r) ≥ β + 1, then

dGS
(x, y) = dGS

(x, y) ≥ |By(i, r) − Bx(i, r)| ≥ 1 + β − Bx(i, r) (8)

From (7) and (8), we get the following, which is sufficient to establish that λk is a lower 

bound on the ΔGS
-function.

ΔGS
(i, x) ≥ 1 + β − Bx(i, r) + min 0, xi − k = λk(i, x)

Next, we show that λk is 1-Lipschitz continuous. Fix an arbitrary neighbor, y, of x such that 

λk (i, x) ≠ λk (i, y), otherwise, the continuity condition is trivially satisfied. If both x and y 
satisfy the first condition of λk, then the continuity condition is satisfied by Lemma 4.3. So 

assume that x and y satisfy the second condition of λk. Here, all the cases except for the 

following, trivially follow from the fact that ‖x − y‖1 = 1.

a. λk (i, x) = β + 1 − Bx (i, r) and λk (i, y) = β + 1 − By (i, r) + yi − k

b. λk (i, x) = β + 1 − Bx (i, r) + xi − k and λk (i, y) = β + 1 − By (i, r)

If (a) holds then (b) also does by symmetry (i.e., |λk (i, x) λk (i, y)| = λk (i, y) – λk (i, x)|) as 

x and y are picked arbitrarily. (a) holds if xi − k ≥ 0 and yi − k ≤ 0; further, ‖x − y‖1 = 1 

implies that xi − k = 0 and −1 ≤ yi − k ≤ 0. When yi − k = 0, the continuity condition is 

satisfied as |Bx (i, r) − By (i, r)| ≤ 1. However, yi − k = −1 is not possible since ‖x − y‖1 = xi − 

yi = 1 implies that i is k-sensitive with respect to x or y, which implies that either Bx (i, r) or 

By (i, r) is at least β + 1 − k (from Lemma A.2); this contradicts the assumption for this case. 

Hence, it follows that here the continuity condition is satisfied as well.

Lastly, consider the case, where y and x respectively satisfy the first and the second 

condition of λk—this is without loss of generality due to symmetry. This will be possible if 

Bx (i, r) = β − k and By (i, r) = β − k + 1. Thus, in all the subcases below, xi ≤ yi ≤ xi + 1.

Consider the subcase of xi = 0. Here, λk (i, x) = 1 and yi is either 0 or 1. If yi = 0, then we 

have:

λk(i, y) = Δ𝔾(i, y) = 2 for k = 1,  and λk(i, y) = Δ𝔾(i, y) = 1 for k > 1

But if yi = 1, λk(i, y) = Δ𝔾(i, y) = min yi, k = 1 as k ≥ 1. Hence, the continuity condition is 

satisfied for this subcase, when xi = 0.

Next, let xi ≥ 1; thus under this subcase it follows that

λk(i, x) = 1 + k + min 0, xi − k = 1 + min xi, k
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λk(i, y) = Δ𝔾(i, y) = min yi, k  since xi ≤ yi

Clearly, if xi < k, then λk (i, x) = 1 + xi and xi ≤ λk (i, y) ≤ xi + 1; but if xi ≥ k, then λk (i, x) 

= 1 + k and λk (i, y) = k since xi ≤ yi ≤ xi + 1; hence the continuity condition is fulfilled in 

this subcase as well.

In all of the above case, |λk (i, x) − λk (i, y)| ≤ 1. Since β, k, r, i, x, and y (neighbor of x) 

were picker arbitrarily, we conclude that λk is 1-Lipschitz continuous lower bond on the 

ΔGS
-function. This completes the proof. □

A A.8: Proof of Theorem 4.7

Proof. Fix any k ≥ 1, ε > 0, a valid ε/2-differentially private mechanism, M, an anomaly 

identification query, (i, g), and a non-negative 2-Lipschitz continuous lower bound, δ, on 

ΔGS
− Δ𝔾, where ΔGS

 and Δ𝔾 respectively correspond to the k-sensitive neighborhood graph 

for the anomaly definition corresponding to g, and the neighborhood graph. Let Uδ be the 

mechanism that Construction 2 yields. Next, fix arbitrary databases x and y that are 

neighbors in GS.

When δ (i, x) = δ (i, y) = 0, P (Uδ (z) = b) = P (M (z) = b) for every database z and b in {0, 

1}. The privacy constraints in this case, are trivially satisfied.

Next, consider the case, where δ (i, x) > δ (i, y) 0 — this is without loss of generality as x 
and y are picked arbitrarily. Since M is valid ε/2-differentially private, we get the following 

for g(i, x) = b for some b ∈ {0, 1},

1 − P(M(x) ≠ b)e−ε/2 ≤ eε(1 − P(M(y) ≠ b)) (9)

Recall that GS is a subgraph of 𝔾 and contains a subset of edges of 𝔾, and Δ𝔾(i, z) ≥ 1 for 

every database z. Hence, it follows that ΔGS
(i, z) ≥ Δ𝔾(i, z) ≥ 1, and ΔGS

(i, x) = 1 implies 

Δ𝔾(i, x) = 1. Thus, from the above it follows that when ΔGS
(i, x) − Δ𝔾(i, x) ≥ δ(i, x) > 0, it must 

hold that ΔGS
(i, x) ≥ 2. Since dGS

x, y = 1 and ΔGS
(i, x) ≥ 2, we have g(i, x) = g(i, y). So, let b 

= g(i, x). From (9), we get the following.

1 − P(M(x) ≠ b)e−ε/2 ≤ eε(1 − P(M(y) ≠ b)) 1 − eε ≤ P(M(x) ≠ b)e−ε/2 − P(M(y) ≠ b)eε

since δ is 2-Lipschitz continuous, we get

1 − eε ≤ P(M(x) ≠ b)

e

ε
4(δ(i, x) − δ(i, y))

− P(M(y) ≠ b)eε
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since LHS is negative, and δ ≥ 0, the following holds

1 − eε ≤ e
− ε

4δ(i, y) P(M(x) ≠ b)

e

ε
4(δ(i, x) − δ(i, y))

− P(M(y) ≠ b)eε 1 − P M x ≠ b

e

ε
4δ i, x

≤ eε 1 − P M x ≠ b

e

ε
4δ i, y

P Uδ x = b ≤ eεP Uδ y = b

In a similar fashion, by swapping x and y in (9), one can show that the privacy constraint P 

(Uδ (y) = b) ≤ eε P (Uδ (x) = b) also holds. Below we show that the other constraints are also 

satisfied.

P Uδ(x) ≠ b

P Uδ(y) ≠ b
= P(M(x) ≠ b)e

− ε
4δ(i, x)

P(M(y) ≠ b)e
− ε

4δ(i, y)
≤ eε

The above inequality holds because M is ε/2-DP and δ is 2-Lipschitz continuous.

Since all the privacy constraints hold for arbitrarily picked neighbors and δ (which satisfies 

the conditions specified in the claim), and a valid ε/2-differentially private M for an anomaly 

identification query, the claim holds in general.

As for the claim of accuracy, it is a direct implication from the Construction 2. This 

completes the proof. □

A A.9: Composition

Here, we assume that every mechanism has its independent source of randomness and has 

the domain 𝒟. Further, E(G) for a graph G denotes the set of edges in G. We make the 

following very simple observation.

Observation 1. For any simple graphs G and G′ over 𝒟, two databases are neighbors in the 
graph H = 𝒟, E(G) ∩ E G′  if and only if they are neighbors in G and G′.

Claim 3. If mechanisms M1 and M2 are respectively ε1-SP for GS1
 and ε2-SP for GS2

, then 

M (x) ≔ (M1(x), M2(x)) for every x is (ε1 + ε2)-SP for GS = 𝒟, E GS1
∩ E GS2

.

Proof sketch. The claim follows from M1 and M2 being SP for ε1 and ε2, and Observation 1, 

which ensures that the privacy constraints will be met for neighbors in GS. □

We say, for Y ⊆ 𝒳, a mechanism M is Y-dependent if and only if for every r ∈ Rnage (M) 

and x and y such that xi = yi for every i ∈ Y, P (M (x) = r) = P (M (y) = r).
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Claim 4. For any partition of X = Y1 ⊔ Y2, if mechanisms M1 and M2 are respectively Y1-

dependent ε1-SP for GS1
 and Y2-dependent ε2-SP for GS2

, then M (x) ≔ (M1 (x), M2 (x)) for 

every x is max(ε1, ε2)-SP for GS = 𝒟, E GS1
∩ E GS2

.

Proof sketch. Firstly, note that M1 and M2 being SP for ε1 and ε2 along with Observation 1, 

ensure that the privacy constraints will be met for neighbors in GS for some value of ε. 

Further, since every neighbor in GS differ by one record and mechanisms M1 and M2 are 

respectively Y1 and Y2 dependent (for an arbitrarily fixed partition), every privacy constraint 

will hold for either ε1 or ε2. From here the claim follows. □

A.9.1 Proof of Claim 5.

Lemma A.2. Fix arbitrary values for k ≥ 1, β ≥ 1 and r ≥ 0 For (β, r)-anomaly, for every 
record i ∈ 𝒳 and every database x ∈ 𝒟, i is k-sensitive with respect to x ⇔ Bx (i, r) ≥ β + 1 

– k.

Proof. Arbitrarily fix k, β ≥ 1, r ≥ 0, i ∈ 𝒳, and x ∈ 𝒟. Further, fix p to be the normality 

property corresponding to (β, r)-anomaly.

Firstly, we prove the “if” direction through its contrapositive. So assume Bx (i, r) < β + 1 − 

k. Now, for every database y such that ‖x − y‖1 ≤ k, By (i, r) ≤ β as we can only add up to k 
records in x. Thus for each of the above y, p (i, y) = 0, which follows from the definition of 

(β, r)-anomaly, and i is not k-sensitive with respect to x. This completes the proof for “if” 

direction.

Next, we prove the “only if” direction. Let Bx (i, r) ≥ β + 1 − k. Now, obtain a database y by 

adding k records that are the same as i to x. For this y, it holds that ‖x − y‖1 = k and p (i, y) = 

0 because yi ≥ 1 and By (i, r) ≥ β + 1 (since k ≥ 1). Hence, we conclude that i is k-sensitive 

with respect to x. And this completes the proof as k, β, r, i, and x were chosen arbitrarily. □

For any i ∈ 𝒳 and r ≥ 0, we write Y (i, r) to denote the set j ∈ 𝒳:d(i, j) ≤ r .

Claim 5. For any given n ∈ ℕ and every t = 1, … , n, arbitrarily fix εt, rt > 0, kt, βt ≥ 1, and a 

mechanism, Mit
:𝒟 0, 1 , that is εt-SP for kt-sensitive neighborhood graph corresponding 

to (βt, rt)-anomaly and is also Y (it, rt)-dependent. Further, let m be the maximum number of 
it’s that are within any ball of radius max(r1, … , rn), ε = max(ε1, … , εn), k = min(k1, … , 

kn), β = max(β1, … , βn), and r = min(r1, … , rn).

If M(x) ≔ Mi1
(x), …, Min

(x)  for every x, then M is mε-sensitively private for k-sensitive 

neighborhood graph corresponding to (β, r)-anomaly.

Proof. Arbitrarily fix the values for all the symbols used in the claim above as per the 

specification.
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Firstly, we consider the guarantee with respect to the sensitive neighborhood graph. Here it 

is sufficient to show that the k-sensitive neighborhood graph, GS, corresponding to (β, r)-

anomaly, is a subgraph of the kt-sensitive neighborhood graph, GS
t , corresponding to (βt, rt)-

anomaly for every t. Thus we show that, for any t and two databases x and y, if x and y are 

neighbors in GS, then they are neighbors in GS
t . So arbitrarily fix x and y that are neighbors 

in GS and t ∈ [n]. Since x and y are neighbors in GS, there exists a record i that k-sensitive 

with respect to x or y. Let i be k-sensitive with respect to x—this is without loss of 

generality since x and y are picked arbitrarily. Now, from Lemma A.2, we get that Bx (i, r) ≥ 

β −k + 1. Since β ≥ βt and k ≤ kt, Bx (i, r) ≥ βt − kt + 1; this implies that i is kt-sensitive with 

respect to x (Lemma A.2), and thus, x and y are neighbors in GS
t . Hence, we conclude that 

GS is a subgraph of every GS
t .

Next, we prove the bound on the divergence of probabilities to show that the loss in privacy 

is at max mε. For any i ∈ 𝒳, let Ai be such that for every t ∈ [n], t ∈ Ai ⇔ d (i, it) ≤ r′, 

where r′ = max(r1, … , rn). And let m = maxi ∈ 𝒳|Ai|. Arbitrarily fix, the neighboring 

databases x and y in GS and w ∈ {0, 1}n. Let i be the record in which x and y differ. Now it 

follows that

P(M(x) = w)
P(M(y) = w) = ∏

t ∈ Ai

P Mir
(x) = wr

P Mir
(y) = wr

× ∏
l ∈ [n]\Ai

P Mil
(x) = wl

P Mil
(y) = wl

= ∏
t ∈ Ai

P Mit
(x) = wt

P Mit
(y) = wt

≤ exp ∑
t ∈ Ai

εt ≤ exp(mε)

Above, the first equality holds because each of the Mit
 has its independent source of 

randomness. The second equality holds because each Mit
 is Y (it, rt)-dependent in addition to 

its randomness and rt ≤ r′. The first inequality follows from Mit
 being εt-SP for GS, which is 

a subgraph of GS
t . The last inequality follows from the fact that ε ≥ εt and m ≥ |Ai|.

Lastly, note that for any W ⊆ {0, 1}n, it follows that

P(M(x) ∈ W)
P(M(y) ∈ W) ≤

∑w ∈ WP(M(x) = w)
∑w ∈ WP(M(y) = w) ≤ exp(mε)

Thus, we conclude that the claim holds. □
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A A.10: Relation of SP to other definitions

A.10.1 One-sided differential privacy (OSDP) [13].

It allows for mechanisms to be private that can reveal the presence or absence of a sensitive 

record in the database. We explain this below. Consider two neighboring databases x and y 
(i.e., they differ by one record) such that x has exactly one sensitive record and y has no 

sensitive record, and an ε-OSDP mechanism M :𝒟 0, 1  with P (M (x) = 0) = 0 and P (M 
(y) = 0) = 1 – note this is possible as M only needs to satisfy P (M (x) ∈ b) ≤ eε P (M (y) ∈ 
b) for b ∈ {0,1}. Now, if we pick x or y randomly and reveal the output of M, the output will 

reveal which database was used, and hence if the sensitive record was present or not.

A.10.2 Tailored differential privacy (TDP) [36].

SP is a special case of TDP. Which becomes clearer once we restate TDP for the unbounded 

case, which we deal with. For α:𝒳 × 𝒟 ℝ ≥ 0, a mechanism is α (·)-TDP if for every two 

databases, x and y differing in a record i, and every R ⊆ Range (M), P (M (x) ∈ R) ≤ eα(i, x) 

P (M (y) ∈ R). Let for every i and x, α(i, x) = εdGS
x, x′  (x j′ = x j for every j ≠ i and 

xi − xi′ = 1). Now, it is immediate that a mechanism is α (·)-TDP if and only if it is ε-SP for 

GS. A similar statement holds true for Blowfish privacy [25], which follows by considering 

the sensitive neighborhood graph to be the policy graph.
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CCS CONCEPTS

• Security and privacy → Privacy-preserving protocols; • Computing methodologies → 
Anomaly detection.
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Figure 1: 
(a) x and y differ by one record, the “ε axis” is for the privacy parameter, the “P (M (x) ≠ f 
(x)) axis” is for the minimum error over all ε-DP mechanisms M on x for a give error on y 
on the “P (M (y) ≠ f (y)) axis”. The graph depicts the tradeoff between the errors committed 

on x and y. (b) this plot is for ε = 1 and otherwise is the same but for different x’s and y’s.
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Figure 2: 
(b), (c) is for the same data, and (d), (e) is for the same data. (a) gives the density plot of the 

distribution of the example data. z1 and z2 axes give the coordinate of a point (record). (b) 

and (c) resp. show the accuracy (on vertical axis) for anomaly identification (AId) via 

sensitively private (SP) and DP mechanisms for the data. The plots give the interpolated 

results to clarify the relationship of outlyingness and accuracy. (d) and (e) give the privacy 

(on vertical axis) for each record in the data for private AId. All the green (normal) points in 

(d) are at the same level as all the points in (e).

Asif et al. Page 38

Conf Comput Commun Secur. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
(a)-(c), the plot is for the same data. The two axes give the coordinate of a point (record). 

The color gives the level of privacy, i.e. the value e−ε, for 0.25-SP AIQ for every record (the 

data was generated using generated using the distribution given in Figure 2). (a), k = 1. (b), k 
= 7. (c), k = 14.
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Figure 4: 
Sensitive neighborhood graph. A simple example of a 1-sensitive neighborhood graph, GS, 

with 𝒳 = 1, 2, 3, 4, 5 , ℓ1-metric over 𝒳 × 𝒳, and (β = 3, r = 1)-anomaly. Note that GS is an 

undirected graph; arrowheads indicates the record is added at the end node; the color of the 

edge corresponds (as per the given color code) to the value of the record added. Further, 

each database x is represented as a 5-tuple with xi for i ∈ 𝒳 representing the number of 

records in x that have value i.
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Figure 5: 
compilation of DP-mechanism for (β, r)-AIQ into SP-mechanism. In both (a) and (b), the 

input mechanism is 0.25-DP for a fixed record i and δ (given in the figure). Each database x 
is given by (xi, Bx (i, r)) since (β, r)-anomaly identification function only depends upon xi 

and Bx (i, r)). Each mechanism is depicted by its error over databases i.e. P (M (x) ≠ g(i, x)). 

(a), DP-mechanism has constant error ≈ 0.44. (b), DP-mechanism has error 

≈ 0.56/e
0.25Δ𝔾(i, x)

.
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Figure 6: 
box plots of the errors of the SP mechanism for (β, r)-AIQ over the true (β, r)-anomalies for 

ε = {.01, .1, 1}.
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Figure 7: 
box plots of the error of the SP and the DP mechanisms for (β, r)-AIQ over the true (β, r)-
anomalies for ε = 0.1.
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Figure 8: evaluation over normal records.
(a),(b), give the average error of SP and DP mechanism for AIQ over all the normal records 

from each data set; ε = 0.1.
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Figure 9: evaluation over true (β, r)-anomalies for varying k.
(a)-(e), give the errors of SP and DP mechanisms. AIQ rank is given by the error of SP-

mechanism for each anomaly: the higher the rank, the lower the error. Mechanisms are as 

given in Section 4 and ε = 1. (a), Thyroid, (b), Mammography,(c), Credit Fraud, (d), APS 

Trucks, (e), Synthetic data.
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Figure 10: 
deviation in the DP-mechanism error for the Credit Fraud dataset. In (a), the plot is the same 

as given in Figure 9c for the DP-mechanism. In (b) and (c), x* for each record is the number 

of records in the database x that have the same value. (c), shows the box plot for the data.
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Table 1:

dataset specifications and parameter values.

Dataset size dim (β, r) true (β, r) - anomalies

Credit Fraud 284,807 28 (1022, 6.7) 103

APS Trucks 60,000 170 (282,16.2) 677

Synthetic 20,000 200 (97,3.8) 201

Mammography 11,183 6 (55,1.7) 75

Thyroid 3, 772 6 (18,0.1) 61
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Table 2:

effect of sparsity of databases. “mean error” is over the randomly picked n records from the possible values of 

the records for each dataset for SP and DP mechanisms for (β, r)-AIQ. “mean error (anomalies)” is only over 

the anomalous records in the n picked records. Here, n is 20% of the size of the dataset and ε = 0.1.

Dataset mean error mean error (anomalies)

SP DP SP

Credit Fraud 1.1127E–21 0.4750 1.1127E–21

APS Trucks 2.9719E–13 0.4750 2.9719E–13

Synthetic 3.2173E–5 0.4750 3.2173E–5

Mammography 0.0022 0.4749 0.0021

Thyroid 0.0870 0.4750 0.0867
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