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Background: The National Cancer Institute—Molecular Analysis for Therapy Choice (NCI-MATCH) is a national precision
medicine study incorporating centralized genomic testing to direct refractory cancer patients to molecularly targeted treatment
subprotocols. This treatment subprotocol was designed to screen for potential signals of efficacy of ado-trastuzumab emtansine
(T-DM1) in HER2-amplified histologies other than breast and gastroesophageal tumors.

Methods: Eligible patients had HER2 amplification at a copy number (CN) >7 based on targeted next-generation sequencing
(NGS) with a custom Oncomine AmpliSeqTM (ThermoFisher Scientific) panel. Patients with prior trastuzumab, pertuzumab or T-
DM1 treatment were excluded. Patients received T-DM1 at 3.6 mg/kg i.v. every 3 weeks until toxicity or disease progression.
Tumor assessments occurred every three cycles. The primary end point was centrally assessed objective response rate (ORR).
Exploratory end points included correlating response with HER2 CN by NGS. The impact of co-occurring genomic alterations
and PTEN loss by immunohistochemistry were also assessed.

Results: Thirty-eight patients were enrolled and 36 included in efficacy analysis. Median prior therapies in the metastatic setting
was 3 (range 0–9; unknown in one patient). Median HER2 CN was 17 (range 7–139). Partial responses were observed in two
(5.6%) patients: one mucoepidermoid carcinoma of parotid gland and one parotid gland squamous cell cancer. Seventeen
patients (47%) had stable disease including 8/10 (80%) with ovarian and uterine carcinomas, with median duration of
4.6 months. The 6-month progression-free survival rate was 23.6% [90% confidence interval 14.2% to 39.2%]. Common toxicities
included fatigue, anemia, fever and thrombocytopenia with no new safety signals. There was a trend for tumor shrinkage with
higher levels of gene CN as determined by the NGS assay.
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Conclusion: T-DM1 was well tolerated. While this subprotocol did not meet the primary end point for ORR in this heavily pre-
treated diverse patient population, clinical activity was seen in salivary gland tumors warranting further study in this tumor type
in dedicated trials.
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Introduction

The ‘National Cancer Institute - Molecular Analysis for Therapy

Choice’ (NCI-MATCH) trial is a national signal-finding preci-

sion medicine study that incorporates genomic testing to direct

refractory cancer patients to molecularly targeted treatments.

The NCI-MATCH is a single protocol (EAY131) which incorpo-

rates nearly 40 phase II treatment subprotocols (Clinical

Trials.gov, NCT02465060).

To date, the vast majority of precision medicine trials have

relied upon next-generation sequencing (NGS) assays of archival

tumor tissue to determine the genomic profile of a tumor.

A unique feature of the NCI-MATCH trial is that it incorporated

a centralized validated assay that analyzed freshly acquired sam-

ples collected at over 1100 sites and used four Clinical Laboratory

Improvement Amendments (CLIA)-accredited NCI-MATCH

network laboratories that were harmonized for assay concord-

ance. Targeted NGS was performed using the Ion Torrent

Oncomine AmpliSeqTM panel of 143 genes and was supple-

mented with Phosphatase and tensin homolog (PTEN), MutS

homolog (MSH) and MutL homolog (MLH) immunohisto-

chemistry (IHC). All assays were performed in CLIA laboratories

under an Investigational Device Exemption (IDE).

One of the genes on the panel was the ERBB2 (HER2) gene that

encodes a member of the ERBB family of receptor tyrosine kin-

ases and is a key proto-oncogene in solid tumors [1, 2]. HER2

amplification is a critical oncogenic driver event found in ap-

proximately 15% to 20% of breast and gastroesophageal cancers

[3, 4]. To that end, successful application of HER2-directed

therapies has improved the overall survival (OS) of patients with

early and advanced HER2 positive (overexpressed and/or ampli-

fied) breast cancer [5–9]. In gastric cancer, the addition of trastu-

zumab to chemotherapy in the metastatic setting led to an

improvement in OS and established a new standard of care for

these patients [4, 10, 11]. HER2 amplifications also occur in a var-

iety of other solid tumors including lung, bladder, endometrial

cancers for which no HER2-directed therapy is currently

approved [12–20]. In one large cohort, the overall frequency of

HER2 amplification was 2% across multiple tumors (excluding

breast, gastric and gastroesophageal cancers) with considerable

variation by individual tumor type [21, 22] (Figure 1).

Furthermore, HER2 amplification may also be implicated in che-

moresistance and overall poor survival in lung, bladder, cervical,

endometrial and ovarian cancers, which underscores the

unmet need for effective HER2 directed therapies for these

patients [23–26].

Ado-trastuzumab emtansine or T-DM1 is an antibody drug

conjugate (ADC) linking trastuzumab coupled via a noncleavable

thioether linker to 3–4 molecules of the maytansine derivative

DM1. It is currently approved for the treatment of HER2-ampli-

fied and/overexpressed metastatic breast cancer based on the

progression-free and OS benefit in the second- and third-line

metastatic settings, respectively [6, 27]. The objective response

rate (ORR) in HER2-amplified and/overexpressed gastric and

metastatic breast cancer in the second-line setting was 21% and

44%, respectively [6]. This treatment subprotocol (EAY131- Q)

of the NCI-MATCH protocol is investigating the activity of T-

DM1 in HER2-amplified nonbreast and nongastric or gastroeso-

phageal junction solid tumors.

Methods

Patient eligibility and assays

The NCI-MATCH master protocol included patients with solid tumors,

lymphomas and multiple myeloma whose disease had progressed follow-

ing at least one line of standard systemic therapy or for whom no stand-

ard therapy was available. Participation occurred in two phases:

screening phase and treatment phase. As part of the screening phase, con-

sented patients underwent a fresh tumor biopsy. Analysis was then per-

formed using a centralized, customized Thermo Fisher Oncomine

AmpliSeqTM NGS panel and PTEN immunohistochemistry for expres-

sion of PTEN under an IDE submitted to the investigational new drug

application held by NCI [28, 29]. Patients whose tumors contained amp-

lification of ERRB2 of more than copy number (CN) 7 (validated limit of

detection) by NGS and for whom all other eligibility requirements from

the master protocol were met (supplementary data, available at Annals of

Oncology online) were offered participation in this subprotocol.

For this treatment subprotocol, key eligibility requirements included

any solid tumor except breast or gastric/gastroesophageal junction cancer

and presence of measurable disease, defined by Response Evaluation

Criteria in Solid Tumors (RECIST) version 1.1 criteria [30]. Additional

eligibility requirements included Eastern Cooperative Oncology Group

(ECOG) performance status of 0 or 1, absolute neutrophil count of

�1500/ll, platelet count �100,000/ll, hemoglobin concentration �9 g/

dl, as well as adequate kidney and liver function. Patients with prior

HER2 therapies (approved or investigational) and a left ventricular ejec-

tion fraction of <50% were excluded (supplementary data, available at

Annals of Oncology online).

The study was approved by the NCI Central Institutional Review

Board and is listed in clinicaltrials.gov (NCT02465060).

Treatment and evaluation

Patients were treated with the standard intravenous dosing of T- DM1,

that is 3.6 mg/kg every 3 weeks for a 21-day cycle, until toxicity or pro-

gression. Imaging was performed every three cycles for the first 33 cycles

and every four cycles thereafter.

Statistical methodology and end point analysis

The primary end point was ORR, defined as a complete or partial re-

sponse, consistent with RECIST version 1.1 criteria for solid tumors.

Allowing for 10% ineligibility rate, the accrual goal was 35 patients.

However, additional patients were allowed to enroll for an additional

6 months or until the activation of another subprotocol for this popula-

tion, provided outcome data were unavailable on at least 31 patients. The

proposed design had the operating characteristics of at least 92% power
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to distinguish an ORR of 25% from a null of 5% with one-sided Type 1

error of 1.8%. T-DM1 would be declared promising and worthy of fur-
ther study if �5/31 (16%) patients achieved ORR. Secondary end points

included progression-free survival (PFS) at 6 months, PFS and OS.
Exploratory end points included correlating response with HER2 CN by
NGS. The impact of co-occurring genomic alterations and PTEN loss by

immunohistochemistry were also assessed.

Results

Thirty-eight patients with a tumor ERBB2 CN of >7 were

assigned and enrolled on this subprotocol arm. These patients

received at least one dose of treatment and were included in the

safety analysis. Two patients did not meet other treatment eligi-

bility criteria by central review leaving a final cohort of 36 eligible

patients that were included in the efficacy analysis (Figure 2). The

first patient was enrolled for treatment on 19 November 2015 and

the last patient was enrolled on March 20, 2017. Baseline charac-

teristics are listed in Table 1. Median age was 64 (range 39–

80 years). Median number of prior treatment regimens in the

metastatic setting was 3 (range 0–9; unknown for one patient).

Median ERBB2 CN was 17 (range 7–139). Twenty-two different

tumor types enrolled to this subprotocol (Table 1).

Efficacy

As of the data lock for analysis on 9 March 2019, the ORR was 2/

36 (5.6%) with 90% confidence interval (90% CI, 1.0% to

16.5%). In addition, 17 patients had stable disease as best re-

sponse (SD, 47.2%), while 13 patients had progressive disease

(36.1%). Four patients were not evaluable for response due to

death before first assessment scan or timing of assessments. The

6-month PFS rate was 23.6% (90% CI 14.2% to 39.2%). Median

treatment duration was four cycles (range 1–37). The median

PFS was 3.1 months (90% CI 2.1–4.4 months) (Figure 3C).

Thirty deaths have been reported, with a median OS of 8.4 (90%

CI 4.7–11.8) months.

Some reduction in tumor size was seen in 17 patients

(Figure 3). Of the seven patients with more than 30% reduction

in the sum of diameters of measurable tumors, two patients with

salivary gland cancers (one patient each with mucoepidermoid

carcinoma of the parotid gland and squamous cell carcinoma of

the parotid gland) were confirmed to be partial responders

(Figure 3A). Of note, the patient with parotid gland squamous cell

carcinoma who achieved a PR remains on therapy at 23.7 months

and the duration of treatment response for the patient with mucoe-

pidermoid carcinoma of the parotid gland was 9 months. A subset

of patients achieved SD for >6 months including patients with

gynecological and colorectal cancers (Figure 3B).

Safety

All patients who received at least one dose of the study drug were

included in the safety analysis. No new safety signals were seen

with T-DM1 with expected and known side-effects of fatigue,

nausea, elevated liver enzymes and thrombocytopenia which

were predominantly grade 1 and 2 (Common Terminology

Criteria for Adverse Events (CTCAE) v5.0) (Table 2). There were

no deaths related to T-DM1.

Correlative analyses

There was a trend for tumor shrinkage with higher levels of gene

CN as determined by the NGS assay (Figure 4).The CN for the

two partial responders was 139 and 21, respectively. In a linear

model, there was an estimated tumor shrinkage of 24.5% (95%

CI 42.6% to 6.4%) with each doubling of CN (P¼ 0.01).

The most common co-occurring mutation was a missense

TP53 mutation seen in 89% of the patients which is higher than

expected. For instance, in HER2-enriched primary breast cancer,
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Figure 1. ERBB2 amplification frequency: all tumors excluding breast and gastric/gastroesophageal junction tumors. This plot includes solid
tumors (467/28 106 samples and 442/25 637 patients) with a minimum of 50 sequenced tumors and ERBB2 amplification > 0% using MSK-
IMPACT assay. The numbers in the parentheses are the total number of sequenced tumors. (cBioPortal.org).
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the prevalence of TP53 mutation was 70% [31] and TP53 muta-

tions were more than fourfold enriched in MSK-IMPACT com-

pared with TCGA (29% versus 7%) [22]. This might suggest that

our cohort enriched for patients with more clinically aggressive

disease [22]. The presence and nature of other co-occurring

mutations in a given disease type in this cohort was as expected.

For example, 73% (8/11) of colorectal patients had a frameshift/

nonsense APC mutation without any concurrent RAS mutation.

Interestingly, one patient with rectal adenocarcinoma had a co-

occurring missense ERBB2 V777L mutation and achieved tumor

shrinkage (Figure 5). Of note, responses with T-DM1 have been

reported in HER2 mutant lung cancer [32]. Only seven patients

had a co-occurring PIK3CA mutation. Overall, the presence of

any specific co-occurring genomic alteration did not correlate

with outcome, but this analysis was limited by the overall cohort

size and small number of responders.

Paired pre- and posttreatment biopsy in a patient with colon

adenocarcinoma, who had an unconfirmed PR and progressed

after seven months, showed no differences in the genetic altera-

tions captured by our screening test. Interestingly, sequencing of

a posttreatment biopsy from the patient with mucoepidermoid

carcinoma of parotid gland, with a pretreatment HER2 CN of

21.06, revealed loss of the HER2 amplification but persistence of a

frameshift TP53 mutation.

Discussion

Molecular profiling and genomically guided therapies have been

implemented in routine clinical practice for many cancers, e.g.

non-small-cell lung cancer, melanoma, gastrointestinal stromal

tumors, basal cell carcinomas, and others [33–35]. However,

many tumor types have a low incidence of targetable molecular

alterations (usually<5%) which makes tumor-directed biomark-

er selected drug development studies challenging. One approach

has been to utilize ‘basket trials’ that determine eligibility by the

presence of a biomarker rather than a tumor type [36–38]. The

NCI-MATCH trial is unique in that it systematically leveraged a

centralized assay to explore many treatment arms in parallel from

patients at over 1000 clinical sites under a master protocol. This

report concerns the subprotocol evaluating T-DM1, an ADC for

HER2-amplified nonbreast and nongastric/gastroesophageal

junction cancers.

The ORR (5.6%) in this subprotocol did not meet the prespeci-

fied threshold for ORR (defined as�5 responses in 31 patients or

16%). While this is disappointing, there are several possible rea-

sons for this apparent low response rate. First, this treatment sub-

protocol enrolled heavily pretreated patients with multiple

unique histologies and a clinically aggressive phenotype (as dem-

onstrated by enrichment for TP53 mutations in 89% of patients;

Figure 5). It is possible that response may be histology dependent.

Moreover, response evaluation using RECIST v1.1 was available

in only 77% (28/36) patients. Despite that, confirmed and dur-

able partial responses were seen in two out of the three salivary

gland tumors. Notably, complete and partial responses have been

reported in 90% (9/10 patients) salivary gland cancers in another

phase II multihistology basket trial of T-DM1 in HER2-amplified

solid tumors [39]. This warrants further study of T-DM1 in saliv-

ary gland tumors in larger dedicated trials. Additionally, there

Screening of pts with solid tumors (incl.
rare), lymphoma or myeloma that no longer
respond to standard treatment – or for which no
standard treatment exist 

Tumor testing on fresh tumor bx using
ThermoFisher oncomine TM assay, with
some immunohistochemistry (IHC)

Tumor gene abnormality matching to
a trial arm?

Yes, treatment
assignment

Arm N etc Arm C2

Ineligible (excluded from efficacy analysis)
N = 2

Started assigned treatment (included in toxicity analysis)
N = 38

Response evaluated by RECIST 1.1
N = 28

Eligible and started assigned treatment (included in
efficacy analysis)

N = 36

Assigned to Arm Q Based in screening (ERBB2 copy
number > 7)

N = 38

Arm C1 Arm B Arm A

Figure 2. Consort diagram.
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were 4 unconfirmed partial responses and 13 others that achieved

disease stabilization (SD: 17/36 [47%]) including a subset of

patients with colorectal and ovarian cancers that had SD of

>6 months, which is in line with what has been reported with

other anti-HER2 therapies and T-DM1, respectively, in other

multihistology basket trials [40, 41].

The evaluation of HER2 status by HER2 protein overexpres-

sion by immunohistochemistry (IHC 3þ) is established as an

accepted alternative to assessment of gene amplification by FISH

[2, 4, 5]. However, in breast cancer, the criteria for HER2 positiv-

ity as defined using the American Society of Clinical Oncology/

College of American Pathologists clinical practice guidelines

based on IHC and/or FISH, are slightly different than the criteria

for HER2 positivity in gastroesophageal adenocarcinomas [42,

43]. Hence, it is certainly possible that HER2 positivity using IHC

and/or FISH could each apply to only some tumor types. ERBB2

amplification can also be reliably determined by NGS. Notably,

amplification calls using the hybrid capture-based MSK-

IMPACT NGS assay had an overall concordance of 98% when

compared with IHC and/or FISH [44, 45]. Similarly, the sensitiv-

ity of HER2 amplifications calls using the NCI MATCH assay was

> 92% based on orthogonally validated tests including FISH.

However, screening the target using NGS does not account for

spatial heterogeneity. It is well known that the sensitivity to treat-

ment is higher when HER2 is highly expressed or amplified [46,

47]. To that end, a trend for tumor shrinkage with T-DM1 was

associated with higher levels of gene CN as determined by the

NCI-MATCH assay in this subprotocol. Furthermore, a patient

with mucoepidermoid tumor of the parotid gland, with an HER2

CN of 21 at baseline, who remained on therapy for 9 months be-

fore progression, had a post progression biopsy that showed no

HER2 amplification. It is possible that loss of HER2 amplification

is related to spatial heterogeneity, i.e. biopsy of a HER2 negative

subclone, but could also be explained as a resistance mechanism

to T-DM1 therapy. Loss of HER2 amplification as a mechanism

of resistance to HER2-directed therapy has been previously dem-

onstrated in breast and gastric cancer [48–50]. Alternative at-

tractive strategies such as cell-free circulating tumor DNA

(ctDNA)-based NGS can provide a real-time profile of a tumor’s

genomic landscape in a dynamic (serial) fashion, attempting at

the same time to recapitulate tumor heterogeneity and treatment

response and resistance mechanisms [47, 51].

Lastly, newer ADCs with more potent payloads and bystander

effects might further improve responses in HER2 expressing

tumors [52]. For example, DS-8201a, another HER2-targeting

ADC, with a novel topoisomerase I inhibitor and high drug-to-

antibody ratio of 7 to 8 : 1 which is higher than that of T-DM1

(3.5), has shown broader antitumor activity preclinically and ac-

tivity in HER2 overexpressing solid tumors, and is also being

evaluated in tumors with low HER2 expression [40].

In conclusion, this treatment subprotocol of HER2-amplified

nonbreast and nongastric/gastroesophageal junction tumors

treated with ado-trastuzumab emtansine did not meet the prede-

fined threshold of ORR in this heavily pretreated tumor agnostic

cohort, despite the established activity and approval of this ther-

apy for HER2-amplified metastatic breast cancer. However, the

activity in HER2-amplified salivary gland tumors, seen in this

subprotocol and other trials, warrants further investigation of the

efficacy of treatment with this agent or other novel antibody drug

conjugates for these tumors in larger trials.
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Allergic reaction 2 (5)
Alanine aminotransferase Increase 4 (11)
Alkaline phosphatase Increase 5 (13) 1 (3)
Aspartate aminotransferase Increase 10 (26) 1 (3)
Bilirubin increase 3 (8)
Creatinine increase 3 (8)
Lymphocyte count decrease 2 (5) 1 (3)
Neutrophil count decrease 3 (8) 1 (3)
Platelet count decrease 10 (26) 2 (5)
Weight loss 3 (8)
White blood cell decrease 4 (11)
Anorexia 5 (13) 1 (3)
Myalgia 2 (5)
Generalized muscle weakness 3 (8)
Headache 4 (11)
Peripheral motor neuropathy 2 (5)
Peripheral sensory neuropathy 4 (11)
Cough 3 (8)
Epistaxis 3 (8) 1 (3)
Hypoxia 1 (3)
Muscle weakness lower limb 1 (3)
Dehydration 2 (3)
Investigations: Other, specify 1 (3) 1 (3)
Urinary tract infection 1 (3)
Upper respiratory infection 1 (3)
Diarrhea 1 (3)
Blurred vision 1 (3)
Total worst degree 20 (58) 11 (16) 0 (0)

Includes specific adverse events with at least two grade 1 or 2 events or 1 grade 3 event. Total worst degree includes all treatment-related adverse events.
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