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Abstract

Previous studies identified Sox9 as a critical mediator of prostate development but the precise 

stage when Sox9 acts had not been determined. A genetic approach was used to delete Sox9 from 

mouse urogenital sinus epithelium (UGE) prior to prostate specification. All prostatic bud types 

(anterior, dorsolateral and ventral) were stunted in Sox9 conditional knockouts (cKOs) even 

though the number of prostatic buds did not differ from that of controls. We concluded that Sox9 is 

required for prostatic bud elongation and compared control male, control female, Sox9 cKO male 

and Sox9 cKO female UGE transcriptomes to identify potential molecular mediators. We 

identified 702 sex-dependent and 95 Sox9-dependent genes. Thirty-one genes were expressed in 

both a sex- and Sox9-dependent pattern. A comparison of Sox9 cKO female vs control female 

UGE transcriptomes revealed 74 Sox9-dependent genes, some of which also function in cell 

migration. SOX9 regulates, directly or indirectly, a largely different profile of genes in male and 

female UGE. Eighty-three percent of Sox9-dependent genes in male UGE were not Sox9-

dependent in female UGE. Only 16 genes were Sox9-dependent in the UGE of both sexes and 

seven had cell migration functions. These results support the notion that Sox9 promotes cell 

migration activities needed for prostate ductal elongation.
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1. Introduction

The prostate originates from the urogenital sinus (UGS) in three sequential stages of 

development (specification, initiation and elongation). Prostate development initiates when 

fetal androgens bind androgen receptors in UGS mesenchyme (UGM). The activated 

androgen receptors stimulate release of paracrine signals, including fibroblast growth factors 

(FGFs), which act on UGS epithelium (UGE) to promote bud formation (Thomson and 

Cunha, 1999; Prins and Putz, 2008). Prostatic buds are specified across three UGE surfaces: 

anterior, dorsolateral and ventral. Prostatic buds are initiated as small protrusions extending 

from the UGE surface (Lin et al., 2003; Vezina et al., 2008). Prostatic buds elongate by 

invading the UGM, a process that continues postnatally, when buds also undergo extensive 

branching and canalization to form ductal networks of the anterior, dorsolateral and ventral 

prostate lobes (Sugimara et al., 1986).

Sry-box 9 (Sox9) is involved in a variety of developmental processes (Pritchett et al., 2011) 

and encodes a transcription factor essential for prostatic bud formation (Huang et al., 2012; 

Thomsen et al., 2008). Human and mouse prostatic SOX9 expression are predominantly 

epithelial (Huang et al., 2012; Wang et al., 2008) and are robust in buds during initiation and 

elongation (Huang et al., 2012; Thomsen et al., 2008; Wang et al., 2008). The best-

characterized Sox9 regulated genes in cartilage and bone are extracellular matrix (ECM) 

genes, which participate in chondrogenesis (Akiyama, 2008; Oh et al., 2014; Ohba et al., 

2015). Outside of cartilage and bone, however, the battery of Sox9 regulated genes varies 

between organs (Garside et al., 2015). Sox9 dependent genes have not until now been 

identified in vivo in the mouse UGE.

The etiology/progression of prostate cancer and benign prostate hyperplasia involve, to some 

degree, reactivation of signaling pathways, homologous in mouse and human, that direct 

prostate development (Schaeffer et al., 2008; Schrecengost and Knudsen, 2013; Cunha and 

Ricke, 2011; Cunha et al., 2018). Sox9 is essential for mouse prostate development and 

promotes prostate carcinogenesis in mouse models (Thomsen et al., 2008; 2010; Huang et 

al., 2012). Sox9 is expressed during human fetal prostate development and is associated with 

multiple measures of human prostate cancer (Wang et al., 2008; Schaeffer et al., 2008; 

Zhong et al., 2012; Qin et al., 2014). Therefore, understanding functional roles of Sox9 in 

prostatic bud formation may lead to new strategies or targets for treating prostate cancer and 

benign prostate hyperplasia.

Two previous studies deleted Sox9 in the mouse UGS and surprisingly, the outcomes were 

not the same. Thomsen et al. (2008) used an Nkx3-1cre to delete Sox9 in the UGE and found 

that ventral prostatic bud formation was inhibited while anterior and dorsolateral bud 

formation was spared. Huang et al. (2012) used a ROSA26-ERcre to delete Sox9 in UGE and 

UGM and found that ventral, anterior and dorslolateral bud formation was impaired. While 
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both studies showed Sox9 plays a role in prostatic budding, the precise function of Sox9 
remained uncertain.

The present study used a Shhcre driver, deleting Sox9 from UGE only, to test five major 

hypotheses. Conditional Sox9 deletion from mouse UGE, prior to the start of bud formation: 

(1) disrupts one or more stages (specification, initiation and/or elongation) of bud formation, 

(2) disrupts formation of one or more prostatic bud types, (3) disrupts expression of Sox9-

dependent genes in both male and female UGE, (4) disrupts one or more Sox9-dependent 

cellular functions in UGE necessary for bud formation, and (5) identifies genes and cellular 

functions important for budding by comparing male control and Sox9 cKO UGE 

transcriptomes to each other and to female control and Sox9 cKO UGE transcriptomes.

We found that Sox9 deletion from the male UGE does not affect bud specification or 

initiation, but instead impairs bud elongation culminating in “stunted buds”. This phenotype 

is manifested in all prostatic bud types (anterior, dorsolateral and ventral). We found that 

Sox9 dependent genes differ in the male and female UGS and identified candidate genes, 

including those involved in cell migration, which are likely to mediate Sox9-dependent 

prostatic bud elongation.

2. Results

2.1. SOX9 expression in lower urinary tract and Sox9 knockout in UGE prior to bud 
initiation

The lower urinary tract of male mouse fetuses was stained at multiple developmental stages 

to characterize the temporal expression pattern of SOX9. At E14.5, the earliest stage 

assessed, no SOX9 expression was observed (Supplementary Fig. 1). By E15.0, SOX9 was 

detected throughout the epithelium of the bladder, UGS, Wolffian ducts and urethra, and was 

also detected in mesenchymal cells largely located in close proximity to the UGE (Fig. 1A, 

left and right panels).

At E18.5, after prostatic buds have initiated and are elongating, SOX9 expression was 

observed most prominently in the UGE throughout the entire length of prostatic buds (Fig. 

1B, left and right panels). This is shown at low magnification for two anterior buds (AB) in a 

transverse section of the UGS (left) and at high magnification for one of these ABs (right). 

Careful examination of SOX9 immunostaining in the single AB (right) shows SOX9 is 

expressed, not only in epithelial cells throughout the bud, but also in some mesenchymal 

cells in close proximity to the bud surface.

Previous studies have shown that Sox9 plays an important role in prostate budding/

development, but the precise nature of its role is uncertain. To better define its role, we used 

Shhcre to delete Sox9 from the UGE and tested the hypothesis that prostatic bud formation in 
vivo requires Sox9 in the UGE, prior to and during, bud specification, initiation and 

elongation.

ShhcreERT2/C activity was detected in the entire lower urinary tract epithelium of E9-13 

mice (Seifert et al., 2009). This is before prostatic bud formation is initiated. Therefore, we 
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used a Shhcre/+ mouse to drive cre expression in UGE at a slightly later stage of 

development. Shhcre/+ mice were mated to ROSA26 reporter mice and UGSs from E14.5 

fetuses were harvested and stained for β–galactosidase activity using Bluo-gal as the 

chromogen. Blue staining showed that cre was expressed in bladder and urethral epithelium 

at E14.5 (Fig. 2A).

To confirm SOX9 was deleted prior to initiation of prostatic budding, UGSs from E16.5 

control (Shh+/+; Sox9fl/+), and Sox9 cKO (ShhCre/+; Sox9fl/fl) fetuses (see Table 1) were 

sectioned and stained by IHC for SOX9. E16.5 is immediately prior to prostatic budding 

initiation. UGSs from control mice showed SOX9 expression throughout the UGE which 

tended to increase across the UGE from luminal to mesenchymal surface (Fig. 2B). Some 

peri-UGE mesenchymal cells of control mice also showed SOX9 expression. By 

comparison, no SOX9 was observed in lower urinary tract epithelium of Sox9 cKO mice 

(Fig. 2C). Importantly, SOX9 expression was seen in Wolffian duct epithelium, peri-UGE 

mesenchymal cells (arrow), and Sertoli cells in the testis (inset) of Sox9 cKO mice (Fig. 

2C). These internal positive controls establish that Sox9 deletion was complete and specific 

to lower urinary tract epithelium.

2.2. Sox9 knockout in male UGE inhibits elongation of all prostatic bud types

IHC staining, using CDH1 antibody to mark the epithelium, was performed on whole UGSs 

from control and Sox9 cKO male fetuses and neonates between E18.5 and P0.5 of 

development after which prostatic buds were counted. Total bud numbers did not differ 

between control (36.1 ± 3.9, n=9) and Sox9 cKO (32.3 ± 8.3, n=3) UGSs. The number of 

anterior buds (ABs, 3.2 ± 0.5 vs 3.7 ± 0.3), dorsolateral buds (DLBs, 27.9 ± 3.2 vs 26.7 

± 7.8) and ventral buds (VBs, 5.4 ± 0.8 vs 2.0 ± 1.2) also did not differ between control and 

Sox9 cKO UGSs. We conclude from these results that Sox9 in UGE is not required for 

prostatic bud initiation.

We next investigated whether Sox9 in UGE is required for bud elongation by assessing the 

length of prostatic buds. Sox9 cKO prostatic buds were noticeably shorter than controls. 

More specifically, all bud types (ABs, DLBs and VBs) in 100% of Sox9 cKO UGSs were 

shorter than in littermate controls.

Fig. 3 shows representative examples of control (A) and Sox9 cKO (B) male UGSs from 

P0.5 littermates. For each UGS, the right panel is an enlargement of the boxed area in the 

left panel. All bud types in the Sox9 cKO UGS failed to elongate and this stunted buds 

phenotype is most easily observed (B, right) for anterior buds (AB, pseudocolored blue) and 

ventral buds (VB, pseudocolored green). Note one AB in the control UGS (A, right) has 

already begun to bifurcate/branch.

It is not known if the shorter prostatic buds in Sox9 cKO UGSs are permanently stunted or if 

elongation is severely delayed, because Sox9 cKO fetuses die shortly after birth, likely in 

part, to impaired lung development (Rockich et al., 2013). However, when comparing 

lengths of ABs, DLBs and VBs in UGSs from Sox9 cKO male fetuses at E18.5 to lengths of 

the same bud types at P0.5 there were no noticeable differences in lengths. This suggests that 

all prostatic bud types in Sox9 cKO male fetuses are permanently stunted.
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UGSs of control and Sox9 hets did not differ in bud count (Supplementary Table 10) or 

visual appearance of bud length. This shows that one copy of Sox9 is sufficient to promote 

prostatic bud elongation.

2.3. GO analysis of microarray data from control and Sox9 cKO male UGE shows cell 
migration is impaired

To elucidate the molecular mechanism of Sox9 in the prostatic budding process, total RNA 

was isolated from UGE of E16.75 control male and Sox9 cKO male fetuses for microarray 

analysis. E16.75 was chosen because this is just prior to prostatic bud initiation, when 

control and Sox9 cKO male UGSs are still morphologically identical. Compared to control 

male UGE, 95 annotated transcripts were differentially regulated at least 1.3 fold (p ≤ 0.05) 

in male Sox9 cKO UGE: 63 downregulated and 32 upregulated (Supplementary Table 1). 

Additionally, 149 (61%) unannotated transcripts were significantly differentially regulated at 

least 1.3 fold: 71 downregulated and 78 upregulated (Supplementary Table 1).

GO analysis of these differentially regulated, Sox9-dependent genes in the male UGE 

identified 10 pathways or cell functions for which there was significant gene enrichment (Z 

score < −2.0 or ≥ ±2.0). Eight of the pathways/functions were related to cell migration 

(Table 2). The Z score for each of the 10 pathways/functions was negative, indicating 

downregulated or deficient activity.

2.4. Comparison of control male and female UGE transcriptomes

To identify sex-dependent genes that may regulate prostatic bud development, it is essential 

to compare transcriptomes at E16.75 of control male UGE (which forms prostatic buds) to 

control female UGE (which does not). This is the same time in development when the Sox9 
cKO male transcriptome was compared to the control male transcriptome to identify Sox9-

dependent genes in the male UGE.

In this comparison of UGE transcriptomes between sexes, upregulation indicates RNA was 

more abundant in the male UGE, while downregulation indicates it was less abundant 

compared to female. In control male UGE, compared to control female UGE, 702 annotated 

transcripts were significantly differentially regulated (p ≤ 0.05) at least 1.3 fold: 352 

upregulated (RNA more abundant in male) and 350 downregulated (RNA less abundant in 

male) (Supplementary Table 2). Additionally, 519 (43%) unannotated transcripts were 

significantly differentially regulated at least 1.3 fold: 221 upregulated and 298 

downregulated (p ≤ 0.05).

2.5. Discovering gene candidates in the UGE for regulating prostatic bud development

To identify UGE candidate genes for the regulation of prostatic bud development, gene 

expression in the UGE at E16.75 was compared between Sox9 cKO male (which forms 

stunted prostatic buds) and control male UGE (which forms elongated buds). This 

comparison revealed 95 genes that where significantly up or downregulated by Sox9 cKO in 

the male UGE (Supplementary Table 1). These genes are referred to as “Male Sox9-

Dependent”. In addition, since there is a known sex difference in prostatic bud formation 

(UGE of the control male undergoes extensive bud formation while UGE of the control 
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female does not) the 702 genes significantly up and downregulated in the male vs female 

UGE are referred to as “Sex-Dependent” (Supplementary Table 2).

Importantly, among the 95 “Male Sox9-Dependent” genes (Supplementary Table 1) and 702 

“Sex-Dependent” genes (Supplementary Table 2), only 31 genes have expression that is both 

“Male Sox9-Dependent” and “Sex-Dependent” (union of Venn diagram in Fig. 4). Of these 

31, 10 genes have expression in the UGE that is either increased in both a “Male Sox9-

Dependent” and “Sex-Dependent” manner or decreased in both a “Male Sox9-Dependent” 

and “Sex-Dependent” fashion. Due to this expression pattern, these 10 genes are not 

considered “candidates” for regulating prostatic bud formation and they are listed in 

Supplementary Table 3.

On the other hand, the remaining 21 genes are “candidates” for regulating prostatic bud 

formation and they are given in (Table 3). 18 of these genes may “positively regulate” bud 

formation. They are: [1] downregulated in Sox9 cKO male UGE (buds stunted) vs control 

male UGE (buds form) and [2] upregulated in control male UGE (buds form) vs control 

female UGE (buds do not form). These 18 genes include Sox9, a known “positive regulator” 

of bud formation and 17 other “candidate positive regulators” or promoters of prostatic bud 

formation. In addition, 3 of these genes may “negatively regulate” bud formation. They are: 

[1] upregulated in Sox9 cKO male UGE (buds stunted) vs control male UGE (buds form) 

and [2] downregulated in control male UGE (buds form) vs control female UGE (buds do 

not form). These 3 genes are “candidate negative regulators”, genes transcriptionally 

repressed by Sox9 that would otherwise inhibit bud formation.

2.6. PCR confirmation of Sox9 regulated genes in male UGE determined by microarray

Follow-up quantitative PCR, targeting 14 differentially regulated genes in the male UGE 

determined by microarray (control male vs Sox9 cKO male; Supplementary Table 1) was 

carried out using a different RNA pool that was collected from control and Sox9 cKO UGEs 

for PCR (Supplementary Table 9). Fig. 5 shows that the PCR results essentially confirmed 

microarray results. This was the case for genes with various putative functions including: 

cell migration, prostatic bud promotion, prostatic bud inhibition and other functions. Also 

for each of the 14 genes assessed by microarray and by PCR in Fig. 5, relative expression 

levels for “individual UGE samples” are shown as “red dots” in Supplementary Fig. 2 

illustrating variance in the data.

2.7. GO analysis of microarray data from control and Sox9 cKO female UGE also shows 
cell migration is impaired

Having described the Sox9 deficient transcriptome of the male UGE (Supplementary Table 

1) we did the same for the female UGE (Supplementary Table 4). Total RNA was isolated 

from UGEs of E16.75 control female and Sox9 cKO female fetuses for microarray analysis. 

Compared to the control female UGE, 74 annotated transcripts were differentially regulated 

at least 1.3 fold in the Sox9 cKO female UGE: 34 downregulated and 40 upregulated (p ≤ 

0.05). Additionally, 124 (63%) unannotated transcripts were significantly differentially 

regulated at least 1.3 fold–57 downregulated and 67 upregulated. Gene ontology analysis of 

the differentially regulated genes in the female UGE identified three pathways or cell 
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functions for which there was significant gene enrichment (Z score < −2.0 or ≥ +2.0). Two 

of these were related to cell migration (Supplementary Table 5).

2.8. Comparison of “Sox9-Dependent” genes in male and female UGE - notable 
similarities but marked differences

Comparing the 95 “Male Sox9-Dependent” annotated transcripts in the male UGE 

(Supplementary Table 1) to the 74 “Female Sox9-Dependent” annotated transcripts in the 

female UGE (Supplementary Table 4) revealed 16 annotated transcripts (and 8 unannotated 

transcripts) that are regulated, in common, by Sox9 in both sexes (union of Venn diagram in 

Fig. 6, Table 4 and Supplementary Table 6). Of these 16 genes, 14 were downregulated in 

the UGE of both sexes and 2 were upregulated. Of the 14 downregulated “Sox9-dependent” 

genes, 7 were shown by GO analysis (Cdc43ep1, Cxcl14, Cxcr4, Itgb8, Shh, Sox9, Tns4) to 

function in cell migration (Table 2; Supplementary Table 5).

The last major finding in comparing “Male Sox9-Dependent” to “Female Sox9-Dependent” 

genes in the UGE is that, the majority of these genes were differentially regulated in only the 

male or female. In the male UGE, 79 (83%) of the 95 “Sox9-dependent” genes (Fig. 6) were 

unique to males whereas in the female UGE, 58 (78%) of 74 such genes (Fig. 6) were 

unique to females. This sex-dependent difference in the Sox9 null UGE transcriptome at 

E16.75 is illustrated by the heatmap in Fig. 7. The highest fold change for the full set of 

differentially expressed genes, for both genders, was the unannotated transcript identified as 

TC0500002057.mm.1 in the microarray (5.35 in female and 4.1 in male) (Supplementary 

Table 7).

3. Discussion

3.1. Major conclusions about the role of Sox9 in prostate development

We identified Sox9 protein at an earlier stage of mouse prostate development than previously 

reported. No expression was observed at E14.5, but by E15.0 SOX9 was expressed in 

urethra, UGS and bladder epithelium and UGS mesenchyme. We used a Shhcre driver to 

delete Sox9 from UGS epithelium prior to onset of budding. In contrast to a previous study 

describing a regionally restricted role of Sox9 in ventral prostate development (Thomsen et 

al., 2008), we show that Sox9 is required for elongation of all (anterior, dorsolateral and 

ventral) prostatic buds. Shhcre;Sox9 knockout mouse prostatic buds appropriately specify 

and initiate but fail to elongate, resulting in a “stunted buds” phenotype. We performed 

transcriptomic analysis to reveal possible mechanisms of Sox9 action. Our results support a 

model in which Sox9 functions uniquely in male UGS epithelium to mediate bud outgrowth 

by potentially enhancing epithelial cell migration.

3.2. A more widely distributed role for Sox9 in prostatic bud elongation than previously 
appreciated

Our conclusion that UGS epithelial Sox9 is required for outgrowth of all mouse prostatic 

buds differs from two previous reports. Thomsen et al. (2008) used a Nkx3-1cre;Sox9 
knockout to conclude Sox9 acts regionally to control ventral prostate development without 

appreciably affecting anterior and dorsolateral prostate development. Nkx3-1 is first 
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expressed in the UGS at E15.5 (Keil et al., 2012b) and ventral prostatic buds form after 

anterior and dorsolateral buds (Lin et al., 2003). A possible reason why ventral prostate 

development is selectively impaired in Nkx3-1cre;Sox9 knockouts is that the cre is active for 

a longer period of time in the ventral region, enabling more complete re-combination prior 

to ventral bud formation. In contrast, complete Sox9 deletion is attained at least as early as 

E12.0 in Shhcre;Sox9 knockout UGS epithelium (Seifert et al., 2009), resulting in 

widespread defects in prostatic bud elongation. Huang et al. (2012) concluded from the 

tamoxifen-inducible Rosa26ERCre-Sox9flox/flox conditional knockout that Sox9 is essential 

for bud initiation and is a mediator of the UGE/prostate epithelial lineage. However, the cre 
driver used in their study is expressed in both UGS epithelium and mesenchyme, differing 

from the UGS epithelial-specific Sox9 knockout in our study. Their study was performed in 
vitro while ours was performed in vivo. Finally, it is possible that stunted buds developed in 

the Sox9 mutant UGS organ cultures of Huang et al. (2012), but due to their abnormally 

small size, were not detected.

3.3. Sox9-dependent transcriptome in UGS epithelium differs from that of other tissues

The Sox9-dependent transcriptome in male and female UGEs in the present study revealed 

few differentially expressed transcripts (< 0.63% of all transcripts) and the fold changes in 

gene expression that were significant, were modest (1.3 fold cut-off, p < 0.05). The 

developmental stage selected to assess gene expression may play a role. E16.75 is before the 

start of bud elongation (Lin et al., 2003; Vezina et al., 2008). If we had assessed Sox9-

dependent gene expression one day later, when far more initiated buds were elongating, fold 

changes in expression may have been greater. Finally, modest changes in Sox9-dependent 

gene expression are not unique to the UGE. This was also observed in mouse 

atrioventricular canal and hair follicle stem cell transcriptomes following deletion of Sox9 
(Garside et al., 2015; Kadaja et al., 2014). Thus, Sox9 functions in the UGS epithelium by 

modulating the expression of genes as opposed to strongly inducing or repressing their 

expression.

SOX transcription factors exert their activating or repressive functions on gene expression by 

binding protein partners (Kamachi and Kondoh, 2013). The combinatorial code of target 

specificity produced by SOXs and their partner proteins (Soxpartner code) (Kamachi et al., 

2000; Kondoh and Kamachi, 2010; Kamachi and Kondoh, 2013) ensures stringent target 

gene selection. Accordingly, Sox9-dependent genes in male UGE differ from those 

identified in cartilage (Lefebvre et al., 1997; Bridgewater et al., 1998; Sekiya et al., 2000; 

Xie et al., 1999), chondrocytes (Oh et al., 2014), testes (de Santa Barbara et al., 1998), 

neural crest (Spokony et al., 2002), intestine (Blache et al., 2004), lung (Rockich et al., 

2013), heart (Garside et al., 2015) and, except for Mia, conjunctiva (Chen et al., 2014).

3.4. Sox9 function in cell migration fits with Sox9’s role in extracellular matrix regulation

Many developing organs require cell migration (Hogan, 1999) including salivary glands 

(Hauser and Hoffman, 2015; Harunaga et al., 2011), ocular glands (Tsau et al., 2011; Garg 

and Zhang, 2017), mammary glands (Hinck and Silberstein, 2005), lungs (Weaver et al., 

2000; Rockich et al., 2013), kidneys (Chi et al., 2009; Kuure et al., 2010) limbs 

(Wyngaarden et al., 2010; Hopyan et al., 2011; Hopyan, 2017) and neural crest derived 
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tissues such as the nervous system (Minoux and Rijli, 2010). Sox9 is required for cell 

migration in lung buds (Rockich et al., 2013), in bladder, prostate and lung cancer cells 

(Ling et al., 2011; Wang et al., 2015; Cai et al., 2013), and in metastatic cell migration in 

breast, colon, prostate and skin (Chakravarty, et al., 2011; Bowen et al., 2009; Cai et al., 

2013; Francis et al., 2018; Wang et al., 2008; Rao et al., 2010).

Our proposed mechanism of Sox9 as a mediator of epithelial cell migration in prostatic buds 

is consistent with the established role of Sox9 in ECM regulation. Migrating cells polarize 

and then form ECM adhesions before protruding in the direction of migration (Ganser et al., 

1991; Hinck and Silberstein, 2005). ECM adhesions act as traction sites for forward 

movement (Ridley et al., 2003) and ECM components associate with the cell cytoskeleton 

and influence: cytoskeletal reorganization (Hay, 1982; Nishizaka et al., 2000) and cell 

migration (Ridley et al., 2003). Sox9 plays a pivotal role in both (Pritchett et al., 2011).

SOX9 directly binds loci of 18 ECM genes in chondrocytes (Oh et al., 2010) and regulates 

genes encoding ECM proteins and modifying enzymes (Oh et al., 2014). Sox9 organizes 

valvular ECM proteins in heart (Lincoln et al., 2007) and regulates ECM proteins and matrix 

metalloproteinases (MMPs) in gonads (Georg et al., 2012; Nakamura et al., 2012). Sox9 
mediates fibrotic and sclerotic diseases by promoting excessive and inappropriate ECM 

deposition (Naitoh et al., 2005; Hanley et al., 2008; Bennett et al., 2007; Sumi et al., 2007; 

Airik et al., 2010; Schulick et al., 1998). Thus, regulation of the ECM is a critical Sox9 
function.

We identified a subset of Sox9-dependent genes in male UGS epithelium (Table 2, 

Supplementary Table 5) that mediate cell migration. Cdc42 regulates cell polarity (Ridley et 

al., 2003) and Barx2 facilitates cell adhesion and ECM remodeling (Meech et al., 2005; 

Stevens and Meech, 2006); both crucial for ocular gland bud elongation (Tsau et al., 2011). 

CXCR4 modulates MMP expression and enhances cell migration (Singh et al., 2004) and 

Col14a1 has an adhesive role integrating collagen bundles (Schnittger et al., 1995). Cell 

migration and ECM remodeling are functions of integrin β8 (Mertens-Walker, et al., 2015) 

and Thbsl, an adhesive glycoprotein, mediates cell-matrix interactions (Hu et al., 2017). 

Tns4 binds β integrin, linking ECM to actin cytoskeleton, to promote cell migration 

(Haynie, 2014). TGFBI, secreted from UGE, interacts with ECM proteins and integrin 

receptors to decrease cell adhesion (Nummela et al., 2012).

3.5. Putative roles for Sox9 in UGS epithelial cell migration and distal progenitor cell 
maintenance

We raise the possibility that prostatic buds fail to elongate in UGE conditional Sox9 
knockouts because of decreases in UGE cell migration, UGE cell proliferation, and/or distal 

progenitor cell maintenance. Without these potential Sox9-dependent functions in the UGS 

epithelium, we hypothesize that initiated prostatic buds do not elongate, culminating in a 

“stunted buds” phenotype. This proposed mechanism of action for Sox9 recognizes that an 

individual prostatic bud has two parts: proximal base (which attaches to UGS) and distal tip. 

This distinction is important as cell migration and proliferation during bud elongation are 

greater distally than proximally (Tsau et al., 2011; Sugimura et al., 1986) and so is SOX9 

expression (Wang et al., 2008; Thomsen et al., 2008; Huang et al., 2012). The possibility 

Schneider et al. Page 9

Gene Expr Patterns. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that Sox9 is needed for migration of UGS epithelial cells is predicted by GO analysis of our 

microarray data collected at E16.75 (Table 2). The notion that Sox9 is required for 

proliferation of UGS epithelial cells is suggested by DNA synthesis being reduced in stunted 

buds of the ventral prostate at E18.5 when Sox9 is deleted from the UGE (Thomsen et al., 

2008). Other studies also show Sox9 is required for epithelial cell proliferation and 

migration during bud elongation in the development of other branching organs and for 

metastasis in cancer (Rockich et al., 2013; Chakravarty, et al., 2011; Bowen et al., 2009; Cai 

et al., 2013; Francis et al., 2018; Wang et al., 2008; Rao et al., 2010).

4. Experimental Procedures

4.1. Mice, mouse husbandry and tissue collection

All mice were housed in polysulfone cages containing corn cob bedding and maintained on 

12 h light/dark cycles at 21 ± 1°C and 20–50% relative humidity. Feed (Harlan Teklad 

Rodent Diet 8604, Harlan Laboratories Inc., Madison, WI) and water were available ad 
libitum. All procedures were approved by the University of Wisconsin Animal Care and Use 

Committee and conducted in accordance with the NIH Guide for Care and Use of 

Laboratory Animals.

The following mice were originally purchased from The Jackson Laboratory (Bar Harbor, 

ME) and maintained in small breeding colonies in an AAALAC-approved vivarium: 

C57BL/6J (stock no. 000664), ROSA26 reporter mice (B6.129S4-Gt(ROSA)26Sortm1Sor/J; 

Soriano, 1999), mice with a Shhcre/+ targeted mutation (B6.Cg-Shhtm1(EGFP/cre)Cjt/J; Harfe 

et al., 2004) and mice with a Sox9fl/fl targeted mutation (B6.129S7-Sox9tm2crm/J; Akiyama 

et al., 2002); all genetically engineered mice had a C57BL/6J background.

To obtain timed-pregnant dams, females were paired with males for 2–3 h; the time at which 

the mating pair was separated was considered embryonic day (E) 0. Pregnant dams were 

euthanized by CO2 asphyxiation at different stages of fetal development. Fetuses and 

neonates (P0.5) were euthanized by decapitation. The entire genitourinary (GU) tract, 

containing the UGS, was removed from fetuses or neonates and fixed in 10% neutral 

buffered formalin for approximately 24 h at 4°C. For short-term storage, fixed GU tracts 

were kept in 70% ethanol at 4°C; for long-term storage, GU tracts went through graded 

dehydration steps and were kept in 100% ethanol or 100% methanol at −20°C.

4.2. Study design

Table 1 gives the general design, including mating schemes, experimental use and 

developmental stage of mice in each experimental group.

4.3. β-Galactosidase staining

E14.5 cre reporter mouse UGSs were placed in staining buffer (5mM potassium 

ferricyanide, 2 mM magnesium chloride, 0.01% sodium deoxycholate and 0.02% Nonidet 

P40 in PBS, pH 7.5). UGS tissues were incubated at 37°C for 5–10 min to equilibrate the 

UGS to the buffer. Bluo-gal (Gold Biotechnology, B-673–250), a β-galactosidase substrate, 

was used to stain UGS tissues. Bluo-gal staining solution, 100 mg/ml Bluo-gal dissolved in 
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N,N-dimethylformamide (Sigma-Aldrich, 227056), was added to a final concentration of 1 

mg/ml. UGS tissues were stained for 2 h at 37°C and then fixed with 10% neutral buffered 

formalin for approximately 24 h at 4°C.

4.4. Immunohistochemistry (IHC)

Control and Sox9 cKO UGSs were sectioned and immunostained to confirm Sox9 knockout. 

Fixed UGS tissues were embedded in paraffin, cut into 5 μm sagittal sections, deparaffinized 

and rehydrated, treated with 3% hydrogen peroxide for 10 min, boiled in 10 mM sodium 

citrate for 20 min, and allowed to cool to room temperature to unmask epitopes. Sections 

were blocked for 2 h with blocking solution: 5% goat serum (Sigma-Aldrich, G9023) and 

1% bovine serum albumin (EMD Millipore, 2910) in phosphate buffered saline containing 

0.05% Tween-20 (PBST; Sigma-Aldrich, P3563). The Rabbit Anti-SOX9 primary antibody 

(Abcam ab185230) was diluted 1:250 in blocking solution, applied to the section, and 

incubated overnight at 4°C. Sections were washed with PBST and subsequently incubated 

for 1 h with biotinylated goat anti-rabbit IgG secondary antibody (Vector Labs, BA-1000) 

diluted 1:250 in blocking solution. Sections were washed with PBST and incubated for 30 

min with peroxidase-conjugated streptavidin (Vector Labs, PK-6100). After washing with 

PBST, staining was achieved by incubating sections with ImmPACT DAB solution (Vector 

Labs, SK-4105) for 2–5 min at room temperature. Sections were counterstained for 20–30 s 

with Hematoxylin QS (Vector Labs, H-3404) to label nuclei.

4.5. Whole mount (WM) immunohistochemistry (IHC)

Whole mount IHC staining of control, Sox9 het and Sox9 cKO UGSs, harvested at E18.5 or 

P0.5, was done to observe effects of Sox9 cKO on prostatic budding. Fixed UGSs were 

rehydrated into PBS and the bladder and urethra were trimmed off. The complete staining 

procedure was published previously (Keil et al., 2012a). The primary antibody, rabbit anti-

mouse CDH1 antibody (Cell Signaling #3195, RRID:AB_2291471), was diluted 1:350 in 

blocking buffer. The secondary antibody, Horse Anti-rabbit IgG, ImmPRESS VR Reagent 

(Vector Labs, MP-6401, RRID:AB_2336529), is provided at a ready-to-use concentration. 

The chromogen used as the enzymatic substrate was ImmPACT DAB (Peroxidase Substrate 

Kit, Vector, SK-4105).

Stained whole mount UGSs were viewed under a dissecting microscope, and prostatic buds 

were counted by region – anterior, dorsolateral and ventral – then summed for total bud 

number. Unpaired Student’s t-tests were used to determine if observed differences in bud 

number between control and Sox9 cKO male UGSs were significant (P < 0.05).

4.6. Separation of UGE from UGS and isolation of RNA from UGE

UGS (with bladder and urethra attached) was harvested from male and female Sox9 cKO 

and littermate control fetuses on E16.75. Each UGS was immediately placed into a 1.5 ml 

microfuge tube containing 300μl of 1% trypsin (Difco, 215240) in PBS and incubated on ice 

for 30 min. Collagenase (Sigma, C9891) was added to a final concentration of 1 mg/ml, 

followed by an additional 30–45 min incubation on ice. A dissecting microscope was used to 

mechanically separate UGM from UGE, after which the bladder and urethra epithelium were 

removed, leaving only UGE. Total RNA was purified from each UGE using RNeasy system 
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(Qiagen, Hilden, Germany) and analyzed using Agilent Bioanalyzer 2100 and Agilent RNA 

6000 Pico Kit (Agilent Technologies, Santa Clara, CA, USA).

4.7. RNA isolation, microarray experiments, and data analysis

RNA was isolated from UGE of E16.75 control and Sox9 cKO male (N = 6 per genotype) 

and female (N = 5 per genotype) mouse fetuses. RNA quality assessment, labeling, and 

hybridization to microarray chips was performed at the University of Wisconsin-Madison 

Biotechnology Gene Expression Center in 2015. At that time, microarray analysis was 

widely used due to the expense of RNA sequencing. We understand microarray data can 

have increased false positives, lower detection range, and saturation of high signals 

compared to RNA-seq technologies. RNA quality was assessed for all 22 samples using an 

Agilent 2100 Bioanalyzer. The RNA Integrity Number (RIN) was ≥5.5 for each RNA 

sample, and the average RIN for all 22 RNAs was 7.3. 2ng of total RNA per sample was 

amplified and labeled using GeneChip WT Pico Reagent Kit (Affymetrix, Santa Clara, CA, 

USA), then hybridized to GeneChip Mouse Gene 1.0 ST Array (Affymetrix, Santa Clara, 

CA, USA) according to manufacturer’s protocol.

Microarray data were analyzed using Transcriptome Analysis Console (TAC; Affymetrix, 

Santa Clara, CA, USA). A transcript was considered differentially regulated (compared to a 

control) if it had an absolute fold change in abundance of ≥1.3 and p ≤ 0.05. Due to the low 

number of annotated differentially expressed genes, we used this cut-off as a broad 

screening tool for potential targets of interest. Also, due to tissue heterogeneity, low fold 

changes can have biological relevance which we wanted to capture. The stringency criteria 

of considering false positive rates of differentially expressed genes (p<0.05) as the minimum 

fold change to be significant was determined based on microarray validation and assessment 

described previously (Nobis et al., 2003; Huggins et al., 2008; Bigler et al., 2013, Laurent et 

al., 2013). An annotated transcript was defined as one having a gene symbol or description 

following TAC analysis; if these were absent the transcript was considered unannotated. 

Annotated transcripts from the “Male Sox9-Dependent” (control male vs Sox9 cKO male), 

or “Female Sox9-Dependent” (control female vs Sox9 cKO female) comparisons were 

entered into Ingenuity Pathway Analysis software (IPA; Qiagen, Hilden, Germany) for 

further analysis. This included gene ontology (GO) analysis for which an IPA-generated z 

score of ≤ −2.0 or ≥ 2.0 was considered significant (p ≤ 0.05). Lists of all differentially 

expressed genes including for each gene: bi-weight average signal (log2), standard 

deviation, fold change (linear), ANOVA p-value and FDR-adjusted p-value (q-value), are 

provided in Supplementary Tables 1, 2 and 4, respectively. All raw microarray data 

(significant and nonsignificant) from each one of the individual UGE samples used in the 

present study were uploaded, separately, to the NCBI GEO database (GSE113011; reviewer 

token mhizgciwxxcxbyl).

4.8. Heatmap construction

Microarray data were extracted from Supplementary Table 1 (Sox9 cKO male vs control 

male) and Supplementary Table 4 (Sox9 cKO female vs control female). The fold change, 

gene symbol, description, and grouping was extracted and merged together in 

Supplementary Table 7. This file was then filtered to remove any unknown gene symbols 
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and saved as Supplementary Table 8. A heatmap was generated with the fold change and 

clustered using Euclidean distance (Fig. 7) from the data in Supplementary Table 8. All data 

processing and visualization was done using R and gplots.

4.9. Quantitative real-time polymerase chain reaction (qRT-PCR)

All UGE tissues used for qRT-PCR were separate and distinct from those used for 

microarray analysis and were used to confirm microarray results. For qRT-PCR, as done 

previously for microarray, UGEs isolated from male, Sox9 cKO and littermate control 

fetuses on E16.75 were homogenized and total RNA purified using RNeasy (Qiagen, Hilden, 

Germany). Individual genes assessed by qRT-PCR were selected from those differentially 

expressed genes identified earlier by microarray (Supplementary Table 1). RNA from the 

UGE samples designated for qRT-PCR were then used to validate 14 genes of interest as 

being differentially expressed between, Sox9 cKO and littermate control male UGEs on 

E16.75 using Taqman Gene Expression Assays (Life Technologies) and Applied Biosystems 

7900 analysis.

More specifically, 10 μl of RNA (4.1 ng/μl) was reverse transcribed with random hexamers 

and Multiscribe MuLv from the High Capacity cDNA Reverse Transcription Kit 

(ThermoFisher Scientific) per manufacturer’s protocol. 10 μl of resulting cDNA was 

preamplified for genes selected through microarray analysis or other genes of interest using 

TaqMan Preamp Mastermix Kit (ThermoFisher Scientific) for 40 cycles in a 50 μl reaction 

volume. Probes used were Taqman gene expression assays (ThermoFisher Scientific) for 

Tns4 (Mm00553421_m1), Adamts9 (Mm00614433_m1), Plod2 (Mm00478767_m1), 

Col14a1 (Mm00805269_m1), Thbsl (Mm00449032_g1), Mia (Mm00444563_m1), Sbspon 
(Mm01237899_m1), Cxcr4 (Mm01996749_s1), Bmp3 (Mm00557790_m1), Hr 
(Mm00498963_m1), Cxcl14 (Mm00444699_m1), Shh (Mm00436528_m1), Epas1 
(Mm01236112_m1), Sox9 (Mm00448840_m1), Actb1 (Mm02619580_g1) and Gapdh 
(Mm99999915_g1). Probes were chosen based on best coverage according to ThermoFisher 

database. Taqman gene expression assays are MIQE compliant and qRT-PCR was performed 

following MIQE. qRT-PCR reactions for the above genes were performed with Taqman 

Universal Master Mix (ThermoFisher Scientific) in a 20 μl reaction volume containing 2 μl 

of the preamplified cDNA. Thermal cycling parameters were carried out per manufacturer’s 

protocol. Reactions were done in triplicate. qRT-PCR analysis and calculations were 

performed in the Sequence Detection System v 2.4. All transcripts examined were 

normalized to Actbl through the comparative Ct (ΔΔ Ct) method (Livak and Schmittgen, 

2001). Actb1 was unaltered by Sox9 cKO in both the microarray and qRT-PCR, and thus 

was suitable as the housekeeping gene. Differences in gene expression between Sox9 cKO 

and control UGEs of male and female fetuses, respectively, were determined by comparing 

the expression values for each gene relative to Actb1. Relative expression = 

2−(Ct goi − Ct Actb1) = 2−ΔCt where Ct means threshold cycle, and goi and Actbl refer to gene 

of interest and beta actin. A one-tailed Student’s t-test was then used to identify significant 

differences between the relative expression of each analyzed gene (p ≤ 0.05) between male 

Sox9 cKO (n=4) and control (n=4) UGEs. The fold change in expression (2−ΔΔCt) for each 

gene with respect to the Sox9 cKO condition was calculated by dividing the mean relative 
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expression value of the Sox9 cKO UGEs by the mean relative expression value of the 

control UGEs (Supplementary Table 9).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

A anterior

AB anterior bud

Array microarray

BL bladder

CDH1 Cadherin-1

cKO conditional knockout

Con control

Cre creates re-combination

Cxcr4 C-X-C motif chemokine receptor 4

D dorsal

DB dorsal bud

DHT 5α-dihydrotestosterone

DLB dorsolateral bud

E embryonic day

ECM extracellular matrix

ER estrogen receptor
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FGF fibroblast growth factor

GO gene ontology

GU genitourinary

het heterozygous

IHC immunohistochemistry

IPA ingenuity pathway analyses

Mia melanoma inhibitory activity

MIAME minimal information about a microarray experiment

MIQE minimum information for the publication of qPCR experiments

MMP matrix metalloproteinase

ns no significant difference

P postnatal day

PBST phosphate buffered saline containing 0.05% Tween-20

SV seminal vesicle

Shh sonic hedgehog

qRT-PCR quantitative real-time polymerase chain reaction

Sox9 sry-box 9

TAC Transcriptome Analysis Console

UGS urogenital sinus

UGE urogenital sinus epithelium

UGM urogenital sinus mesenchyme

UR urethra

V ventral

VB ventral bud

WD wolffian duct

WM whole mount
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Fig. 1. 
Expression of SOX9 in lower urogenital tract and prostatic buds of the male mouse fetus. 

(A, left panel) IHC showing SOX9 expression in a sagittal section of the lower urogenital 

tract at E15.0. Brown staining is seen throughout epithelium of the bladder (BL), Wolffian 

ducts (WD), UGS and urethra (UR), and in patches of UGS mesenchyme [40x]. (A, right 

panel) SOX9 expression in the UGS is visualized at higher magnification [100x]. (B, left 

panel) SOX9 expression is shown for two anterior buds in a transverse section of UGS at 

E18.5 [40x] and (B, right panel) in a single anterior bud (AB) at E18.5 [200x]. Nuclei were 

counterstained blue with hematoxylin. Other abbreviations: anterior (A), dorsal (D) and 

ventral (V) regions of the UGS. Images are representative of n=3 litter independent fetuses, 

where each fetus came from a different litter.
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Fig. 2. 
Conditional knockout of Sox9 in UGE and confirmation of loss of SOX9 expression in 

lower urinary tract epithelium. Conditional knockout of Sox9 (cKO Sox9) in the UGE was 

mediated by Shh driven cre recombinase expression. (A) Lower urinary tract of an E14.5 cre 

Reporter male fetus stained with Bluo-gal. Blue staining indirectly shows cre recombinase 

expression restricted to epithelium of the bladder, UGS, and urethra (20x). (B and C) IHC 

showing SOX9 expression (brown) in sagittal sections of the lower urogenital tract and testis 

(inset, bottom right) from a representative control (B) and Sox9 cKO (C) fetus at E16.5 (40x 
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magnification; nuclei counterstained blue with hematoxylin). The UGS is identified by a red, 

rectangular box. In the control fetus (B), SOX9 expression is seen throughout epithelium of 

the lower urogenital tract. In the Sox9 cKO fetus (C) SOX 9 expression was completely 

absent from epithelium of the bladder (BL), UGS, and urethra (UR) prior to prostatic 

budding. Specificity of the conditional Sox9 knockout is demonstrated by normal SOX9 

expression in Wolffian ducts (WD), mesenchymal patch (arrow), and Sertoli cells of the 

testis in Sox9 cKO fetuses. All images are representative of n = 3 litter-independent male 

fetuses.

Schneider et al. Page 23

Gene Expr Patterns. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Conditional knockout of Sox9 in the male mouse UGE prevents prostatic bud elongation.
WM IHC for cadherin-1 (CDH1) stained epithelium in control male UGS (A) and Sox9 cKO 

male UGS (B). Sox9 is knocked out specifically in the UGE, before prostatic budding 

initiation begins. The representative control UGS (A) and Sox9 cKO UGS (B) were 

harvested at P0.5 from mouse neonates from the same litter. For each UGS, the right panel is 

an enlargement of the UGS (boxed area) in the left panel (20x). All bud types in the Sox9 
cKO UGS failed to elongate. From this view (right panels), failed elongation of buds in the 

Sox9 cKO UGS (B) is most easily observed for anterior buds (AB, pseudocolored blue) and 
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ventral buds (VB, pseudocolored green). Abbreviations: bladder and bladder neck (BL), 

seminal vesicle (SV), urethra (UR), dorsolateral buds (DLB) and urogenital sinus (UGS).
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Fig. 4. Expression of 31 genes in male mouse UGE is both Sox9-dependent and sex-dependent.
Union (light tan) of the Venn diagram shows 31 genes in the male UGE at E16.75 that have 

Sox9-dependent expression (tan, control male vs Sox9 cKO male) in common with sex-

dependent expression (white, control male vs control female). Also 18 of these 31 genes are 

candidates for promoting bud formation and 3 are candidates for inhibiting bud formation 

(Table 3). Results for males are based on n = 6 litter independent, male UGEs for both 

control and Sox9 cKO groups, respectively, and results for females are based on n = 5 litter 

independent, female UGEs for both control and Sox9 cKO groups.
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Fig. 5. 
Confirmation of Sox9-dependent genes in male mouse UGE by PCR and microarray. 

Comparison of microarray analysis to qRT-PCR in determining relative expression of Sox9-

dependent transcripts in the UGE of control (Con) vs Sox9 cKO male mouse fetuses at 

E16.75. Genes selected for this comparison were initially identified by microarray analysis 

as being Sox9-dependent by comparing their relative transcript abundance between control 

male vs Sox9 cKO UGEs at E16.75. Some of these Sox9-dependent genes were then 

discovered by gene ontology analysis to function in cell migration or other functions while 

other Sox9-dependent genes in the male were identified as putative prostatic bud promoters 

and inhibitors. Sox9-dependent genes, within these functional groupings, were selected for 

confirmation of differential expression by qRT-PCR. UGEs were assessed by microarray (n 

= 6, both groups) and qRT-PCR (n = 4, both groups). UGEs analyzed by qRT-PCR were 

separate and distinct from those analyzed by microarray. The expression of these transcripts 

in control samples, determined by microarray from the bi-weight average signal, has been 

set to 1.0, while the expression in Sox9 cKO samples is shown as the fold-change of Sox9 
cKO signal, to control signal. For each transcript analyzed with qRT-PCR, the average 

expression relative to Actb1 (2−ΔCt) in control UGEs have been set to 1.0. Expression of 

these transcripts relative to Actb1 in Sox9 cKO samples is shown as the fold-change of the 

relative expression seen in controls (2−ΔΔCt). For both methods error bars represent SEM. 

Asterisks indicate a significant difference between control and Sox9 cKO (p ≤ 0.05) when 

the same method of gene expression analysis is used; ns indicates no significant difference 

(p > 0.05). Abbreviations: conditional knockout (cKO), urogenital epithelium (UGE), 
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standard error of the mean (SEM) and quantitative reverse transcriptase-polymerase chain 

reaction (qRT-PCR).
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Fig. 6. Only a few Sox9-dependent genes in mouse UGE are “common” to both sexes.
Union (dark tan) of the Venn diagram shows that 16 genes exhibit Sox9-dependent 

expression in both male and female UGEs at E16.75. The number of Sox9-dependent genes 

that are significantly upregulated and downregulated (± 1.3 fold, p ≤ 0.05) are given for male 

UGEs (tan) and female UGEs (red) based on a comparison of gene expression (control vs 
Sox9 cKO) within each sex. For each sex, the number of differentially regulated, annotated 

transcripts is shown at the top, and unannotated transcripts in parentheses at the bottom. 

Names of the 16 Sox9-dependent genes, common to both sexes (union, dark tan), are given 

in Table 4. Results for males are based on n = 6 litter independent, male UGEs for both 

control and Sox9 cKO groups, respectively. Findings for females are based on n = 5 litter 

independent, female UGEs for both control and Sox9 cKO groups.
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Fig. 7. Sex-dependent differences characterize the Sox9 deficient, UGE transcriptome of the 
mouse fetus.
Heatmap of 151 differentially expressed, Sox9-dependent genes are shown for the “Male” 

and “Female” mouse UGE at E16.75 (Supplementary Table 8). Fold change in expression of 

individual genes in the “Male” [Sox9 cKO male vs control male] and “Female” [Sox9 cKO 

female vs control female] UGE is depicted in the heatmap as yellow (upregulated) and blue 

(down-regulated). Of these 151 genes, 16 (11%) were significantly different from control in 

both sexes (regulated in common); 58 (38%) were significantly different from control only 

in the “Female” and 77 (51%) were different only in the “Male”. Results for males are based 
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on n = 6 litter independent, male UGEs for both control and Sox9 cKO groups, respectively. 

Findings for females are based on n = 5 litter independent, female UGEs for both control 

and Sox9 cKO groups.
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Table 4

SOX9 dependent genes differentially expressed, in common, in male and female UGEs at E16.75.

Groups Compared: Sox9 cKO vs Control

MGI
a
 Gene ID Gene Symbol Male Fold Change Female Fold Change

98371 Sox9 −2.0 −2.1

Downregulated in Sox9 cKOb

99538 Ascm3 −1.9 −1.8

1931322 Car13 −1.7 −1.4

1929763 Cdc42ep1 −1.3 −1.3

1341272 Col14a1 −2.1 −1.6

1888514 Cxcl144 −1.3 −1.6

109563 Cxcr4 −3.1 −1.6

106627 Gpx2-ps1 −1.5 −1.3

96223 Hr −1.4 −1.3

1338035 Itgb8 −1.6 −1.3

98297 Shh −1.4 −1.7

1915778 Smim6 −1.5 −1.4

106196 Stfa3 −1.4 −1.4

2144377 Tns4 −1.4 −1.3

Upregulated in Sox9 cKOc

1933157 Pdzrn3 1.3 1.3

97795 Ptger3 1.3 1.4

a
Mouse Genome Informatics (www.informatics.jax.org).
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Key resources Table

Reagent or resource Source Identifier

Antibodies

Rabbit Monoclonal Anti-SOX9 Abcam Cat# ab185230, RRID:AB_2715497

Rabbit Monoclonal Anti-CDH1 Cell Signaling Cat#: 3195, RRID:AB_2291471

Biotinylated Goat Anti-rabbit IgG Vector Labs Cat#: BA-1000, RRID:AB_2313606

Horse Anti-rabbit IgG, ImmPRESS VR Reagent Vector Labs Cat#: MP-6401, RRID:AB_2336529

Bacterial and Virus Strains

None

Biological Samples

Goat Serum Millipore-Sigma Cat#: G9023

Bovine Serum Albumin Millipore-Sigma Cat#: 29-102-5 GM

Trypsin Difco Cat#: 215240

Collagenase Millipore-Sigma Cat#: C9891

Chemicals, Peptides, and Recombinant Proteins

Bluo-gal Gold Biotechnology Cat#: B-673-250

Critical Commercial Assays

Agilent RNA 6000 Pico Agilent Technologies Cat#: 5067-1513

GeneChip Mouse Gene 1.0 ST Array ThermoFisher Scientific Cat#: 901171

Deposited Data

RNA Microarray Data NCBI GEO Database GSE113011; reviewer token mhizgciwxxcxbyl

Experimental Models: Cell Lines

None

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson Laboratory Stock#:000664, RRID: IMSR_JAX: 000664

Mouse: B6.129S4-Gt(ROSA)26sortm1Sor/J Jackson Laboratory Stock# 003474, RRID: IMSR_J AX: 003474

Mouse: B6. CgShhtm1(EGFP/cre)Cjt/J Jackson Laboratory Stock#005622; RRID: IMSR_J AX: 005622

Mouse: B6.129S7-Sox9tm2Crm/J Jackson Laboratory Stock#: 013106, RRID:IMSR_JAX:013106

Oligonucleotides

See Supplemental Table 11 for TaqMan Probe ID ThermoFisher Scientific

Recombinant DNA

None

Software and Algorithms

Transcriptome Analysis Console ThermoFisher Scientific

Ingenuity Pathway Analysis QIAGEN

R www.r-project.org

Sequence Detection System v 2.-4. ThermoFisher Scientific

Other

ImmPACT DAB Staining Kit Vector Labs Cat#: SK-4105

Hematoxylin QS Vector Labs Cat#: H-3404

Peroxidase-conjugated Streptavidin Vector Labs Cat#: PK-6100

RNeasy Mini Kit QIAGEN Cat#: 74104
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Reagent or resource Source Identifier

GeneChip WT Pico Reagent Kit ThermoFisher Scientific Cat#: 902623

High Capacity cDNA Reverse Transcription Kit ThermoFisher Scientific Cat#: 4368814

TaqMan Preamp Mastermix Kit ThermoFisher Scientific Cat#: 4384267
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