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Abstract

In this paper, we develop an H(div)-conforming finite element method for Biot’s consolidation 

model in poroelasticity. In our method, the flow variables are discretized by an H(div)-conforming 

mixed finite elements. For relaxing the H1-conformity of the displacement, we approximate the 

displacement by using an H(div)-conforming finite element method, in which the tangential 

components are discretized in the interior penalty discontinuous Galerkin framework. For both the 

semi-discrete and the fully discrete schemes, we prove the existence and uniqueness theorems of 

the approximate solutions and derive the optimal convergence rate for each variable.
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1. Introduction

Poroelasticity [3] is of increasing interest because of its vital importance in various science 

and engineering applications. For example, the mathematical models for carbon 

sequestration in environment engineering, seismic wave propagation in earthquake 

prediction, surface subsidence, evolution of fractured reservoirs during gas production, and 

biomechanical descriptions of tissues and bones are all poroelastic models. These models 

describe the interactions between a fluid flow and a deformable elastic porous medium 

which is saturated in the fluid. In this work, we are interested in Biot’s consolidation model. 

In the model, the motion of fluid in the porous medium is described by Darcy’s law, whereas 

the deformation of the porous medium is governed by linear elasticity.

Because of the complex nature of Biot’s model and the domain is usually irregular, it is not 

easy to obtain an analytical solution of this model. Thus, many researchers turn their 
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attention to computational simulations. However, noting that both fluid dynamics and 

elasticity are involved in Biot’s model, it is very important to design effective numerical 

methods that can mimic the physical laws involved in. Unfortunately, all numerical 

difficulties that existing in linear elasticity and fluid mechanics will also arise in numerical 

approximations of Biot’s model. For the linear elasticity part, continuous Galerkin 

approximation of the displacement may cause locking or nonphysical pressure oscillations 

[5,27,30]. For eliminating the locking phenomenon in solving linear elasticity model, one 

can apply mixed Finite element method [23, 37] or employ discontinuous Galerkin (DG) 

method [30], or use the nonconforming finite element [36], or use weak Galerkin methods 

[9,17,32]. In numerical methods for incompressible fluid flow models, the standard Stokes 

elements (such as Taylor-Hood element and Mini element) have the shortcoming in that they 

do not satisfy the divergence constraint strongly or globally and therefore are not mass 

conservative [11,12,18].

In this work, we follow the strategy developed in [11,12,33] and adopt an H(div)-

conforming finite element for the displacement. The purpose is to relax the H1-conformity 

of displacement. The advantages of adopting such a discretization are two-fold: On one 

hand, the normal components of displacement across elements are continuous and therefore 

are locally conservative; On the other hand, the tangential components are discretized 

through an interior penalty discontinuous Galerkin method. As it is discontinuous Galerkin 

approximation, such a discretization enables us to overcome the locking phenomenon and 

the pressure oscillation [18,31,38]. We comment here that applying H(div)-conforming finite 

elements in a DG framework was initially proposed in [11] (see also [12,33]) for solving 

Stokes equations in fluid mechanics. Later, this method is extended to solve the Darcy-

Stokes interface problems [10,19], Brinkman problem [20] and magnetic induction model 

[8]. In Biot’s model, for the fluid part, we note that the governing equation is Darcy’s law. If 

the mixed form of Darcy’s law is used, it is natural to apply an H(div)-conforming finite 

element discretization to approximate the flow variables pressure because such a 

discretization can guarantee the mass conservation. In this work, we adopt Brezzi-Douglas-

Marini (BDMk) space for both the flow variables and the displacement. Moreover, we 

present a unified treatment of both flow variables and the displacement in our Finite Element 

method. This work can be regarded as a further development of H(div)-conforming finite 

element methods for solving Biot’s problem. By using the framework presented in 

[28,29,36,38], we give a detailed analysis of our method. In particular, for both the semi-

discrete and the fully discrete schemes for Biot’s model, we prove the existence and 

uniqueness theorems of the approximate solutions and derive the optimal convergence rate 

for each variable.

The rest of this paper is organized as follows. In Section 2, we describe Biot’s consolidation 

model, the functional spaces and the corresponding weak formulation. A spatial semi-

discrete scheme based on H(div)-conforming elements is proposed in Section 3. The 

existence and uniqueness theorems for the semi-discrete numerical scheme are proved. 

Moreover, we derive the a priori error estimates of the solution of the semi-discrete scheme. 

In Section 4, a fully discrete numerical scheme based on the backward Euler time 

discretization is presented and analyzed. Conclusions are drawn in Section 5.
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2. Biot’s consolidation model and its weak formulation

Let Ω ⊂ ℝ2 be a bounded convex polygonal domain with a Lipschitz boundary ∂Ω. We 

consider the following Biot’s consolidation model in Ω over a time interval (0,T]:

∂
∂t c0p + α∇ · u + ∇ · q = ψ , in Ω × (0, T], (2.1a)

q = − K∇ p, in Ω × (0, T], (2.1b)

− ∇ · σ = f, in Ω × (0, T] . (2.1c)

Here, u(x,t) is the displacement of the solid phase, p(x,t) is the fluid pressure, and q(x,t) is 

the Darcy volumetric fluid flux,

σ = λtr(ϵ(u))I + 2μϵ(u) − αpI, with ϵ(u) = 1
2 ∇u + ∇uT . (2.2)

In the above expressions, σ(x,t) is the total stress tensor with λ and μ being the Lamé 

constants, c0 ≥ 0 is the storage coefficient, and α is the Biot.-Willis constant [3], ψ is a 

source term, f is the external force, K(x) is a symmetric and uniformly positive definite 

tensor satisfying

kminξTξ ≤ ξTK(x)ξ ≤ kmaxξTξ . (2.3)

Here, ξ is any 2-by-l vector, kmin and kmax are two positive constants.

Denoting Гd and Гt as the Dirichlet. boundary and the traction boundary for the elastic 

variables, denoting Гp and Гf as the pressure Dirichlet boundary and the fluid normal flux 

boundary, we assume that ∂Ω = Γd ∪ Γt and ∂Ω = Γp ∪ Γ f . The boundary conditions and 

initial conditions for the above Biot. system read as:

u = 0, on Γd × (0, T], (2.4a)

σn = 0, on Γt × (0, T], (2.4b)

p = 0, on Γp × (0, T], (2.4c)

q · n = 0, on Γ f × (0, T], (2.4d)
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p( · , 0) = p0,  in  Ω, (2.4e)

u( · , 0) = u0,  in  Ω . (2.4f)

Here, n denotes the unit outward normal vector.

Let us introduce some notations. As usual, Hs(𝒟) denotes the standard Sobolev space of 

functions with regularity exponent s ≥ 0. The associated norm and the semi-norm are 

denoted as ‖ · ‖s, 𝒟 and | · |s, 𝒟. When s = 0, H0(𝒟) is L2(𝒟). For simplicity, when 𝒟 = Ω, the 

norm ‖ · ‖s, Ω is written as ‖ · ‖s. For the space (Hs(𝒟))2, its norm is still denoted by ‖ · ‖s, 𝒟. 

A subspace of H1(Ω) with vanishing trace on Γd is denoted by 

H0, Γd
1 (Ω) = v ∈ H1(Ω):v Γd

= 0 . Furthermore, we define 

H(div; Ω) = v ∈ L2(Ω) 2: ∇ · v ∈ L2(Ω)  with its graph norm 

‖v‖ div  = ‖v‖0
2 + ‖∇ · v‖0

2 1/2
. Two subspaces of H(div; Ω) are 

H0, Γ f
(div; Ω) = v ∈ H(div; Ω):v · n Γ f

= 0  and H0, Γd
(div; Ω) = v ∈ H(div; Ω):v · n Γd

= 0 . 

For the ease of notations, we set 𝒫 = L2(Ω),𝒬 = H0, Γ f
(div; Ω), and 𝒱 = H0, Γd

1 (Ω)
2
.

Multiplying by test functions and integrating by parts, the standard mixed weak formulation 

of (2.1) reads as: find (p,q, u) ∈ 𝒫 × 𝒬 × V such that, t ∈ (0,T],

c0 (p)t, w + α ∇ · (u)t, w + (∇ · q, w) = (ψ , w), ∀w ∈ 𝒫, (2.5a)

K−1q, z − (p, ∇ · z) = 0, ∀z ∈ 𝒬, (2.5b)

a(u, v) − α(p, ∇ · v) = (f, v), ∀v ∈ 𝒱. (2.5c)

Here and hereafter,( · , · ) denotes the inner product in 

L2(Ω), a(u, v) = 2μ(ϵ(u):ϵ(v)) + λ(∇ · u, ∇ · v) with (σ:τ) = ∑i = 1
2 ∑ j = 1

2 σi jτi j being the 

product of tensors.

In the sequel, we shall deal with functions of time and space. To this end, we introduce the 

standard Bochner space Lp(0,T; Hs(Ω)), which consists of all functions u: [0, T] Hs(Ω) with 

norm

‖u‖
Lp 0, T; Hs(Ω)

= ∫0
T

‖u(t)‖s
pdt

1/ p
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for 1 ≤ p < ∞. When p = ∞, the space L∞ 0, T; Hs(Ω)  is endowed with the norm

‖u‖
L∞ 0, T; Hs(Ω)

= sup
0 ≤ t ≤ T

‖u(t)‖s .

3. A semi-discrete scheme

In this section, we discuss on how to conduct the spatial discretization and present the 

corresponding semi-discrete numerical scheme. Let 𝒯h = K  be a shape-regular 

triangulation of Ω. We denote hK as the diameter of K and h = max
K ∈ 𝒯h

hK. Moreover, we 

denote ℰh
0 as the set of interior edges of elements in 𝒯h, ℰh

d as the set of boundary edges on 

Γd and ℰh
t  as the set of boundary edges on Γt. Set ℰh = ℰh

0 ∪ ℰh
d ∪ ℰh

t . The length of an edge 

e ∈ ℰh is denoted by he. Moreover, we introduce the set ℰh
K = e ∈ ℰh |e ⊂ ∂K . The shape-

regularity of the mesh implies that there exits an integer N∂ > 0, independent of h, such that

max
K ∈ 𝒯h

card ℰh
K ≤ N∂ .

(3.1)

This means that the maximum number of edges that are related to K is uniformly bounded 

(see Lemma 1.41 in [13]). We associate each edge e ∈ ℰh with a fixed unit normal n and 

ensure that the unit normal for each edge on the boundary ∂Ω is exactly the exterior unit 

normal n. Let e ∈ ℰh
0 be an interior edge, shared by two elements K1 and K2. For a scalar 

piecewise smooth function φ with φi = φ Ki
 , we define the average and jump by

φ = 1
2 φ1 + φ2 , [φ] = φ1 − φ2,  on  e ∈ ℰh

0 .

On a boundary edge e ∈ ℰh
d ∪ ℰh

t  ,

φ = φ, [φ] = φ .

Define

𝒬h = q ∈ H0, Γ f
(div; Ω):q K ∈ BDMk(K) , (3.2)

𝒱h = v ∈ H0, Γd
(div; Ω):v K ∈ BDMk(K) , (3.3)

and
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𝒫h = w ∈ L2(Ω):w K ∈ Pk − 1(K) . (3.4)

Here, BDMk(k ≥ 1) is the H(div)-conforming space introduced by Brezzi, Douglas and 

Marini [6], and Pk(K) denotes the space of polynomials of degree less than or equal to k on 

K. Let Πh:𝒬 𝒬h be the BDMk. interpolation [6], and Ph be the L2– projection from L2(Ω) 

onto 𝒫h. It is well known that the following properties hold true [6]:

z − 𝒫hz, w = 0, ∀w ∈ 𝒫h, (3.5a)

z − 𝒫hz 0, K
≤ Chl z

l, K
, ∀K ∈ 𝒯h, 0 ≤ l ≤ k, (3.5b)

∇ · v − Πhv , w = 0, ∀w ∈ 𝒫h, (3.5c)

v − Πhv
s, K

≤ Chl − s v
l, K

, ∀K ∈ 𝒯h, s = 0, 1, 1 ≤ l ≤ k + 1, (3.5d)

∇ · v − Πhv
s, K

≤ Chl − s ∇ · v
l, K

, ∀K ∈ 𝒯h, s = 0, 1, 0 ≤ l ≤ k . (3.5e)

Here and in the following, we use C to denote a positive generic constant (may take different 

values at different occurrences), which is independent of h, △t, and Lamé constants μ and λ.

3.1. An H(div)-conforming element method

Multiplying the equation (2.1c) by any v ∈ 𝒱h , integrating by parts on every element K, and 

then summing over all elements in 𝒯h , we obtain

2μ ∑
K ∈ 𝒯h

∫
K

ϵ(u):ϵ(v)dx − 2μ ∑
e ∈ εh

0 ∪ εh
d
∫

e
(ϵ(u)n) ⋅ V ds + λ∫

Ω
∇ · u∇ · vdx

−α∫
Ω

p∇ · vdx − ∑
e ∈ ℰh

t
∫

e
(σn) · vds = ∫

Ω
f · vdx, ∀v ∈ 𝒱h .

(3.6)

Note that in the above equality we have used the fact that v · n is continuous across each 

interior edge. For an edge e, if n and τ are the unit normal and tangential vectors which form 

a right-handed coordinate system, there holds the following decomposition,

v = (v · n)n + (v · τ)τ .

Applying the above decomposition yields
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(ϵ(u)n) · v = (((ϵ(u)n) · n)n + ((ϵ(u)n) · τ)τ) · ((v · n)n + (v · τ)τ)
= ((ϵ(u)n) · n)(v · n) + (ϵ(u)n) · τ)(v · τ) .

Noting from the above decomposition, the equality [ab] = [a]{b} + {a}[b], the regularity of 

the exact solution, and the fact v · n is continuous across each interior edge, one can derive 

that

2μ ∑
e ∈ ℰh

0 ∪ ℰh
d
∫e

[(ϵ(u)n) · v]ds = 2μ ∑
e ∈ ℰh

0 ∪ ℰh
d
∫e

(ϵ(u)n) · τ [v · τ]ds .

Thus (3.6) is reduced to

2μ ∑
K ∈ 𝒯h

∫
K

ϵ(u):ϵ(v)dx − 2μ ∑
e ∈ ℰh

0 ∪ ℰh
d
∫

e
(ϵ(u)n) · τ [v · τ]ds + λ∫

Ω
∇ · u∇ · vdx

−α∫
Ω

p∇ · vdx − ∑
e ∈ ℰh

t
∫

e
(σn) · vds = ∫

Ω
f · vds, ∀v ∈ 𝒱h .

(3.7)

As with the usual interior penalty DG methods [1], adding some stabilized terms in the 

above equation, and noting that σn = 0 on Γt, our DG approximation of (2.1c) is

ah(u, v) − α∫
Ω

p∇ · vdx = ∫
Ω

f · vdx, (3.8)

where

ah(u, v) = 2μ ∑
K ∈ 𝒯h

∫
K

ϵ(u):ϵ(v)dx − 2μ ∑
e ∈ ℰh

0 ∪ ℰh
d
∫

e
(ϵ(u)n) · τ [v · τ]ds

−2μ ∑
e ∈ ℰh

0 ∪ ℰh
d
∫

e
(ϵ(v)n) · τ [u · τ]ds + 2μγ

he
∑

e ∈ ℰh
0 ∪ ℰh

d
∫

e
[u · τ][v · τ]ds + λ∫

Ω
∇ · u∇ · vdx .

(3.9)

From the definitions of functional spaces and ah, we note that the exact solutions of (2.1a), 

(2.1b) and (2.1c) satisfy

c0 (p)t, w + α ∇ · (u)t, w + (∇ · q, w) = (ψ , w), ∀w ∈ 𝒫h, (3.10a)

K−1q, z − (p, ∇ · z) = 0, ∀ z ∈ 𝒬h, (3.10b)

ah(u, v) − α(p, ∇ · v) = (f, v), ∀ v ∈ 𝒱h . (3.10c)
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Naturally, the corresponding H(div)-conforming finite element method for (2.1a), (2.1b) and 

(2.1c) reads as: given the initial conditions 𝒫h(0) = 𝒫hp0 and uh(0) = Πhu0, find 

𝒫h, qh, uh ∈ 𝒫h × 𝒬h × 𝒱h such that

c0 𝒫h t
, w + α ∇ · uh t

, w + ∇ · qh, w = (ψ , w), ∀w ∈ 𝒫h, (3.11a)

K−1qh, z − 𝒫h, ∇ · z = 0, ∀z ∈ 𝒬h, (3.11b)

ah uh, v − α 𝒫h, ∇ · v = (f, v), ∀v ∈ 𝒱h . (3.11c)

3.2. The existence and uniqueness

In order to prove the existence and uniqueness of the solutions of (3.11), we will use the 

theory of differential-algebraic equations (DAEs) developed in [36].

By introducing the corresponding finite element basis functions, one can represent the 

solutions qh(x,t), ph(x,t) and uh(x,t) as

qh(x, t) = ∑
j

nq
q j(t)φq, j = qh(t)φq,

𝒫h(x, t) = ∑
j

np
p j(t)φp, j = ph(t)φp,

uh(x, t) = ∑
j

nu
u j(t)φu, j = uh(t)φu,

Here,qh(t) = q1(t), …, qnq
(t) , φq = φq, 1, …, φq, nq

T
;ph(t) = p1(t), …, pnp

(t),

φp = φp, 1, …, φp, np

T
;uh(t) = u1(t), …, unu

(t)  and φu = φu, 1, …, φu, nu

T
. Similarly, we 

define row vectors fh(t) and ψh(t) according to the right hand side. Rearranging the above 

equations, one can rewrite (3.11) as an equivalent system of DAEs:

Mx′(t) + Nx(t) = L(t) . (3.12)

Here,x(t) = uh(t), qh(t), ph(t) ]T, L(t) = fh(t), 0, − ψh(t) T, and
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M =
0 0 0
0 0 0

aup 0 −app

, N =

auu 0 aup
T

0 aqq aqp
T

0 aqp 0

, (3.13)

where auu, aqq, app, aup and, aqp denote the matrices corresponding to the bilinear forms 

ah(uh, v), (K–1qh,z), c0(p,w), α(∇∙uh,w) and (∇∙qh,w) in (3.11), respectively. According to 

the theory of DAEs, as pointed out in [36], it is sufficient to prove the existence and 

uniqueness of (3.12) by verifying the existence and uniqueness of the following saddle point 

problem: find 𝒫h, qh, uh ∈ 𝒫h × 𝒬h × 𝒱h

A uh, qh , (v, z) + B (v, z), 𝒫h = (f, v), ∀(v, z) ∈ 𝒱h × 𝒬h, (3.14a)

B uh, qh , w − C 𝒫h, w = − (ψ , w), ∀w ∈ 𝒫h, (3.14b)

where

A((u, q), (v, z)) = ah(u, v) + K−1q, z ,

B((v, z), p) = − α(∇ · v, p) − (∇ · z, p),

C(p, w ) = c0(p, w) .

To prove the existence and uniqueness of problem (3.14), by using the theory of saddle point 

problems [7], it is enough to prove that the above bilinear forms satisfy certain LBB 

conditions. For the subsequent analysis, we define two mesh-dependent, norm ‖ · ‖h and 

‖ · ‖h by

‖v‖h = ∑
K ∈ 𝒯h

2μ‖ϵ(v)‖0, K
2 + ∑

e ∈ ℰh
0 ∪ ℰh

d
2μhe

−1‖[v · τ]‖0, e
2 + λ‖∇ · v‖0, Ω

2
1/2

and

‖v‖h = ‖v‖h
2 + ∑

e ∈ ℰh
0 ∪ ℰh

d
2μhe‖ (ϵ(v)n) · τ ‖0, e

2
1/2

.

Actually, one can define another norm by
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‖v‖d, h = ∑
K ∈ 𝒯h

2μ‖∇v‖0, K
2 + λ‖∇ · v‖0, Ω

2 + ∑
e ∈ ℰh

0 ∪ ℰh
d

2μhe
−1‖[v · τ]‖0, e

2
1/2

.

Using the discrete version of the Korn’s inequality [4], it can be proved that ‖ · ‖ h, ‖ · ‖h and 

‖ · ‖ d, h are equivalent on 𝒱h. The details of the proof can be found in [2,15].

Let K be an element with e as an edge. For all w ∈ H1(K) , it is well known [4] that there 

exists a constant C > 0 such that

‖w‖0, e
2 ≤ C hK

−1‖w‖0, K
2 + hK‖∇w‖0, K

2 . (3.15)

Then, by the shape-regularity of the mesh, there holds [4, 24]

he‖ (ϵ(w)n) · τ ‖0, e
2 ≤ C ‖ϵ(w)‖0, K

2 + hK
2 ‖ϵ(w)‖1, K

2 . (3.16)

Applying the standard inverse inequality to the last term of the above inequality, we see that

he‖ (ϵ(w)n) · τ ‖0, e
2 ≤ Ctr‖ϵ(w)‖0, K

2 , ∀w ∈ 𝒱h, (3.17)

where Ctr depends only on the polynomial degree k and the shape-regularity of the mesh. 

Thus, there exists a constant C0 > 0 such that

‖v‖h
2 ≤ C0‖v‖h

2, ∀v ∈ 𝒱h (3.18)

with C0=1+Ctr.

Setting 𝒱(h) = 𝒱 + 𝒱h, then we have the following lemma.

Lemma 3.1.—There exists a constant Ccont > 0, independent of μ and λ, such that

ah(w, v) ≤ C cont ‖w‖h‖v‖h, ∀w, v ∈ 𝒱(h) . (3.19)

Furthermore, if the penalty parameter γ is sufficiently large, then there exists a constant 
Ccoer > 0 such that.

ah(v, v) ≥ C coer ‖v‖h
2, ∀v ∈ 𝒱h . (3.20)

Here, Ccoer does not. depend on the Lamé constants μ and λ.
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Proof.: The inequality of (3.19) can be easily derived from the Cauchy-Schwarz inequality. 

It leaves us to prove (3.20). Using Young’s inequality and a trace inequality (3.17), we have, 

for any ε > 0,

∑
e ∈ ℰh

0 ∪ ℰh
d
∫e

(ϵ(v)n) · τ [v · τ]ds

≤ ∑
e ∈ ℰh

0 ∪ ℰh
d

he
1/2‖ (ϵ(v)n) · τ ‖0, ehe

−1/2‖[v · τ]‖0, e

≤ ∑
e ∈ ℰh

0 ∪ ℰh
d

he‖ (ϵ(v)n) · τ ‖0, e
2

1/2

∑
e ∈ ℰh

0 ∪ ℰh
d

he
−1‖[v · τ]‖0, e

2
1/2

≤ ∑
K ∈ 𝒯h

N∂Ctr‖ϵ(v)‖0, K
2

1/2
∑

e ∈ ℰh
0 ∪ ℰh

d
he
−1‖[v · τ]‖0, e

2
1/2

≤
N∂Ctr

2ε ∑
K ∈ 𝒯h

‖ϵ(v)‖0, K
2 + ε

2 ∑
e ∈ ℰh

0 ∪ ℰh
d

he
−1‖[v · τ]‖0, e

2 .
(3.21)

Here N∂ and Ctr axe defined in (3.1) and (3.17), respectively. Substituting the above 

inequality into (3.9) yields

ah(v, v) ≥ 2μ ∑
K ∈ 𝒯h

‖ϵ(v)‖0, K
2 + 2μγ ∑

e ∈ ℰb
0 ∪ ℰh

d
he
−1‖[v · τ]‖0, e

2 + λ‖∇ · v‖0, Ω
2

−
2μN∂Ctr

ε ∑
K ∈ 𝒯h

‖ϵ(v)‖0, K
2 − 2με ∑

e ∈ ℰh
0 ∪ ℰh

d
he
−1‖[v · τ]‖0, e

2
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≥ 2μ −
2μN∂Ctr

ε ∑
K ∈ 𝒯h

‖ϵ(v)‖0, K
2 + (2μγ − 2με) ∑

e ∈ ℰh
0 ∪ ℰh

d
he

−1‖[v · τ]‖0, e
2

+ λ‖∇ · v‖0, Ω
2 .

(3.22)

Setting ε = 2N∂Ctr in the above inequality and choosing a sufficiently large penalty 

parameter γ to ensure 2μγ − 2με = 2μγ − 4μN∂Ctr > 0, we have

ah(v, v) ≥ C1 ‖v‖ h
2, ∀v ∈ 𝒱h . (3.23)

Here, 0 < C1 = min 1/2, γ − 2N∂Ctr < 1/2. Combining (3.23) with (3.18), we have

ah(v, v) ≥
C1
C0

‖v‖h
2, ∀v ∈ 𝒱h (3.24)

The inequality (3.20) follows by setting C coer  =
C1
C0

. Since Ctr depends only on the 

polynomial degree k and the shape-regularity of the mesh and C0 = 1 + Ctr, we see that 

Ccoer =
C1
C0

 depend on the Lamé constants μ and λ.

Remark 3.1.—In general, as in other interior penalty DG methods, one can choose γ > γmin

γmin = N∂Ctr to obtain (3.20). In fact, in (3.22), setting 2μ −
2μN∂Ctr

ε > 0 and 2μγ − 2με > 0, 

i.e., γ > ε > N∂Ctr, we have

ah(v, v) ≥ C1 ‖v‖ h
2, ∀v ∈ 𝒱h (3.25)

where 0 < C1 = min 1 −
N∂Ctr

ε , γ − ε < 1. This, together with (3.18), gives (3.20). We further 

comment here that the constant γmin = N∂Ctr depends on the polynomial degree k. For two 

dimensional triangle elements, Ctr scales as k(k + 2). More comments on Ctr can be found in 

[14, 34] and Remark 1.48 in [13]. In actual computation, one can choose γ = 10k2. More 
discussions on choosing γ can be found in Remark 2.1 in [16].

For the space 𝒱h × 𝒬h, we equip it with a discrete norm

‖(v, z)‖1, h = ‖v‖h
2 + ‖z‖div

2 1/2 .
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Lemma 3.2.—If the penalty parameter γ is sufficiently large, then there exists a constant C 
> 0 such that

A((v, z), (v, z)) ≥ C‖(v, z)‖1, h, ∀(v, z) ∈ 𝒱h × 𝒬h . (3.26)

Proof.: The lemma follows from the definition of ‖ · ‖1, h (3.20) and (2.3).

Lemma 3.3.—There exists a positive constant β > 0 such that

sup
(v, z) ∈ 𝒱h × 𝒬h

B((v, z), w)
‖(v, z)‖1, h

≥ β‖w‖0, ∀w ∈ 𝒫h . (3.27)

Proof.: For any w ∈ 𝒫h, there exists a z  ∈ H1(Ω)2 ∩ 𝒱 such that (cf. Lemma 11.2.3 in [5])

∇ · z = − w,  and  ‖z‖1 ≤ C1‖w‖0 . (3.28)

From (3.5d), we note that

‖Πhz‖1 ≤ C2‖z‖1, ∀z ∈ H1(Ω) 2 . (3.29)

Setting v = 0, by using (3.28) and (3.29), we see that

B 0, Πhz , w

‖ 0, Πhz ‖1, h
=

‖w‖0
2

‖Πhz‖div
≥

‖w‖0
2

‖Πhz‖1
≥ 1

C2

‖w‖0
2

‖z‖1
≥ 1

C1C2
‖w‖0 .

The lemma follows by setting β = 1
C1C2

.

In Lemmas 3.2 and 3.3, we have proved the LBB condition of the saddle point problems 

(3.14). Noting that the bilinear form C( · , · ) is symmetric positive semidefinite, we then 

obtain the following main result of this subsection.

Theorem 3.1.—The semidiscrete scheme (3.11) has a unique solution.

Remark 3.2.—The author of a recent work [38] has pointed out that if ker aup
T = 0, one 

can remove spurious pressure oscillations which arise when c0 = 0 and K → 0. Since we use 

standard mixed finite element spaces 𝒱h = v ∈ H0, Γd
(div; Ω):v K ∈BDMk(K)  and 

𝒫h = w ∈ L2(Ω):w K ∈ Pk − 1(K)  for the displacement and pressure variables, there 

naturally holds aup
T = 0. Therefore, there will be no spurious pressure oscillation by using 

our method.
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3.3. Error estimates for the semi-discrete scheme

3.3.1. Error estimates for the case c0 ≥ β0 > 0

Theorem 3.2.: Let (𝒫, q, u) ∈ × 𝒬 × 𝒱 and 𝒫h, qh, uh ∈ 𝒫h × 𝒬h × 𝒱h be the solutions of 

(2.5) and (3.11), respectively. Moreover, we assume that

u ∈ L∞ 0, T; Hk + 1(Ω) , ut ∈ L2 0, T; Hk + 1(Ω) , q ∈ L2 0, T; Hk(Ω) .

Then, provided that the penalty parameter γ is sufficiently large, the following finite element 
error estimate holds.

‖u − uh‖
L∞ 0, T; Eh

2 + ‖p − 𝒫h‖
L∞ 0, T; L2(Ω)
2 + ‖q − qh‖

L2 0, T; L2(Ω)
2 ≤ Ch2k, (3.30)

where ‖u‖
L∞ 0, T; Eh

= sup
0 ≤ s ≤ T

‖u(s)‖h.

Proof.: Subtracting (3.10a), (3.10b) and (3.10c) from (3.11a), (3.11b) and (3.11c), 

respectively, we have

c0 p − ph t
, w + α ∇ · u − uh t

, w + ∇ · q − qh , w = 0, ∀w ∈ ph, (3.31a)

K−1 q − qh , z − p − ph, ∇ · z = 0, ∀z ∈ 𝒬h, (3.31b)

ah u − uh, v − α p − ph, ∇ · v = 0, ∀v ∈ 𝒱h . (3.31c)

We then split the error p–ph as p − ph = ξp + θp with ξp = p − php and θp = php − ph. 

Similarly,q − qh = ξq + θq with ξq = q − Πhq and θq = Πhq − qh · u − uh = ξu + θu with 

ξu = u − Πhu and θu = Πhu − uh. Since the estimates for ξp, ξq and ξu can be derived by the 

interpolation error bounds in (3.5b) and (3.5d), it leaves us to estimate θp, θq and θu. To this 

end, using (3.5c) and (3.5e), we can rewrite (3.31a), (3.31b) and (3.31c) by

c0 θp t
, w + α ∇ · θu t

, w + ∇ · θq, w = 0, ∀w ∈ ph, (3.32a)

K−1 θq , z − θp, ∇ · z = − K−1 ξq , z , ∀z ∈ 𝒬h, (3.32b)

ah θu, v − α θp, ∇ · v = − ah ξu, v , ∀v ∈ 𝒱h . (3.32c)
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Setting w = θp, Z = θq and v = (θu)t in the above equations and using the chain rule in time 

and the symmetry of ah( · , · ), we obtain

1
2c0

∂
∂t θp, θp + α ∇ · θu t

, θp + ∇ · θq, θp = 0, (3.33)

K−1 θq , θq − θp, ∇ · θq = − K−1 ξq , θq , (3.34)

1
2

∂
∂t ah θu, θu − α θp, ∇ · θu t

= − ah ξu, θu t
. (3.35)

The initial conditions 𝒫h(0) = 𝒫hp0 and uh(0) = Πhu0 imply that θp(0) = 0 and θu(0) = 0.

Using this fact, summing equations (3.33)–(3.35), integrating in time from 0 to t(≤T), we 

obtain

1
2ah θu(t), θu(t) + 1

2c0‖θp(t)‖0
2 + ∫

0

t
‖K

− 1
2θq(s)‖0

2

ds = B1 + B2 . (3.36)

Here,

B1 = − ∫0
t

K−1ξq(s), θq(s) ds and B2 = − ∫0
t
ah ξu(s), θu t

(s) ds .

For B1, we can bound it as follows:

B1 ≤ ∫
0

t
‖K

− 1
2ξq(s)‖0‖K

− 1
2θq(s)‖0ds

≤ 1
2∫0

t
‖K

− 1
2ξq(s)‖0

2

ds + 1
2∫0

t
‖K

− 1
2θq(s)‖0

2

ds .

(3.37)

For B2, integrating by parts, we firstly obtain

B2 = ∫
0

t
ah ξu t

(s), θu(s) ds − ah ξu(t), θu(t) . (3.38)

Then noting that θu(0) = 0, using (3.19) and Young’s inequality, we further have

B2 ≤ C ∫
0

t
‖ ξu t

(s)‖
h
2 + ‖θu(s)‖

h
2 ds + ‖ξu(t)‖

h
2 + ε‖θu(t)‖

h
2

(3.39)

with ε being an arbitrarily small number.
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Noting from the above bounds, using (2.3) and (3.20), we have

C coer 
2 − ε ‖θu(t)‖

h
2 + 1

2c0‖θp(t)‖0
2 + 1

2∫0

t
‖K

− 1
2θq(s)‖0

2

ds

≤ C∫
0

t
‖θu(s)‖

h
2ds + C∫

0

t
‖ξq(s)‖0

2 + ‖ ξu t
(s)‖

h
2 ds + ‖ξu(t)‖

h
2 .

(3.40)

We can choose ε small enough to make Cmin = min
C coer 

2 − ε, 1
2c0, 1

2kmax
 be positive. We 

note that the above inequality still holds if one replaces the left-hand side of (3.40) by 

Cmin ‖θu(t)‖
h
2 + ‖θp(t)‖0

2 + ∫ 0
t ‖θq(s)‖0

2ds . Therefore, dividing both sides of the above 

inequality by Cmin and using Gronwall’s lemma, we have

‖θu(t)‖
h
2 + ‖θp(t)‖0

2 + ∫
0

t
‖θq(s)‖0

2ds ≤ C

∫
0

t
‖ξq(s)‖0

2 + ‖ ξu t
(s)‖

h
2 ds + ‖ξu(t)‖

h
2 .

(3.41)

Noting that the above estimate holds for all 0 ≤ t ≤ T, and using some appropriate 

approximation properties of Ph in (3.5b) and Πh in (3.5d), we obtain

sup
0 ≤ s ≤ T

‖θu(s)‖
h
2 + sup

0 ≤ s ≤ T
‖θp(s)‖0

2 + ∫
0

T
‖θq(s)‖0

2ds

≤ C h2k ∫
0

T
‖q(s)‖k

2 + ‖ut(s)‖
k
2ds + h2k sup

0 ≤ s ≤ T
‖u(s)‖k

2 ,
(3.42)

where, ‖u‖k
2 = μ‖u(s)‖k + 1

2 + λ‖∇ ⋅ u‖k
2 . This estimate can be rewritten by the following 

equivalent formulation:

‖θu(s)‖
L∞ 0, T; Eh
2 + ‖θp(s)‖

L∞ 0, T; L2(Ω)
2 + ‖θq(s)‖

L2 0, T; L2(Ω)
2

≤ Ch2k ∫
0

T
‖q‖k

2 + ‖ut‖k
2ds + sup

0 ≤ s ≤ T
‖u(s)‖k

2 .
(3.43)

Combining the above estimate with the interpolation error estimates for ξp, ξq and ξu, and 

using the triangle inequality, we obtain the assertion (3.30).

3.3.2. Error estimates for the case c0 ≥ 0—Note that the results in Theorem 3.2 in 

the previous subsection hold under the assumption that c0 > 0. If c0 = 0, the optimal error 

estimates are derived using the weaker L2 0, T; L2(Ω)  norm. To this end, we need the 

following lemma [10].
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Lemma 3.4.—Let (p, q, u) ∈ 𝒫 × 𝒬 × 𝒱 and  𝒫h, qh, uh ∈ 𝒫h × 𝒬h × 𝒱h be the solutions of 

(2.5) and (3.11), respectively. Then, there exists a constant c0 > 0 such that

‖θp‖0 ≤ Cp‖q − qh‖ .

By using the above result, we can obtain the following main result.

Theorem 3.3.—Under the same assumption as that in Theorem 3.2, the following error 

estimate holds.

‖u − uh‖
L∞ 0, T; Eh

2 + ‖p − 𝒫h‖
L2 0, T; L2(Ω)
2 + ‖q − qh‖

L2 0, T; L2(Ω)
2 ≤ Ch2k . (3.45)

Proof.: Squaring both sides of (3.44) and then integrating them in time from 0 to T, we see 

that ‖θp‖
L2 0, T; L2(Ω)

≤ C‖q − qh‖
L2 0, T; L2(Ω)

. Then, the desired result follows from the 

error bound in (3.30), the interpolation estimates and the triangle inequality.

4. The fully discrete scheme

4.1. The fully discrete scheme

For simplicity, we apply the backward Euler method as the time discretization scheme. Let 

N be a positive integer and let Δt = T /N .  Set tn = nΔt (1 ≤ n ≤ N) . The fully discrete 

approximation of (3.11) reads as: given the initial conditions ph
0 = 𝒫hp0 and uh

0 = Πhu0, at 

each time t = tn, find ph
n, qh

n, uh
n ∈ 𝒫h × 𝒬h × 𝒱h such that

c0
ph

n − ph
n − 1

Δt , w + α
∇ ⋅ uh

n − uh
n − 1

Δt , w + ∇ ⋅ qh
n, w = ψn, w , ∀w ∈ 𝒫h, (4.1a)

K−1qh
n, z − ph

n, ∇ ⋅ z = 0, ∀z ∈ 𝒬h, (4.1b)

ah uh
n, v − α ph

n, ∇ ⋅ v = fn, v , ∀v ∈ 𝒱h . (4.1c)

4.2. The existence and uniqueness

In this subsection, we will show the existence and uniqueness of solutions of (4.1) for each 

time step t = tn, 1 ≤n≤ N. Firstly, the Eqs. (4.1a)–(4.1c) can be transformed into the 

following equivalent variational formulation.
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Ah uh
n, qh

n , (v, z) + Bh (v, z), ph
n = fn, v , (4.2a)

Bh uh
n, qh

n , w − Ch ph
n, w = − Δt ψn, w − c0ph

n − 1 + α∇ ⋅ uh
n − 1, w . (4.2b)

Here, the bilinear forms are

Ah((u, q), (v, z)) = ah(u, v) + Δt K−1q, z , Bh((v, z), p) = − α(∇ ⋅ v, p) − Δt(∇ ⋅ z, p), Ch(p, w) = c0(p, w) .

Similar to the semi-discrete case, to prove the existence and uniqueness of the saddle point 

problem (4.2), it is sufficient to verify that these bilinear forms satisfy LBB conditions [7]. 

To this end, we need to define a discrete time-dependent, norm for the space 𝒱h × 𝒬h,

namely,

‖(v, z)‖1, h = ‖v‖h
2 + (Δt)2‖z‖div

2 1/2 .

Lemma 4.1.—If the penalty parameter γ is sufficiently large, then there exists a constant C 
> 0 such that

Ah((v, z), (v, z)) ≥ C‖(v, z)‖1, h, ∀(v, z) ∈ 𝒱h × 𝒬h . (4.4)

Proof.: The assertion follows from the definition of ||| ⋅ |||1, h in (4.3), (3.20) and (2.3).

Lemma 4.2.—There exists a positive constant β > 0 such that

sup
(v, z) ∈ 𝒱h × 𝒬h

Bh((v, z), w)
|||(v, z)|||1, h

≥ β‖w‖0, ∀w ∈ 𝒫h . (4.5)

Proof.: For any w ∈ 𝒫h, there exists a a z ∈ H1(Ω)2 ∩ 𝒱 such that (cf. Lemma 11.2.3 in [5])

∇ ⋅ z = − w,  and  ‖z‖1 ≤ C1‖w‖0 . (4.6)

From (3.5d), we obtain

‖Πhz‖1 ≤ C2‖z‖1, ∀z ∈ H1(Ω) 2 . (4.7)

In view of (4.6) and (4.7), and setting v = 0, we have
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B 0, Πhz/Δt , w

||| 0, Πhz/Δt |||1, h
=

‖w‖0
2

‖Πhz‖div
≥

‖w‖0
2

‖Πhz‖1
≥ 1

C2

‖w‖0
2

‖z‖1
≥ 1

C1C2
‖w‖0 .

The desired result follows by setting β = 1
C1C2

.

In Lemmas 4.1 and 4.2, we have proved the LBB conditions of the saddle point problem 

(4.2). Noting that the bilinear form Ch( ⋅ , ⋅ ) is symmetric positive semidefinite, then we 

obtain the following main result.

Theorem 4.1.—At each time t = tn( 1 ≤ n ≤ N), the fully discrete numerical scheme (4.1) 

has a unique solution ph
n, qh

n, uh
n ∈ 𝒫h × 𝒬h × 𝒱h, if the penalty parameter γ is sufficiently 

large.

4.3. Error estimates for the fully discrete scheme

4.3.1. Error estimates for the case c0 ≥ β0 > 0—For any function g(t, x), at each 

time tn = nΔt, n = 1, …, N, we denote gn = g tn, x , ∀x ∈ Ω . By Taylor’s expansion, there hold

pn − pn − 1

Δt = pt
n + 1

Δt∫tn − 1
tn tn − 1 − s ptt(s)ds, (4.8)

un − un − 1

Δt = ut
n + 1

Δt∫tn − 1
tn tn − 1 − s utt(s)ds . (4.9)

Theorem 4.2.—Let (p, q, u) ∈ × 𝒬 × 𝒱 and  ph
n, qh

n, uh
n ∈ 𝒫h × 𝒬h × 𝒱h be the solutions of 

(2.5) and (4.1), respectively. Moreover, we assume that

u ∈ L∞ 0, T; Hk + 1(Ω) , ut ∈ L∞ 0, T; Hk + 1(Ω) , utt ∈ L2 0, T; Hk + 1(Ω) ,

∇ ⋅ utt ∈ L2 0, T; L2(Ω) , ptt ∈ L2 0, T; L2(Ω) , q ∈ L∞ 0, T; Hk(Ω) ,

and that the penalty parameter γ is sufficiently large. Then, the following error estimate 

holds.

max
1 ≤ n ≤ N

‖un − uh
n‖

h
2 + max

1 ≤ n ≤ N
‖pn − ph

n‖0
2 + Δt ∑

n = 1

N
‖qn − qh

n‖0
2

≤ C h2k + (Δt)2 .
(4.10)
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Proof.: We note that (3.10) holds for the exact solution at any time t = tn. Using this fact, 

combining with (4.8) and (4.9), we see that

c0
pn − pn − 1

Δt , w + α ∇ ⋅ un − un − 1

Δt , w + ∇ ⋅ qn, w = ψn, w

+
c0
Δt ∫

tn − 1
tn tn − 1 − s ptt(s)ds, w + α

Δt ∫
tn − 1

tn tn − 1 − s ∇ ⋅ utt(s)ds, w ,
(4.11a)

K−1qn, z − (p, ∇ ⋅ z) = 0, (4.11b)

ah un, v − α pn, ∇ ⋅ v = fn, v , (4.11c)

for any (w, z, v) ∈ 𝒫h × 𝒬h × 𝒱h .

Subtracting (4.1a), (4.1b) and (4.1c) from (4.11a), (4.11b) and (4.11c), respectively, we 

obtain

c0
pn − ph

n − pn − 1 − ph
n − 1

Δt , w + α ∇ ⋅
un − uh

n − un − 1 − uh
n − 1

Δt , w + ∇ ⋅ qn − qh
n , w

=
c0
Δt ∫

tn − 1
tn tn − 1 − s ptt(s)ds, w + α

Δt ∫
tn − 1

tn tn − 1 − s ∇ ⋅ utt(s)ds, w ,

K−1 qn − qh
n , z − pn − ph

n, ∇ ⋅ z = 0, (4.12b)

ah un − uh
n, v − α pn − ph

n, ∇ ⋅ v = 0. (4.12c)

We then split the error pn − ph
n into pn − ph

n = ξp
n + θp

n with ξp
n = pn − 𝒫hpn and θp

n = 𝒫hpn − ph
n .

Similarly, 

qn − qh
n = ξq

n + θq
n with ξq

n = qn − Πhqn and θq
n = Πhqn − qh

n . un − uh
n = ξu

n + θu
n with ξu

n = un

− Πhun and θu
n = Πhun − uh

n .
Since 

the estimates for ξp
n, ξq

n and ξu
n can be derived by the interpolation error bounds, it leaves us to 

estimate θp
n, θq

n and θu
n . To this end, using (3.5c) and (3.5e), we can rewrite (4.12a), (4.12b) 

and (4.12c) by

Zeng et al. Page 20

East Asian J Applied Math. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c0
θp

n − θp
n − 1)

Δt , w + α ∇ ⋅
θu

n − θu
n − 1)

Δt , w + ∇ ⋅ θq
n, w

=
c0
Δt ∫

tn − 1
tn tn − 1 − s ptt(s)ds, w + α

Δt ∫
tn − 1

tn tn − 1 − s ∇ ⋅ utt(s)ds, w ,
(4.13a)

K−1θq
n, z − θp

n, ∇ ⋅ z = − K−1ξq
n, z , (4.13b)

ah θu
n, v − α θp

n, ∇ ⋅ v = − ah ξu
n, v . (4.13c)

Setting w = θp
n, z = θq

n and v =
θu
n − θu

n − 1

Δt  in the above equations and adding them together, 

we obtain

ah θu
n, θu

n + c0‖θp
n‖0

2 + Δt‖K
− 1

2θq
n‖0

2

= ah θu
n, θu

n − 1 + c0 θp
n − 1, θp

n

+ c0 ∫
tn − 1

tn tn − 1 − s ptt(s)ds, θp
n + α ∫

tn − 1
tn tn − 1 − s ∇ ⋅ utt(s)(s)ds, θp

n

− Δt K−1ξq
n, θq

n − 1 − ah ξu
n, θu

n − θu
n − 1 .

(4.14)

To estimate the bounds for the above error equation, we need the following inequalities.

ah θu
n, θu

n − 1 ≤ 1
2 ah θu

n − 1, θu
n − 1 + ah θu

n, θu
n

(4.15)

and

c0 θp
n − 1, θp

n ≤ 1
2c0 ‖θp

n − 1‖0
2 + ‖θp

n‖0
2 . (4.16)

In view of the above inequalities, summing (4.14) from 1 to m(≤ N), and noting that 

θu
0 = 0 and θp

0 = 0, we obtain

1
2 ah θu

m, θu
m + c0‖θp

m‖0
2 + Δt ∑

n = 1

m
‖K

− 1
2θq

n‖0

2

≤ T1 + T2 + T3 + T4, (4.17)

where
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T1 = c0 ∑
n = 1

m ∫
tn − 1

tn tn − 1 − s ptt(s)ds, θp
n ,

T2 = α ∑
n = 1

m ∫
tn − 1

tn tn − 1 − s ∇ ⋅ utt(s)ds, θp
n ,

T3 = − ∑
n = 1

m
Δt K−1ξq

n, θq
n ,

T4 = − ∑
n = 1

m
ah ξu

n, θu
n − θu

n − 1 .

The first term T1 can be bounded by

T1 = c0 ∑
n = 1

m ∫
tn − 1

tn tn − 1 − s ptt(s)ds, θp
n ≤ c0 ∑

n = 1

m
‖∫

tn − 1
tn tn − 1 − s ptt(s)ds‖

0
‖θp

n‖0 .

Since

‖∫
tn − 1

tn tn − 1 − s ptt(s)ds‖
0

≤ (Δt)3/2 ∫
tn − 1

tn ‖ptt(s)‖0
2ds

1/2
,

then we further have

T1 ≤ C Δt ∑
n = 0

m
‖θp

n‖0
2 + (Δt)2∫

0
tm‖ptt(s)‖0

2ds . (4.18)

Similarly, the second term T2 can be bounded by

T2 ≤ C Δt ∑
n = 0

m
‖θp

n‖0
2 + (Δt)2∫

0
tm‖∇ ⋅ utt(s)‖0

2ds . (4.19)

For the third term T3, it is easy to show that

T3 = − ∑
n = 1

m
Δt K−1ξq

n, θq
n ≤ 1

2Δt ∑
n = 0

m
‖K

− 1
2θq

n‖0

2

+ CΔt ∑
n = 1

m
‖ξq

n‖0
2 .

To bound the last term T4, we need the following equalities.

∑
n = 1

m
f n − f n − 1 gn − 1 = f mgm − f 0g0 − ∑

n = 1

m
f n gn − gn − 1

(4.21)

and
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ξu
n − ξu

n − 1 = ξut
n + 1

Δt∫tn − 1
tn tn − 1 − s ξutt

(s)ds . (4.22)

Then, using (4.21), (4.22), (3.19) and Young’s inequality, and noting that ξ𝔲t
0 = 0, we have

T4 = − ∑
n = 1

m
ah ξu

n, θu
n − θu

n − 1 = − ah ξu
m, θu

m + ∑
n = 1

m
ah ξu

n − ξu
n − 1, θu

n − 1

≤ ε‖θu
m‖

h
2 + C ‖ξu

m‖
h
2 + (Δt)2∫

0
tm‖ξutt

(s)‖
h

2ds + Δt ∑
n = 0

m
‖ξut

n ‖
h

2 + ‖θu
n‖

h
2 ,

(4.23)

where ε is an arbitrarily small number.

Combining the bounds above, and using (2.3) and (3.20), we have

Ccoer
2 − ε ‖θu

m‖
h
2 + 1

2c0‖θp
m‖0

2 + Δt
2kmax

∑
n = 1

m
‖θq

n‖0
2

≤ C Δt ∑
n = 0

m
‖θp

n‖0
2 + ‖θu

n‖
h
2 + (Δt)2∫

0
tm‖ptt(s)‖0

2ds

+ (Δt)2∫
0

tm‖∇ ⋅ utt(s)‖0
2ds + Δt ∑

n = 1

m
‖ξq

n‖0
2 + ‖ξu

m‖
h
2 + (Δt)2∫

0

T
‖ξutt

(s)‖
h

2ds

+ Δt ∑
n = 0

m
‖ξut

n ‖
h

2) .

(4.24)

We can choose t being small enough to ensure Cmin = min
C coer 

2 − ε, 1
2c0, 1

2kmax
 is positive. 

Then, we note that the above inequality still holds if one replaces the left-hand side of (4.24) 

by Cmin ‖θu
m‖

h
2 + ‖θp

m‖0
2 + Δt∑n = 1

m ‖θq
n‖0

2 . Using the discrete Gronwall’s inequality, some 

approximation properties, and noting that (4.24) holds for any 1 ≤m < N, we see that

max
1 ≤ n ≤ N

‖θu
n‖

h
2 + max

1 ≤ n ≤ N
‖θp

n‖0
2 + Δt ∑

n = 1

N
‖θq

n‖0
2

≤ C (Δt)2∫
0

T
‖ptt(s)‖0

2ds + (Δt)2∫
0

T
‖∇ ⋅ utt(s)‖0

2ds + h2k max
1 ≤ n ≤ N

‖qn‖k
2

+ h2k max
1 ≤ n ≤ N

|||un|||k
2 + h2k(Δt)2∫

0

T
|||utt(s)|||k

2ds + h2k max
1 ≤ n ≤ N

|||ut
n|||k

2) .

(4.25)

Combining the above estimate with the interpolation error estimates for ξp
n, ξq

n and ξu
n, and 

using the triangle inequality, we obtain the assertion (4.26).
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4.3.2. Error estimates for the case c0 ≥ 0—Similar to the semi-discrete scheme, if c0 

= 0, one can derive an optimal error bound for the pressure under a weaker norm. 

Specifically, we have

Theorem 4.3.: Let (p, q, u) ∈ × 𝒬 × 𝒱 and ph
n, qh

n, uh
n ∈ 𝒫h × 𝒬h × 𝒱h be the solutions of 

(2.5) and (4.1), respectively. Under the same assumption as that in Theorem 4.2, the 
following error estimate holds:

1 ≤ n ≤ N
max ‖un − uh

n‖
h
2 + Δt ∑

n = 1

N
‖pn − ph

n‖0
2 + Δt ∑

n = 1

N
‖qn − qh

n‖0
2

≤ C h2k + (Δt)2 .
(4.26)

5. Concluding remarks

In this work, we propose an H(div)-conforming Finite Element method for solving Biot’s 

consolidation model. In our method, both the displacement and the fluid velocity are 

approximated by using BDMk space. As we use H(div)-conforming elements, the normal 

components of displacement and fluid velocity are continuous across element interfaces. 

Therefore, our method is locally conservative. Moreover, there is no pressure oscillation of 

our method because the continuity of the tangential component of elasticity part are imposed 

by using an interior penalty Discontinuous Galerkin method. After introducing the spatial 

discretization, we present a semi-discrete scheme and a fully discrete scheme. The existence 

and uniqueness of solutions of the semi-discrete scheme and fully discrete scheme are 

proved by analyzing the corresponding differential algebraic equations (DAEs). Then, under 

some assumptions on the regularities of the solution, we derive the optimal error bound for 

each variable.
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