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Abstract
Objective
To determine the clinical, radiologic, and molecular characteristics of RNA polymerase
III-related leukodystrophy (POLR3-HLD) caused by biallelic POLR1C pathogenic variants.

Methods
A cross-sectional observational study involving 25 centers worldwide was conducted. Clinical
and molecular information was collected on 23 unreported and previously reported patients
with POLR3-HLD and biallelic pathogenic variants in POLR1C. Brain MRI studies were
reviewed.
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Results
Fourteen female and 9 male patients aged 7 days to 23 years were included in the study. Most participants presented early in life
(birth to 6 years), and motor deterioration was seen during childhood. A notable proportion of patients required a wheelchair
before adolescence, suggesting a more severe phenotype than previously described in POLR3-HLD. Dental, ocular, and
endocrine features were not invariably present (70%, 50%, and 50%, respectively). Five patients (22%) had a combination of
hypomyelinating leukodystrophy and abnormal craniofacial development, including 1 individual with clear Treacher Collins
syndrome (TCS) features. Brain MRI revealed hypomyelination in all cases, often with areas of pronounced T2 hyperintensity
corresponding to T1 hypointensity of the white matter. Twenty-nine different pathogenic variants (including 12 new disease-
causing variants) in POLR1C were identified.

Conclusions
This study provides a comprehensive description of POLR3-HLD caused by biallelic POLR1C pathogenic variants based on the
largest cohort of patients to date. These results suggest distinct characteristics of POLR1C-related disorder, with a spectrum of
clinical involvement characterized by hypomyelinating leukodystrophy with or without abnormal craniofacial development
reminiscent of TCS.

Leukodystrophies are a heterogeneous group of genetically
determined disorders affecting the cerebral white matter, with
or without involvement of the peripheral nervous system.1,2

Hypomyelinating leukodystrophies, characterized by a severe
and permanent myelin deficit, form a large subgroup within
the leukodystrophies.3–5

RNA polymerase III–related leukodystrophy (POLR3-HLD)
is typically characterized by a combination of neurologic and
non-neurologic manifestations.6,7 Cerebellar features are
usually prominent, with pyramidal signs involving the lower
more than the upper extremities. The non-neurologic mani-
festations include dental abnormalities, endocrine features,
and myopia.6 Brain MRI generally shows diffuse hypomyeli-
nation (mild T2 hyperintensity and variable T1 signal in-
tensity of the white matter) with relative myelin preservation
(T2 hypointensity) of specific structures.4–6,8 Cerebellar at-
rophy and thinning of the corpus callosum are common as-
sociated findings.6,8

POLR3-HLD is an autosomal recessive disorder. It was first
associated with pathogenic variants in POLR3A or POLR3B,
encoding the largest subunits of RNA polymerase III.6,9–13 It
was also recently associated with a homozygous pathogenic
variant in POLR3K.14 In 2015, variants in POLR1C, encoding
a common POLR1 and POLR3 subunit, were identified in 8
patients with POLR3-HLD.15 Pathogenic variants in
POLR1C were previously associated with autosomal recessive
Treacher Collins syndrome (TCS), a congenital disorder of
craniofacial development, in 3 unrelated patients.16

To date, the clinical spectrum of POLR3-HLD caused by
biallelic POLR1C pathogenic variants has not been described

in detail. We present a thorough phenotypic description of
this condition by reporting the clinical, imaging, and molec-
ular features of 23 genetically proven cases.

Methods
Twenty-three individuals were included in this multicenter
cross-sectional study. The participants were recruited be-
tween 2016 and 2018 based on their clinical and radiologic
features consistent with POLR3-HLD, combined with
proven pathogenic variants in POLR1C. They were
recruited from 25 different centers worldwide. Eight of the
23 patients have previously been published in the original
article identifying POLR1C as a causative gene for POLR3-
HLD, in 2015.15

A retrospective chart review was conducted for each partici-
pant. Participants of all ages were included in the study.
Clinical and demographic information was collected through
a questionnaire distributed to the referring physicians. Sex was
documented as observed by the physicians. Consanguinity as
well as ethnicity and/or country of origin were also assessed,
as reported by the participants and their families.

Brain MRI studies of 22 participants were reviewed by G.B.
and L.G. (11), N.I.W. (10), or D.T. (1). MRI was not avail-
able for 1 individual who died in the neonatal period. The
available studies were analyzed based on established criteria
for hypomyelination and previously published imaging char-
acteristics of POLR3-HLD.4–6,8 Biallelic pathogenic variants
in POLR1C were identified or confirmed in clinically certified
laboratories. The human genome version used for annotation
was GRCh37/hg19.

Glossary
POLR3-HLD = RNA polymerase III-related leukodystrophy; TCS = Treacher Collins syndrome.
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Figure 3B was generated using the Lollipops software.17 To
generate figure 3C, the sequences of human POLR1C and
yeast RPAC40 were aligned using Seaview.18 The yeast
equivalent residues found mutated in patients were identified
using the sequence alignment and were positioned on the
yeast RPAC40 taken from the POLR1 structure (PDB
5M5W).19 Figure 3C was created using Pymol.20

Standard protocol approvals, registrations,
and patient consents
Written informed consent was obtained from all participants or
their legal representatives. Consent was obtained from 1 par-
ticipant (patient 19) for disclosure of a photograph. The study
was approved by the ethics committees of theMcGill University
Health Center (11-105-PED) and VU University Medical
Center (2018.300). The patients and their families did not re-
ceive financial compensation for their participation in the study.

Data availability
The data sets were deposited in a publicly available database
(ClinVar number SUB5043960). Anonymized data will be
shared by request from any qualified investigator.

Results
Demographic data
Twenty-three individuals (14 female and 9 male patients)
from 21 families were included in the study. There were 2
consanguineous families (patients 1 and 13). The patients’
age at their last clinical assessment ranged from 7 days to 23
years (median 10 years). The demographic characteristics of
the 23 participants are reported in table 1.

Neurologic manifestations
The clinical characteristics of the participants are summarized
in table 1. The onset of symptoms was in infancy or child-
hood, ranging from birth to 6 years. Most patients (17/23,
74%) presented in the first 2 years of life, including 4 in the
neonatal period. For the majority of participants, the initial
symptoms consisted of motor difficulties (delayed motor
development, tremor, or gait impairment). Limited in-
formation was available on patient 20.2, who died early in the
neonatal period (at age 7 days). Of the other 22 individuals, 9
(41%) did not achieve independent walking, and ambulation
was delayed in most of the remaining patients. Nine of 22
participants (41%) had dysphagia, and 5 of them required
a gastrostomy tube (between ages 9 months and 10 years).

On examination, all 22 participants who were evaluated be-
yond the neonatal period had cerebellar signs (ataxia, dysar-
thria, dysmetria, intention tremor, and nystagmus), and many
had prominent tremor. Pyramidal signs were often more
pronounced in the lower extremities (14/22 participants,
64%). Dystonia was noted in 7/22 patients (32%). Cognitive
impairment (intellectual disability and/or cognitive regression)
was variable, seen in 15/21 individuals (71%) who were old

enough to be evaluated. Global deterioration with infections
was noted in almost half (10/22, 45%). In addition, seizures
were reported in 5/22 patients (23%), 1 of whom had events
during febrile episodes only and was not treated with anti-
epileptic medication.

Motor regression occurred in most of the patients (16/22,
73%) and was seen during childhood, between ages 2 and 8
years, except for 2 individuals who experienced regression
later (at 12 and 16 years). The use of a wheelchair was often
required before adolescence (13/22, 59%). Two of 23
patients died. One of them died in the neonatal period
(patient 20.2), and the other at age 10 years (patient 19),
both from cardiorespiratory failure. Both had presented in
the neonatal period and exhibited abnormal craniofacial
development. Patient 20.2 also had cardiac arrhythmias,
respiratory distress syndrome, and suspected adrenal
insufficiency.

Non-neurologic manifestations
Patient 19 was the only one described by the referring clini-
cian as having facial features compatible with TCS, including
downslanted palpebral fissures, strabismus, bitemporal nar-
rowing, external ear abnormalities, cleft palate, and prominent
micrognathia (figure 1). Four other individuals (patients 2, 3,
17, and 20.2) showed subtle evidence of abnormal craniofacial
development, with mild mandibular hypoplasia. Of note, pa-
tient 9 did not exhibit craniofacial abnormalities but had
laryngomalacia.

The entire dental, ocular, and endocrine features often seen in
POLR3-HLD were not always present, but all patients were
found to have at least 1 non-neurologic manifestation. Dental
abnormalities were seen in 16/23 individuals (70%): delayed
eruption, oligodontia or hypodontia, abnormal tooth shape,
malocclusion, neonatal teeth, or frequent cavities. Half of the
patients who were evaluated beyond the neonatal period had
myopia (11/22, 50%). Short stature was present in 11/
22 (50%).

Radiologic characteristics
Radiologic characteristics are presented in table 2 and figure 2.
Brain MRI studies were available for 22/23 participants
(96%). All showed diffuse hypomyelination, with relative
preservation (T2 hypointensity) of specific structures. Pre-
served myelination of the anterolateral thalamus was seen in
21/22 individuals (95%), and optic radiation in 18/22 (82%).
However, several patients did not exhibit all the radiologic
characteristics previously described in POLR3-HLD. Relative
myelin preservation was less consistently seen in the posterior
limb of the internal capsule (12/22, 55%), dentate nucleus
(12/22, 55%), and pallidum (11/22, 50%). In addition, 12/22
cases (55%) showed hypointense medial lemniscus. The
presence of myelin islets (better myelinated areas within the
white matter, T1 hyperintense and T2 hypointense21) was
also noted in a few patients (3/22, 14%).
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Table 1 Demographic, clinical, and molecular characteristics of 23 patients with POLR3-HLD caused by biallelic POLR1C pathogenic variants

Patient cDNA Protein DNA Protein

Sex/ethnicity
and/or country
of origin

Age at
onset
(y)

Use of a
wheelchair
(y)

Dysphagia/
G-tube (y) Microcephaly

Cerebellar
signs

Pyramidal
signs Dystonia

TCS
phenotype

AbN
craniofacial
development Myopia

Dental
AbN

Short
stature

Hypogonadotropic
hypogonadism

Death
(age)

1a c.95A>T p.Asn32Ile c.95A>T p.Asn32Ile M/Libyan 1 − −/− − + + − − − − + + − −

2 c.221A>G p.Asn74Ser c.221A>G p.Asn74Ser M/Hungarian 1 6 +/10 − + + − − + − + − NA −

3 c.436T>C p.Cys146Arg c.883_
885delAAG

p.Lys295del M/Asian
(Chinese)

1 − +/− + + + + − + − + + pP −

4 c.77C>T p.Thr26Ile c.326G>A p.Arg109His F/Caucasian
(Armenian)

2 − −/− − + + − − − − + − pP −

5 c.193A>G p.Met65Val c.572G>A p.Arg191Gln F/Caucasian
(Australian)

1.5 8 +/− − + + − − − − − + − −

6 c.326G>A p.Arg109His c.970G>A p.Glu324Lys F/Caucasian
(Turkish)

4 11 +/− − + + + − − + − + − −

7 c.395G>A p.Gly132Asp c.461_
462delAA

p.Lys154fs*4 F/Caucasian
(German)

1.2 0 −/− − + − − − − + + + pP −

8 c.281T>C p.Val94Ala c.785T>C p.Ile262Thr M/Caucasian
(Dutch)

1.2 0 NA − + − −M − − + − − − −

9b

(303565)
c.69+1G>A p.Asn24Asnfs55*

(prediction)
c.836G>A p.Arg279Gln M/Caucasian

(British)
0 NA +/0.75 + + + − − −L − + − pP −

10.1 c.916_
920delTATAT

p.Tyr306Leufs*4 c.938C>T p.Thr313Met M/Caucasian 4 − −/− − + − − − − − + − − −

10.2 c.916_
920delTATAT

p.Tyr306Leufs*4 c.938C>T p.Thr313Met M/Caucasian 4 − −/− − + − − − − + + − − −

11 c.193A>G p.Met65Val c.733G>A p.Val245Met M/Caucasian
(Dutch)

2 − −/− − + − − − − + − − − −

12 c.313A>T p.Ile105Phe c.916_
920delTATAT

p.Tyr306Leufs*4 F/Caucasian
(English)

3 12 −/− + + − − − − + + − pP −

Continued
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Table 1 Demographic, clinical, and molecular characteristics of 23 patients with POLR3-HLD caused by biallelic POLR1C pathogenic variants (continued)

Patient cDNA Protein DNA Protein

Sex/ethnicity
and/or country
of origin

Age at
onset
(y)

Use of a
wheelchair
(y)

Dysphagia/
G-tube (y) Microcephaly

Cerebellar
signs

Pyramidal
signs Dystonia

TCS
phenotype

AbN
craniofacial
development Myopia

Dental
AbN

Short
stature

Hypogonadotropic
hypogonadism

Death
(age)

13a,b

(279603)
c.836G>A p.Arg279Gln c.836G>A p.Arg279Gln F/Caucasian

(English)
2 7 −/− + + + + − − − − + pP −

14 c.88C>T p.Pro30Ser c.916_
920delTATAT

p.Tyr306Leufs*4 F/Norwegian 0.3 0 −/− − + − + − − + + − pP −

15 c.221A>G p.Asn74Ser c.502G>A p.Val168Met +
splicing error

F/Caucasian
(English)

0 0 +/1 + + + + − − + + + pP −

16 c.79A>G p.Thr27Ala c.349G>C p.Ala117Pro F/Caucasian 6 − −/− − + + − − − − + − − −

17 c.322C>T p.His108Tyr c.325C>T p.Arg109Cys F/Caucasian 0.4 0 +/− + + + − − + − + − − −

18 c.70-1G>A p.Asn24Profs27*
(prediction)

c.835C>T p.Arg279Trp F/African
American

2 11 −/− + + + − − − − − + pP −

19 c.699C>G p.Tyr233* c.883_
885delAAG

p.Lys295del F/Caucasian 0 3 +/2 + + + + + + + + + pP 10 y

20.1 c.88C>T p.Pro30Ser c.615delC p.Gln206Lysfs*48 M/Caucasian 1 4 +/7 + + + + − − +C + + pP −

20.2 c.88C>T p.Pro30Ser c.615delC p.Gln206Lysfs*48 F/Caucasian 0 NA NA + NA NA NA − + NA − NA pP 7 d

21 c.77C>T p.Thr26Ile c.77C>T p.Thr26Ile F/Asian 3.5 − -/- − + − − − − + + + pP −

Abbreviations: AbN = abnormal; C = cataracts; G-tube = gastrostomy tube; L = laryngomalacia; M = myoclonus, NA = not available; P = puberty; pP = prepubertal; POLR3-HLD = RNA polymerase III-related leukodystrophy.
Patients 1–8 have previously been published.15 Patients 9 and 13 have been reported in DECIPHER (identifier between brackets). Novel disease-causing variants are in bold.
a Consanguinity.
b Contribution of the DDD study.
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The vast majority exhibited thinning of the corpus callosum
(21/22, 95%) and cerebellar atrophy (19/22, 86%), often
mild. Posterior white matter atrophy was present in 7/22
cases (32%). Diffuse supratentorial atrophy was also seen in
6/22 participants (27%), without clear correlation with age or
clinical severity.

In 16/22 individuals (73%), MRI revealed areas of prominent
T1 hypointensity of the white matter, which is not typically
seen in POLR3-HLD. One patient (patient 20.1) exhibited
very atypical MRI features, with pronounced T2 hyper-
intensity and corresponding T1 hypointensity of the deep
white matter and polymicrogyria.

Molecular findings
A total of 29 different variants in POLR1C were identified,
including missense variants, frameshift variants, and splice site
variants (table 1 and figure 3). Twelve novel disease-causing
variants in POLR1C were identified. Four participants were
homozygous, and 19 were compound heterozygous. The
most common variants were c.916_920del (p.Tyr306-
Leufs*4), identified in 4 individuals from 3 unrelated families
(patients 10.1, 10.2, 12, and 14), c.88C>T (p.Pro30Ser), in 3
participants from 2 unrelated families (patients 14, 20.1, and
20.2), and c.221A>G (p.Asn74Ser), in 2 patients from 2 un-
related families (patients 2 and 15). Segregation was con-
firmed in family members for whom DNA was available for
sequencing.

Discussion
Our findings suggest that POLR3-HLD caused by biallelic
POLR1C variants is characterized by a spectrum of clinical
features, with hypomyelinating leukodystrophy at times ac-
companied by craniofacial abnormalities reminiscent of TCS,
with varying severity. In addition to the 5 patients who had
a combination of neurologic and craniofacial manifestations, 1
patient had laryngomalacia without any other signs of ab-
normal craniofacial development. Narrowing of the airway is
another common manifestation of TCS that is not typically
seen in POLR3-HLD.22

TCS is a ribosomopathy, and all 3 genes implicated to date
(TCOF1, POLR1D, and POLR1C) are involved in pre-rRNA
transcription.23 Most cases of TCS are caused by heterozygous
pathogenic variants in TCOF1.22,24,25 Autosomal recessive TCS
attributed to pathogenic variants in POLR1C is rare, with only 5
affected individuals reported since 2011.16,26 Of these 5 patients,
4 had normal motor development, and there was no information
available for the fifth. Brain imaging findings were not
reported.16,26 POLR3-HLD is known to be associated with
variable clinical severity, with later onset and very mild course in
some patients.6 There is 1 reported patient in the literature with
no neurologic signs at age 21 years.6 It is alsowell established that
hypomyelination on brainMRI is not obligate in POLR3-related
disorder.27–30 Therefore, we cannot exclude that the 5 patients
with TCS attributed to variants in POLR1C could have a mild
form of POLR3-HLD, with only subtle neurologic manifes-
tations, if any. We suspect that there is a spectrum of disease
severity for both the hypomyelination and the non-neurologic
manifestations in POLR3-HLD caused by biallelic POLR1C
variants, as it is the case in patients carrying pathogenic variants
in POLR3A or POLR3B.6 It is likely that POLR1C-related dis-
order is underrecognized.

Our patients appeared overall to have a more severe neu-
rologic phenotype than the previously reported patients
with POLR3-HLD.6 Individuals with biallelic POLR1C
variants seem to have the most severe neurologic symp-
toms, followed by patients with biallelic POLR3A variants.
At the other end of the spectrum, POLR3B is known to be
associated with milder clinical features.6 In our cohort,
patients with an earlier onset of symptoms had a more
severe clinical course, did not achieve ambulation, and were
microcephalic, features that are very rarely associated with
TCS.22,24,25 There was no clear genotype-phenotype cor-
relation. Two of the 4 patients with onset of symptoms in
the neonatal period were also part of the group that had
abnormal craniofacial development. Otherwise, the pattern
of cerebellar and pyramidal signs seen in most of our 23
patients was consistent with the established phenotype of
POLR3-HLD.

Neurologicmanifestations are rarely seen in cases of typical TCS
caused by heterozygous pathogenic variants in TCOF1.22,24,25

Delayed speech development is thought to be secondary to

Figure 1 Photograph of patient 19 showing facial features
compatible with Treacher Collins syndrome (TCS)

Photograph of patient 19 at age 10 years. She had facial features in
keeping with TCS, including downslanted palpebral fissures, strabismus,
bitemporal narrowing, external ear abnormalities, cleft palate, and
prominent micrognathia.
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Table 2 Brain MRI characteristics of 22 patients with POLR3-HLD caused by biallelic POLR1C pathogenic variants

Patient Hypomyelination

T2
Hypointense
dentatus

T2
Hypointense
pallidum

T2
Hypointense
CST in PLIC

T2
Hypointense
lateral
thalamus

T2
Hypointense
optic
radiation

Thin
corpus
callosum

Posterior
white
matter
atrophy

Supratentorial
atrophy

Cerebellar
atrophy

WM areas of
marked T1
hypointensity

T2
Hypointense
medial
lemniscus

Other
findings

1 + + + − + + + − + + + +

2 + − − − + + + − − + + +

3 + − + − − + + − − + + −

4 + + + − + + + − − + + +

5 + − − + + + + − − + + −

6 + + − + + + + + − + + +

7 + − − + + + + − − + + −

8 + − − + + + + − + + + +

9 + + − + + + + − + − + +

10.1 + + + + + + + − − + + + MI

10.2 + + + + + + + − − + + + MI

11 + + + + + + + + − + + −

12 + + + − + + + + − + − −

13 + + + + + + + − − + + −

14 + − − − + − − − − − − −

15 + − − − + − + − + + − −

16 + + + − + + + + + + + +

17 + − − − + − + + − + − +

18 + + + + + + + − − + + +

19 + − + − + − + + + − − +

20.1 + − − + + + + − − + + − PMG

20.2 NA NA NA NA NA NA NA NA NA NA NA NA

21 + + − + + + + + − + − − MI

Abbreviations: CST = corticospinal tracts; MI = myelin islets; PLIC = posterior limb of the internal capsule; PMG = polymicrogyria; POLR3-HLD = RNA polymerase III-related leukodystrophy; NA = not available; WM = white matter.
Myelin islets and hypointense medial lemniscus are best assessed on 3T imaging.21
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conductive hearing loss, and delayed motor development is
hypothesized to be associated with atypical and severe TCS
presentation.24 Intellectual disability is also very uncommon;
there are 2 reported cases of TCS with intellectual disability
caused by deletions of TCOF1, with the cognitive impairment
being attributed to the deletion of contiguous genes.25 In ad-
dition, there are a few reports of exceptionally severe cases of
TCS with craniosynostosis and CNS anomalies (encephalocele
and holoprosencephaly).31 None of these patients had hypo-
myelination. Thus, the overlap between POLR3-HLD and TCS
appears to be unique to POLR1C-related disorder, although
variants in POLR1A, first associated with acrofacial dysostosis
(another category of craniofacial malformations), have also re-
cently been identified as causing leukoencephalopathy.32

A similar clinical overlap with another category of craniofacial
defects was identified in POLR3A-related disorder. Biallelic
POLR3A variants were found to cause Wiedemann-

Rautenstrauch syndrome, a neonatal form of segmental pro-
geria associated with growth retardation and abnormal facial
features, with some patients also exhibiting progressive neu-
rologic symptoms.33 It was suggested that the specific com-
bination of a variant with a strong functional effect on the
protein with a milder hypomorphic variant leads to the
Wiedemann-Rautenstrauch syndrome phenotype.33

Regarding non-neurologic manifestations, our findings re-
inforce that it is crucial to screen patients with POLR3-HLD
for dental abnormalities, myopia, and short stature. The
dental abnormalities are varied and can be very subtle. The
lower frequency of myopia in our cohort compared with
the previously reported patients with POLR3A or POLR3B
variants (50% vs 87%) may be at least partly due to the fact
that our patients were young. Myopia is known to progress
over time in patients with POLR3-HLD and may not have
started in the younger patients.

Figure 2 Brain MRI characteristics of 4 patients with POLR3-HLD caused by biallelic POLR1C pathogenic variants

Sagittal T1 (A, F, K, and P), axial T2 (B–D, G–I, L–N, and Q–S) and axial T1 (E, J, O, and T) images. (A–E) MRI of patient 18 obtained at age 11 years showing diffuse
hypomyelination with superimposed areas of pronounced T2 hyperintensity (C and D) and corresponding T1 hypointensity (E). Thinning of the corpus
callosum and mild superior vermis atrophy are also seen (A), as well as preserved myelination of the dentate nucleus (B), globus pallidus, anterolateral
nucleus of the thalamus, and optic radiation (C). (F–J) MRI of patient 4 obtained at age 5 years showing diffuse hypomyelination with preservation of the
dentate nucleus (G), anterolateral nucleus of the thalamus, and optic radiation (H). There is also thinning of the corpus callosum andmild vermis atrophy (F).
Areas ofmarked T2 hyperintensity of thewhitematter are seen (H and I), with corresponding pronounced T1 hypointensity (J). (K–O),MRI of patient 1 obtained
at age 5 years showing a thin corpus callosum (K), relative preservation of myelination of the dentate nucleus (L), and absent T2 hypointensity of the
corticospinal tracts in the posterior limb of the internal capsule (M). (P–T), MRI of patient 20.1 obtained at age 3 years showing areas of prominent T2
hyperintensity of the white matter (R and S) with corresponding T1 hypointensity (T), especially in the deep white matter. There is also bilateral frontal
polymicrogyria (R, S, and T). POLR3-HLD = RNA polymerase III-related leukodystrophy.
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In POLR3-HLD caused by POLR3A or POLR3B variants,
brain MRI generally shows diffuse hypomyelination with
relative myelin preservation of the anterolateral thalamus,
optic radiation, globus pallidus, dentate nucleus, and pyra-
midal tracts in the posterior limb of the internal capsule.4–6,8

In patients carrying POLR1C variants, the dentate nucleus
appeared to be less commonly spared (55%, compared with
93% in the literature).6 Myelin islets and hypointense
medial lemniscus were seen in only 14% and 55% of our
patients, respectively, however; it is important to mention
that these signs are best assessed on 3T imaging.21 Almost
all of our patients exhibited thinning of the corpus cal-
losum, regardless of their age or of the severity of supra-
tentorial atrophy. It is therefore unlikely to represent only
the result of diffuse atrophy. Alternatively, it could reflect
a more severe underlying white matter involvement. This
hypothesis is supported by the characteristic white matter

appearance on T1 images in many of our patients, showing
areas of more marked hypointensity. In our study, only few
of the participants had supratentorial atrophy, which is
probably in part due to the fact that they were all com-
paratively young.

We hypothesize that the atypical MRI characteristics of pa-
tient 20.1 could be attributable to 2 distinct conditions, as
migration abnormalities have never been formally associated
with POLR3-HLD.34 Alternatively, it is possible that it rep-
resents the more severe end of the neurodevelopmental
spectrum. Patient 20.2, the sister of patient 20.1, never un-
derwent a brain MRI as she died in the neonatal period.
However, she had atypical clinical features, including cardiac
arrhythmias. Cardiac anomalies are reported in several animal
models and a few human cases of TCS.22,35 In addition, 3
patients were recently diagnosed with POLR1C-related

Figure 3 Pathogenic variants identified in POLR1C associated with POLR3-HLD

(A–B) All reported pathogenic variants and their positions within the POLR1C gDNA (A), with missense variants represented in green, in frame in orange,
truncating in black, splice site in purple, and stop in red (B). (C) Missense variants displayed on the structure of the yeast ortholog of POLR1C (RPAC40).
Variants previously identified in POLR3-HLD are represented in italic, whereas newly identified variants are shown in bold. The p.Lys295del is shown in
orange. The p.Thr26Ile, p.Thr27Ala, and p.Pro30Ser variants have not been represented because they are not visible in the crystal structure of RPAC40 (PDB
5M5W).19,20,38–40 POLR3-HLD = RNA polymerase III-related leukodystrophy.
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disorder in 2 large studies applying whole-exome and whole-
genome sequencing to unsolved genetic cases. Their clinical
presentation included cardiomegaly, long QT syndrome, and
cardiomyopathy.36,37

In our cohort, variants were diverse and distributed across
POLR1C. Two participants carried the p.Arg279Gln variant
previously associated with TCS16: patient 9 (compound het-
erozygous with c.69+1G>A) and patient 13 (homozygous). It
was initially thought that TCS and leukodystrophy disease-
causing variants were distinct, leading to abnormal localization of
POLR1C in the nucleolus and abnormal assembly of the RNA
polymerase III, respectively.15 However, none of the individuals
carrying the TCS pathogenic variant p.Arg.279Gln showed signs
of abnormal craniofacial development, raising the question
whether the specific genotype combination (compound het-
erozygosity with p.Arg279Gln) is responsible for the presence or
absence of craniofacial abnormalities, but not the p.Arg279Gln
itself. Alternatively, a more complex mechanism than the pre-
viously described selective defects in POLR1 or POLR3 could be
involved. We postulate that other factors, such as genetic
modifiers and neonatal exposures, influence the pathophysiology
POLR1C-related disorders.

This study provides a comprehensive description of
POLR3-HLD caused by biallelic POLR1C pathogenic
variants based on the largest cohort of patients to date. We
present patients with both a hypomyelinating leukodys-
trophy and abnormal craniofacial development reminiscent
of TCS, suggesting a spectrum of clinical involvement in
patients with POLR1C-related disorder. These results il-
lustrate the expansion of a known phenotype in the field of
rare diseases.
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