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Abstract

The Tropical Andes region includes biodiversity hotspots of high conservation priority

whose management strategies depend on the analysis of forest dynamics drivers (FDDs).

These depend on complex social and ecological interactions that manifest on different

space–time scales and are commonly evaluated through regression analysis of multivariate

datasets. However, processing such datasets is challenging, especially when time series

are used and inconsistencies in data collection complicate their integration. Moreover,

regression analysis in FDD characterization has been criticized for failing to capture spatial

variability; therefore, alternatives such as geographically weighted regression (GWR) have

been proposed, but their sensitivity to multicollinearity has not yet been solved. In this sce-

nario, we present an innovative methodology that combines techniques to: 1) derive remote

sensing time series products; 2) improve census processing with dasymetric mapping; 3)

combine GWR and random forest (RF) to derive local variables importance; and 4) report

results based in a clustering and hypothesis testing. We applied this methodology in the

northwestern Ecuadorian Amazon, a highly heterogeneous region characterized by different

active fronts of deforestation and reforestation, within the time period 2000–2010. Our

objective was to identify linkages between these processes and validate the potential of the

proposed methodology. Our findings indicate that land-use intensity proxies can be

extracted from remote sensing time series, while intercensal analysis can be facilitated by

calculating population density maps. Moreover, our implementation of GWR with RF

achieved accurate predictions above the 74% using the out-of-bag samples, demonstrating

that derived RF features can be used to construct hypothesis and discuss forest change

drivers with more detailed information. In the other hand, our analysis revealed contrasting

effects between deforestation and reforestation for variables related to suitability to agricul-

ture and accessibility to its facilities, which is also reflected according patch size, land cover

and population dynamics patterns. This approach demonstrates the benefits of integrating

remote sensing–derived products and socioeconomic data to understand coupled socioeco-

logical systems more from a local than a global scale.
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1.1 Introduction

The Tropical Andes is a mountainous region at the base of the Andes ridge. Due to its altitudi-

nal gradient, it is characterized by 23 ecoregions and 8 bioregions [1], and it provides impor-

tant economic and ecological services to almost 40 million inhabitants [2]. The region is

recognized as an endangered biodiversity hotspot of high conservation priority [3,4], where

population growth and agriculture expansion [5,6] are the major driving forces of deforesta-

tion, contributing to potential impacts of climate change [7]. On the other hand, large-scale

reforestation has been detected in some areas of Latin America [8], especially along old coloni-

zation fronts [9]. However, these areas are less studied or understood, and their role in forest

recovery and restoration of important environmental services is ignored [10,11]. Therefore,

analyzing forest dynamics drivers (FDDs), i.e., deforestation and reforestation, in the Tropical

Andes is very important for conservation, climate change adaptation, and sustainability. This

knowledge is decisive for countries like Ecuador, where most of the remaining native forests

are located and deforestation rates have been the highest in South America for some years

[12,13].

Forest dynamics are shaped by complex societal and ecological interactions, or drivers.

Geist and Lambin [14] proposed a conceptual framework to facilitate the understanding of

these drivers of land dynamics, classifying them as follows:

1. proximate causes (local level, direct agents);

2. underlying causes (different levels, socioeconomic processes); and

3. other causes (determined by environmental factors and social triggering events).

These drivers have been accepted by countries participating in Reducing Emissions from

Deforestation and Forest Degradation (REDD+), but recent research has recognized that

underlying causes are less frequently analyzed in Latin America [6,15]. Proximate causes are

mostly identified through remote sensing–based techniques [16], while underlying causes can

be more complex, as they rely on socioeconomic data. These data are frequently not available

or reliable at the scale needed [17]. Moreover, impacts of globalization [18] and economic

development [11,19] generate more complex scenarios.

In Ecuador, previous studies combined remote sensing products and socioeconomic data

to identify FDDs. For instance, Southgate et al. [20] analyzed thematic cartography and census

data in a regression analysis to highlight agricultural rents, spontaneous settlements, and land

tenure insecurity as deforestation drivers in eastern Ecuador. Following a similar approach but

adding survey data, Rudel et al. [9] discussed reforestation drivers observed among ethnic

groups and their relationships between land-use practices, cultural backgrounds, and distance

to roads in southern Ecuador. Later, Mena et al. [21] combined thematic cartography, census,

and survey data in a spatial regression model to conclude that road accessibility and popula-

tion density were the most important deforestation drivers in northern Ecuador. Similarly,

Walsh et al. [22] identified that reforestation drivers were motivated by land security and dis-

tance to roads. More recently, Bonilla-Bedoya et al. [23] related deforestation processes to legal

timber harvesting, road expansion, and poverty indices. From these studies, it can be observed

that deforestation is not commonly associated with reforestation. In this paper, the evaluation

of contrasting driving forces (e.g., population growth/decay, agricultural expansion/contrac-

tion) with regard to possible linkages defines the first research interest.

Processing of multivariate data for FDD analysis has made significant progress in recent

years. For instance, advances in remote sensing and open access to satellite archives [24] have

contributed to a better understanding of global land-cover and land-use changes [25]. As a

A geographically weighted random forest approach for evaluate forest change drivers in the Ecuadorian Amazon

PLOS ONE | https://doi.org/10.1371/journal.pone.0226224 December 23, 2019 2 / 37

escala-50k/ All data from Natural Earth are available

from: https://www.naturalearthdata.com/ All

census data from INEC are available from: https://

www.ecuadorencifras.gob.ec/institucional/home/

Funding: SENESCYT: data collection and analysis.
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result, products derived from time series (e.g., spectral trends, class-level metrics) has been

increasingly applied to explain driving forces, making it possible to identify direct drivers [26]

or better understand ecosystem fragmentation [27]. Furthermore, censuses are common

sources of socioeconomic data, while processing of these data is not common in FDD analysis

of underlying causes. Obstacles such as boundary changes [28] and scale effects [29] are proba-

bly the most challenging, and different approaches have been proposed to solve them, includ-

ing areal interpolation [30,31] and statistical modeling [32–34]. Among them, areal

interpolation with dasymetric mapping is perhaps the most popular [35], as it can combine

land-cover maps and census data to model population distribution more precisely than other

methods [36]. Other advances are related to capturing the spatial variability of FDDs. In this

regard, geographically weighted regression (GWR) [37] has been demonstrated to satisfy this

objective [38,39], but is sensitive to local collinearity and can produce unreliable results [40].

Nonparametric algorithms such as random forest (RF) [41] have interesting applications for

high-dimensional problems with correlated variables [42]. Moreover, implementation of RF

with GWR has recently proposed [43] but further applications explaining variables relation-

ships are yet to be evaluated. The design of an innovative methodology for analyzing FDDs

using these techniques constitutes the second research interest of this paper.

As the Tropical Andes constitutes a complex mosaic of landscapes, a workflow to analyze

its FDDs is presented in this paper. We conducted our research in the Northwestern Ecuador-

ian Amazon (NEA), a study area located in an altitudinal gradient that includes different biore-

gions and colonization fronts with heterogeneous socioeconomic settings. Our main objective

was to explore a set of variable groups to observe how they influenced deforestation and refor-

estation rates in the NEA in 2000–2010. This period is known as the beginning of the dollariza-

tion and economic stabilization in Ecuador [44]. For this purpose, we designed and

implemented an experimental methodology for FDD analysis that benefits from the novel

techniques mentioned above. Two research questions guided our work:

• What are the theoretical and empirical implications of our experimental methodology in

FDD analysis?

• What could be the linkages between the driving forces of deforestation and reforestation in

the NEA during 2000–2010?

To answer these questions, we (i) explain how we calculated the forest change rates and

time series–derived products, (ii) conduct dasymetric mapping for intercensal analysis, and

(iii) briefly describe the variable groups before (iv) explaining our implementation of GWR

and RF, together with a clustering and hypothesis test to summarize our results. The discussion

considers the benefits and limitations of the proposed methodology and its contribution to the

current knowledge of FDDs in the NEA.

1.2 Study area

The NEA covers 21,857 km2 over an altitudinal gradient from 200 to 2,800 m.a.s.l. on the west-

ern slopes of the Andean Range (Fig 1). It includes 16 cantons (second-level administrative

units in Ecuador), which are used in this research to identify specific zones in the NEA.

According to Olson et al. [1], two ecoregions exist in the NEA: the Napo moist forests and the

Eastern Cordillera real montane forest. The latter is of the highest conservation priority in

Ecuador as it covers less than 33% of its original area [45]. Moreover, the NEA is characterized

by extraordinary biodiversity, intense annual precipitation (1,500–4,500 mm), and a multitude

of ecosystems [46]. Most of the soils are ferric, with low fertility and high aluminum toxicity,

although volcanic and alluvial soils can be an exception [47,48]. Under these conditions, the
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agricultural limitations are well known; however, this does not prevent the native people from

co-evolving with their natural environment [49]. Dramatic changes began in the 1970s with

the exploration and extraction of oil, generating accelerated economic growth and industriali-

zation [50]. Extensive road construction and the Agrarian and Colonization Reform of 1964

stimulated in-migration and rapid settlement over the whole Ecuadorian Amazon. According

to Brown et al. [51], its population grew by 432% from 1950 to 1990, resulting in an urban sys-

tem that followed the discovery of petroleum and the related economic opportunities. This led

to disorganized and arbitrary colonization where land conflicts between the colonos (mestizo

colonists) and native people were common and traditional land-use practices were replaced by

extensive agriculture and cattle ranching [55].

Forest clearing in the Ecuadorian Amazon peaked during 1970–1990, when the deforesta-

tion rate was one of the highest in South America [12]. In the NEA, the forested areas experi-

enced an 19.6% reduction (4130 km2) by the end of 2014, principally due to pasture expansion

for cattle ranching [56] (Fig 2). However, this was less intense than in the northeast NEA,

where oil fields were located [57]. The declaration of protected areas, which accounted for 29%

of the area and few oil discoveries [58], contributed to a reduced interest in colonization and

to deforestation. Improved road connections between Quito and Nueva Loja and recent oil

discoveries motivated further colonization of remote areas [59]. Despite this, reports indicate a

drop of deforestation from 92,800 to 74,000 ha/year–1 in Ecuador since 1990 [60].

Later, financial instability led to a crisis that ended with the dollarization of the Ecuadorian

economy in September of 2000. A reduction in the inflation rate from 96 to 7% was seen as an

important sign of economic stabilization for the period 2000–2014 [44]. As consequence,

Ecuador experienced an unprecedented wave of emigration, especially between 2000 and 2007

Fig 1. Study area and its location in the Amazon basin. Data from Natural Earth [52] and Instituto Geográfico Militar (IGM) [53].

https://doi.org/10.1371/journal.pone.0226224.g001
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(around 483.000 migrants) [61]. Nevertheless, the effects of migration and remittances

through land-use change have been associated with an increase of agriculture activities rather

than land abandonment and forest transition in Ecuador [62].

1.3 Methods

This research was fully implemented using R programming language [63] and integrating spe-

cific libraries for spatial data [64,65], database management [66], parallel processing [67], and

data visualization [68]. For mapmaking, we used QGIS 3.4.3 Madeira [69]. Fig 3 shows the

workflow of the proposed methodology.

1.3.1 Annual forest change rates and remote sensing time series–derived

products

We collected a set of land-cover and land-cover change maps generated biannually for the

period 1990–2014 in the NEA. They were generated for previous research to monitor long-

term forest dynamics with scarce data [70], reporting an overall accuracy above 70%. Specifi-

cally, this approach uses the Landsat surface reflectance time-series product [71] to reduce it

into cloud-free biennial composites. Then, it trains and executes a supervised-classification

algorithm to derive land-cover maps, classified into 4 classes: evergreen forest, bamboo forest

(guadua spp.), bare soil/infrastructure, and pasture/cropland. This collection of maps is post-

processed and the classes are aggregated into forest and non-forest binaries to derive deforesta-

tion and reforestation areas. In the case of deforestation, the algorithm simply flags the date of

conversion from forest to non-forest, while for reforestation it first considers a minimum time

Fig 2. Land cover for 2008 in the study area. Data from Ministerio del Ambiente (MAE) [54].

https://doi.org/10.1371/journal.pone.0226224.g002
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classified as forest after a disturbance (i.e., 4 years) to flag it as reforestation if the area remains

as forest until the end of the time series. To derive the annual forest change rate, we first

Fig 3. Flowchart of the methodology: (a) derivation of forest change rates and time-series products; (b) census processing with dasymetric mapping; (c) data

integration; and (d) implementation of GWR and RF.

https://doi.org/10.1371/journal.pone.0226224.g003
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removed areas less than 1 ha from deforestation and reforestation maps, as they frequently rep-

resent misclassified pixels [26]. Then, the annual forest change rate q according to the UN

Food and Agriculture Association (FAO) [72] was calculated, considering A1 and A2 as forest

cover for time periods t1 and t2:

q ¼
A2

A1

� �1=ðt2� t1Þ

� 1

To operate this, we created an analysis grid with a cell size of 400 ha and extracted for each

cell the deforested and reforested areas between 2000 and 2010. These years were selected to

match the census years used in this research (2001 and 2010) as well as the cell size to reduce

processing time during calculation. The resulting deforestation and reforestation rates consti-

tuted the set of dependent variables analyzed (Fig 4), a summary of which is shown in Table 1.

Furthermore, historical land use influence ecological landscape functions and link cause–

connection patterns [73]. For this, we derived land-cover frequencies of deforested and refor-

ested areas to pasture/cropland and bare soil/infrastructure classes. This provided further

information about LCLUC dynamics and helped us to determine the permanence or semiper-

manence of a specific land-cover class Z. For this, we stacked the land-cover maps used in

deforestation and reforestation mapping to obtain time series M1:n, which was split to match

deforestation or reforestation date i. This gave us 2 segments, defining the conditions (1) after

a change Ma = Mi:n and (2) before a change Mb = M1:(i−1). For deforestation, the segment Ma

was used to determine the land-cover frequency f of class Z after a deforestation event Dfz. For

Fig 4. Annual forest change rates for: (a) deforestation and (b) reforestation. Data from Santos et al. (2018).

https://doi.org/10.1371/journal.pone.0226224.g004
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this, we summed up the class occurrences in Ma and divided the sum by the extent of the seg-

ment:

Dfz ¼
jfZ 2 Magj � 100

jMaj

For reforestation, segment Mb was used to determine the land-cover frequencies of class Z
before a reforestation event Rfz happened. Similarly, it was calculated by adding up their occur-

rences in Mb and dividing the sum by the extent of the segment:

Rfz ¼
jfZ 2 Mbgj � 100

jMbj

These calculations gave us 4 layers in total, describing the land-cover frequencies for pas-

ture/cropland and bare soil/infrastructure as percentages, for both deforestation (Fig 5A) and

reforestation.

A final time series–derived product was obtained from the Visible Infrared Imaging Radi-

ometer Suite (VIIRS) and its Nighttime Lights Time Series cloud-free composites (nightlights

2000–2010) [74]. This dataset constitutes a measure of visible and near-infrared emission

sources at night (e.g., cities, towns, gas flares, and other sources of persistent lighting), which

can refer to access to electricity and human development factors such as: access to education

[75], emissions of CO2 [76] or socioeconomic trends [77]. The latter motivated its use in this

research to enrich socioeconomic parameters. For this, we used Google Earth Engine [78] to

calculate a pixel-wise linear trend map for 2000–2010 using the stable light band from this

dataset. From the resulting pixel-wise linear model, we extracted its slope to determine its

trend (Fig 5B).

1.3.2 Dasymetric mapping and population change

We processed the 2001 and 2010 population censuses published by the National Institute of

Statistics and Census of Ecuador (INEC) [79,80] to generate population density surfaces with

dasymetric mapping. This technique allows redistribution of population counts from a set of

areal units into a grid using land-cover maps. To implement it, we extracted the most detailed

level of census information (census blocks) to avoid aggregation and bias effects [29]. More-

over, since rural population better explains conversion from forest to agricultural land [81], we

used census blocks from rural areas with an average size of 4,995 ± 10,250 ha and filtered the

population by working age (15–72 years). Following Mennis [82], we adapted his dasymetric

mapping with areal weighting approach to operate with rural populations. We first binarized

deforestation maps from 2000 and 2010 to produce 2 non-forest masks to represent areas

where rural populations were mostly settled in a specific year. Since other features not related

to rural population were also present in these masks (e.g., water bodies, cliffs, urban areas), we

Table 1. Descriptive statistics of dependent variables.

Variable Prefix q (%) Analysis grid (no. cells) Total area (ha) Data source

Mean SD2

Annual deforestation rate1 DEF –1.29 6.02 2418 967,200 [70]

Annual reforestation rate REF 2.08 11.23 1998 799,200

1 To facilitate map reading, absolute values from deforestation rates were used.
2 SD, standard deviation.

https://doi.org/10.1371/journal.pone.0226224.t001
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identified and removed them in order to be consistent with our focus on rural populations. As

further details were required to locate rural populations, a road accessibly model [83] was

added to these masks to facilitate their identification. We assumed that higher rural population

density would occur in areas with better road accessibility [21,84]; therefore, we reclassified

the road accessibly map into 3 travel time ranges (high: 0–1 h; medium: 1–3 h; low:>3 h) to

obtain what is called rural density classes. We considered only 3 classes, as the algorithm pro-

posed by Mennis [82] was not tested with more than 3. In the next step, we identified census

blocks that were almost completely within each rural density class to calculate their densities

(Table 2).

Fig 5. Time series–derived products for deforested areas: (a) land-cover frequencies and (b) stable nightlight changes.

https://doi.org/10.1371/journal.pone.0226224.g005

Table 2. Sampled census blocks and their population values.

Year Locations of census blocks

(cantons)

Rural density

classes

Population (no.

persons)

Area

(ha)

Population density

(persons/ha)

Sum

density

Population density

fraction

2001 LR1 High 36 4293 0.008 0.021 0.394

AJ2 Medium 34 3195 0.010 0.021 0.501

AR3 Low 23 10420 0.002 0.021 0.103

2010 LR High 68 4297 0.015 0.030 0.745

AJ Medium 42 3269 0.012 0.030 0.604

AR Low 18 10389 0.001 0.030 0.081

1 Refer to Loreto canton.
2 Refer to Arajuno canton.
3 Refer to Archidona canton.

https://doi.org/10.1371/journal.pone.0226224.t002
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We then averaged their population density fraction to obtain the next values: 0.570, 0.553,

and 0.092, which correspond to high, medium, and low rural density classes, respectively.

These values are dimensionless and are obtained by:

duc ¼
puc

phc þ pmc þ plc

where duc is the population density fraction of rural class u in census block c, and puc is the

population density (persons/ha) of rural class u in census block c and is divided by the sum of

all rural density classes (high h, medium m, and low l) and their census blocks. After calculat-

ing with all census blocks, the next step in the algorithm is to evaluate the area ratio. This oper-

ation divides the area of class u by 33.3% to adjust densities equally according to the difference

in area of each rural density class within that census block. This can be expressed as:

aub ¼
nub=nb

0:33

where aub is the area ratio of rural class u and nub is the number of grid cells of rural class u in

census block b, and nb is the number of grid cells in census block b. The next step is to calculate

the total fraction by multiplying duc and aub and dividing that result by the result of that same

expression for all 3 rural classes (h, m, l) in that census block:

fubc ¼
ðduc � aubÞ

½ðdhc � ahbÞ þ ðdmc � ambÞ þ ðdlc � albÞ�

where fubc is the total fraction of rural class u in census block b of spatial unit c. The final step

in the algorithm is to assign each rural class to grid cells within that census block. This was

done by dividing the population assigned to the rural class evenly among the grid cells in the

census block that has that rural class. This can be expressed as:

popubc ¼
ðfubc � popbÞ

nub

where popubc is the population assigned to one grid cell of rural class u in census block b of spa-

tial unit c. The result is a population density surface (Fig 6), which represents the number of

persons by pixel area (which was set as 1 ha to avoid census block elimination during vector-

to-raster conversion). We iterated the algorithm with 20 census variables (see Section 1.3.3) to

obtain population density surfaces. In all cases, the pycnophylactic property [85] was verified

by adding population density surface pixels and comparing them with their original values.

Only incomplete census blocks were observed as suspicious, because their geometry was modi-

fied during the study area extraction. Consequently, their counts were adjusted proportional

to their original areas before calculation. In the final step, population density surfaces for 2001

and 2010 were subtracted for each variable to obtain their change.

1.3.3 Variable groups

With the processed censuses, we defined a set of variable groups related to demographic fea-

tures and their change between 2001–2010. These were selected based on similar research

[86,87] and included the categories: age composition (Age), literacy level (Education), gender

distribution (Gender), household structure (Household), spoken languages (Language), and

work sectors (Work). These constituted the Socioeconomic and Sociocultural macro levels

(Table 3). Another set of variable groups was defined following similar research [6] to include

biophysical (Biophysical) and land cover (Land Cover) features, constituting the Landscape
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macro-level (Table 4). Moreover, cost-distance models of agricultural collection facilities

(palm oil, coffee, cacao, fruit, and milk products) were used as proxies of commercial agricul-

tural activities (Agriculture). Another variable group (Infrastructures) considered the Euclid-

ean distance to human-built infrastructures such as oil wells and mining blocks established

between 2000 and 2010. Additionally, we include here the linear trend map from the night-

lights 2001–2010 dataset. These variable groups formed the Commodities macro level

(Table 4). A total of 34 variables were organized in 10 groups and 4 macro levels, with their val-

ues extracted into the analysis grid cells as averages.

1.3.4 Geographically weighted regression (GWR) and random forest (RF)

GWR is a statistical method to model spatial relationships under the assumption of spatial

non-stationarity and location interdependency. It was conceived as an extension of linear

regression analysis incorporating local estimates and surface representations of relationships

among dependent and independent variables [37]. A GWR model can be specified as:

gi ¼ bi0 þ
Xm

k¼1

bik wki þ εi; i ¼ f1; . . . ; ng

where γi is the dependent variable at i location, βi0 is the estimated intercept at i location, χki is

a vector of k = {1,. . .,m} independent variables at i location and εi is the error term of the esti-

mation at i location. Since i is considered as an n × n (with n number of observations) diagonal

matrix in GWR, its formulation for local parameter estimates at i location is more conve-

niently expressed as:

β̂ðiÞ ¼ ½XTWðiÞX�� 1XTWðiÞγ

where β̂ðiÞ is a vector of spatially weighted estimates for the k-th independent variables at i
location, X is a n × k matrix of independent variables, W(i) is the n × n diagonal weights matrix

which ensure that observations near i have the largest weight values rather than those further

away [90], and γ is a vector of k observations of the dependent variable. To define W(i) a

weighting function is declared considering: (1) the type of distance between i and its neigh-

bors, (2) a kernel function specifying the weighting scheme, and (3) the bandwidth distance to

control the number of observations within the kernel. Commonly, the Euclidean distance and

the exponential kernel function are used as the weighting scheme [91]. The latter is defined by:

Wij ¼ exp �
jdijj

bw

� �

where Wij is the weight assigned to observation j for the estimation of i, dij is the distance

between j and i, and bw is the bandwidth. The latter defines GWR mapping sensibility, as large

values result in global regression estimates, while small ones introduce randomness [92].

Moreover, bw can be set as a fixed (constant distance) or an adaptive kernel (constant number

of local observations). The latter is recommended, as it ensures a sufficient flow of information

for each local calibration, while its size can be determined through cross-validation [93]. We

implemented an adaptive exponential kernel function using Euclidean distance but tested dif-

ferent values for bw = {100,200,. . .,800} to determine it. Then, for each i and its neighbors, we

constructed an RF model instead of a linear regression.

Fig 6. Adult population density surfaces using: (a) census 2001, (b) dasymetric mapping 2001, and (c) dasymetric mapping 2010. The subtraction of the last two to

derive adult population density change 2001–2010 is shown in (d).

https://doi.org/10.1371/journal.pone.0226224.g006
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Table 3. Mean population densities change (2001–2010) for variables groups in socioeconomic and sociocultural macro levels using deforestation (DEF) and refor-

estation (REF) datasets.

Macro level Variable group Prefix Variables1 DEF REF Data source

Socioeconomic Age D_ygr Young population (15–25 y) 0.006 0.005 [79,80]

D_adt Adult population (26–45 y) 0.008 0.008

D_old Older adult population (45–72 y) 0.009 0.007

Education E_ilt Illiterate –0.001 –0.002

E_pri Primary education (1–6 y) -0.0009 -0.004

E_sec Secondary education (7–12 y) 0.018 0.020

E_hgr Higher education (>13 y) 0.003 0.004

Work W_agr Agricultural workers 0.010 0.008

W_ind Industrial workers –0.002 –0.002

W_ser Service workers 0.0006 0.001

Sociocultural Gender G_chm Chief male household 0.008 0.007

G_pom Male population 0.012 0.010

G_chf Chief female household 0.002 0.002

G_pof Female population 0.012 0.011

Household H_sma Small families (1–2 children) 0.002 0.002

H_med Medium families (3–5 children) 0.004 0.004

H_lar Large families (>5 children) –0.014 –0.016

Language L_spa Speak Spanish2 0.046 0.046

L_kcw Speak Kichwa3 0.029 0.032

L_wao Speak Huao Tededo4 0.0007 -0.0002

1 All variables are reported as population densities (persons/ha).
2 Most commonly spoken language by colonos in the NEA.
3 Second most commonly spoken language and ethnicity in the NEA.
4 The language of Huaorani people.

https://doi.org/10.1371/journal.pone.0226224.t003

Table 4. Mean values for variables groups in landscape and commodities macro levels using deforestation (DEF) and reforestation (REF) datasets.

Macro level Variable group Prefix Variables and units DEF REF Data source

Landscape Biophysical B_alt Altitude (m.a.s.l.) 656 716 [88]

B_fer Soil fertility (% organic matter) 1–2 1–2

B_rfl Annual rainfall (mm) 3588 3658

Land cover C_bsl Bare soil (% frequency) 31 25 [70]

C_pas Pasture (% frequency) 73 53

C_sze Mean patch size (ha) 6.5 4.9

C_fra Fractal dimension index (unitless) 1.07 0.79

Commodities Agriculture A_plm Accessibility to oil palm extraction facilities (h)1 1–3 1–3 [83]

A_cao Accessibility to coffee and cacao collection centers (h) 1 0.5–1 0.5–1

A_fru Accessibility to fruit collection centers (h) 1 1–3 1–3

A_mlk Accessibility to milk product collection centers (h) 1 1–3 1–3

Infrastructure I_oil Distance to oil wells (perforated between 2000 and 2010) (m) 1 250 299 [88,89]

I_min Distance to mining blocks (assigned between 2000 and 2010) (m) 1 109 95

I_ngt Stable nightlights trend 2000–2010 (slope) –0.27 –0.27

1 These variables were normalized (0–1) and inverted (i.e., maximum distance and travel time were assigned values near zero, contrary values near one) during GWR

modelling to facilitate interpretation but were transformed to their original units for reporting.

https://doi.org/10.1371/journal.pone.0226224.t004
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RF is an ensemble learning method for classification and regression that produces multiple

decision trees using bagging to select subsets of training samples and random feature selection

to split them [41]. It is easy to compute and is tolerant to missing and multicollinear data [94],

moreover it provides error estimates without requiring a validation dataset. During the train-

ing phase, it randomly sample with replacement, about two-third of the training samples

(referred to as in-bag samples) for a given training set T = {1,. . .,t} to grow a specified number

of trees to the largest extent possible, selecting randomly a number of variables V = {1,. . .,v} at

each node to determine their split. This gives an ensemble of classification or regression trees,

if T and V are bagged repeatedly B times to grow trees with these samples. After training, it

averages predictions from all individual regression trees or by taking the majority vote in clas-

sification. This can be summarized as:

For b = {1,. . .,B}:

1. Sample randomly, with replacement, n training samples and variables from T, V. Set them

as Tb, Vb.

2. Train a classification or regression tree on Tb, Vb. Set it as RFb.

End for

3. Average individual RFb results in regression or by taking the majority vote in classifica-

tion and calculate model performance

To monitor error, the remaining one-third samples (referred to as out-of-bag samples or

OBB) are used in an internal cross-validation technique [95], which computes the number of

correct predictions. Other accuracy metrics are also possible to derive from OBB (e.g. Kappa,

R-square, etc.). In addition, variables predictive power (or importance) can be calculated

through different approaches (e.g. Gini index, accuracy decrease, permutation) but permuta-

tion is mostly recommended [96].

While the vast majority of RF problems can be solved with a unique (or global) model;

here, we followed the approach of Georganos et al. [43] to combine GWR and RF to derive

multiple spatially weighted (or local) RF models. This is possible if during the bagging step of

RF, we assign to the neighbor observations of i a sampling probability based on the distance

weights or W(i). For this, we can reshape step one from the previous RF workflow as follows:

For b = {1,. . .,B}:

1. Apply W(i) probabilities in sampling, with replacement, for n training samples from T.

Sample n random variables from V. Set them as Tb, Vb.

..

.

Contrary to a global model, in this approach, an ensemble of spatially weighted (or local)

RF models are obtained. Their features can be mapped and among them we can mention: 1)

local variables importance (LVI), which shows variables predictive power locally (or spatially),

for each variable in V; 2) prediction results, which can be also reported as probabilities; and 3)

model performance. The latter includes specific metrics for classification (e.g. kappa index,

confusion matrix) or regression (e.g. r-squared, mean absolute deviation). To compute these

features, in the next section we explain how we implemented GWR and RF.

1.3.5 Implementation of GWR and RF

To operate this GWR and RF as an algorithm, we used the ranger [42] and GWmodel [97]

packages. The first case, is a fast C++ and R implementation of RF that allows weights for
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sampling training observations. This parameter, called case weights in the ranger function,

is used to define the spatial weights W(i) for observations near i. The second case, is a com-

plete toolbox for the geographically weighted approach, including functions for: regression

analysis, spatial metrics, weight-decay functions, among others. Since the proposed algo-

rithm (named from now as GWRF) involves multiple steps, we summarized them as a

pseudocode:
Algorithm 1: Geographically weighted random forest (GWRF)
INPUTS
Sp: spatial dataset (with dependent and independent variables); Dep:
dependent variable name; Kfun: kernel function;Ktyp: kernel type; Kbw:
kernel bandwidth;
OUTPUTS
LVI:variables importance; YHAT: prediction probabilities; ACC: accu-
racy metrics;
PROCEDURE
1: READ Sp; SET Dep as dependent variable; SET Outputs as an empty
list
FOR each i element IN Sp DO

2: CALCULATE distances from all elements in Sp to i; SET them as Di
3: SORT Di AND select those within Kbw; SET selected observations as

iobs
4: REMOVE variables with zero variance in iobs
IF Dep is categorical (classification problem)

5: UPSAMPLE unbalanced classes in iobs
END IF
6: CALCULATE spatial weights for iobs applying the Kfun; SET it as W

(i)
7: TRAIN Random Forest with iobs applying W(i) as sampling probabil-

ities; SET it as RFi
8: EXTRACT LVIi from RFi; REMOVE variables with negative scores in

LVIi
IF number of variables in LVIi are not equal to input Sp variables

number DO
9: TRAIN Random Forest with iobs applying W(i) as sampling prob-

abilities; UPDATE object RFi
10: EXTRACT LVIi from RFi; REMOVE variables with negative scores

in LVIi
END IF
11: SET removed variables in LVIi as zero
12: EXTRACT predictions (probabilities, predicted value); SET it

as YHATi
13: CALCULATE accuracy metrics (Kappa, R-squared, prediction fail-

ure, residual standard error); SET it as ACCi
14: SAVE LVIi,YHATi,ACCi into Outputsi
END FOR

15: MERGE Outputsfi1 ;...ing; SAVE outputs as LVI,YHAT,ACC spatial datasets
END PROCEDURE

Note that the algorithm inputs require to define the dependent variable and we set it as DEF
and REF to refer to the annual deforestation and reforestation rates (See Table 1). As the algo-

rithm assume that the rest of variables are independent, we can express them according to

their variables groups names:

Vars ¼ fLandscape;Commodities; Socioeconomic; Socioculturalg
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Where Vars refers to all variables described in Table 3 and Table 4. Now, we can represent

the calibration of GWRF for DEF as:

GWRFðSp ¼ DEFjVars;Dep ¼ DEF;Kfun ¼ exponential;Ktyp ¼ adaptative;Kbw

¼ f100 . . . ; 800gÞ

And similarly, for REF as:

GWRFðSp ¼ REFjVars;Dep ¼ REF;Kfun ¼ exponential;Ktyp ¼ adaptative;Kbw

¼ f100 . . . ; 800gÞ

After reading and preparing models (step 1), a loop is defined for process each element in

the spatial dataset Sp. This processing included operations such as:

• Data cleaning (steps 4, 5, 8, 10 and 11), following Genuer et al. [98] for recommended prac-

tices in RF variables selection analysis;

• GWR calculations (steps 2, 3 and 6), following Gao et al. [91], Farber et al. [93] and Gollini

et al. [90] to define kernel type Ktyp as adaptive, and its function Kfun as exponential;

• RF training (steps 7 and 9), following Breiman [41] and Wright et al. [42] for decide default

RF calibration (i.e. 500 decision trees, square root number of variables to split at in each

node, and permutation method for LVI calculation);

• Accuracy assessment (step 12 and 13), calculating Kappa and prediction failure in classifica-

tion; and R-squared and residual standard error in regression. This assessment is conducted

with the OBB samples;

• and Storing outputs (step 14 and 15). These included: LVI score for each variable in Vars,
predictions and probabilities (YHAT), and models accuracies (ACC).

Since all above calculations were computing demanding, we implemented GWRF for

parallel computing but processing time depended of kernel bandwidth Kbw (See S1 Appen-

dix). Furthermore, we tested GWRF for classification, reclassifying DEF and REF rates into

5 classes (see Fig 4), while for regression we maintained them as continuous values. To

decide the best approach, we compared results of ACC for different values of Kbw (see sec-

tion 1.3.4).

1.3.6 DEF and REF linkeages assesment

Since LVI results were extensive, we first plotted LVIDEF|VARS and LVIREF|VARS in a radar plot

[99] to observe how forest change rates were influenced by Vars. This facilitated identification

of variables with opposite predictive power in DEF and REF, which were selected to map and

observe with more detail. Moreover, we calculated variables correlation with forest change

rates to further explore their similitude with LVI. For the next step, we followed Freitas et al.

[39] and clustered LVIDEF|VARS and LVIREF|VARS. For this, we used the expectation-maximiza-

tion algorithm [100], as it allows continuous and categorical data. We determined 2 clusters

based on the gap statistics [101] to later select the one with the highest rate. We assume that

these areas represent active forest change fronts with similar variables importance, which distil

their driving forces. We named them as CLUSDEF and CLISREF groups and extracted Vars to
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test the next hypothesis:

H0 : CLUSDEFjVars ¼ CLUSREFjVars

H1 : CLUSDEFjVars 6¼ CLUSREFjVars

We applied the Wilcoxon rank sum test [102], which computes P-values that test the H0

hypothesis that the two groups have the same distribution. If H0 was rejected (P-value > 0.05),

we assumed a difference and subtracted the median values to observe if CLUSDEF|Vars was

higher or lower than CLUSREF|Vars. This operation allows us to classify results for each variable

in Vars according three categories:

• DEF and REF were equal (H0 is accepted; similar DEF and REF medians);

• DEF was greater (H0 is rejected; DEF is higher than REF median);

• DEF was lower (H0 is rejected; DEF is lower than REF median).

Additionally, we calculated the Cliff’s Delta [103] to observe the effect size of Vars in DEF
and REF. We applied the thresholds provided in Romano [104] to classify this metric into 4

classes (i.e. negligible, small, medium and large) and complete our analysis.

1.4 Results

1.4.1 Comparison between dasymetric mapping and censuses

We processed 21 census variables from 2001 to 2010 with dasymetric mapping (DAS) to com-

pare their population densities with those derived from unprocessed censuses (CEN). For this,

we calculated the population density for each variable and census year, using DAS and CEN

data sources to plot them and highlight their differences (Fig 7A). DAS exceeded CEN for vari-

ables with larger values (e.g., L_spa, G_pom, G_pof) but fell behind for those with smaller val-

ues (e.g., L_wao, H_sma, E_lit). On average, DAS obtained 0.06 ± 0.04 and 0.15 ± 0.12

persons/ha for the population density in 2001 and 2010, while CEN obtained 0.02 ± 0.01 and

0.09 ± 0.07 persons/ha, respectively. This means that DAS exceeded CEN by 145% in 2001 and

58% in 2010. Furthermore, we subtracted population densities in 2001 and 2010 in both

sources to obtain their change (Fig 7B). Similarly, it was observed that DAS exceeded CEN for

variables with large values (e.g., L_spa, G_pom, E_sec) but was inferior for those with small

values (e.g., H_lar, L_wao, E_lit). Averaging all variables, DAS obtained 0.08 ± 0.08 persons/ha

for the population density change between 2001 and 2010, while it was 0.07 ± 0.08 persons/ha

for CEN; i.e., an increase of 27% by DAS. Interestingly, by DAS, variables H_lar and L_wao

showed decreases of –23.2% and –31.2%, respectively, for the population density change

between 2001 and 2010.

1.4.2 Accuracy assessment of GWRF

We analyzed GWRF according to eight bw values and two approaches (classification and

regression) to decide which one achieved the highest accuracy. It can be seen that the classifi-

cation improved the Kappa as the size of bw increased, around 400 observations stabilized and

variability was reduced. Moreover, results for REF were better than for DEF, showing in both

cases a logarithmic curve with increasing bw (Fig 8A). This was shown by different regression

results, as the R-squared diminished with bw> 100 for DEF but was not seen as relevant for

REF (Fig 8B). This was interpreted as unexpected, as it is know that accuracy increases with

larger values of bw [93] until its value is large enough to cover all the study area and become a
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global average. For these reasons, we decided to use a classification approach for bw = 400, as

larger values did not significantly improve results, achieving a Kappa of 96 ± 2% for DEF and

97 ± 1% for REF. This indicated that the classification approach resulted in adequate predic-

tions for all classes considered but not in regression. This was probably due to the imbalanced

sampling introduced by the kernel during calculations. Finally, we mapped the Kappa for

GWRF with bw = 400 to observe its spatial distribution (Fig 9). Here we could see that the low-

est relative Kappa values (74–95%) covered areas with the largest rates (>2.5%) in DEF and

REF. This implies that GWRF resulted in poor predictions in areas where rates varied (e.g., JS

or La Joya de los Sachas in DEF, and TN or Tena in REF) than in areas with homogeneous rate

intervals or where few high rate peaks were observed.

1.4.3 LVI comparison and visualization

After the RF classification achieved acceptable results, we created radar plots using the LVI
results for the four macro levels considered. In the case of Landscape (Fig 10A), it can be seen

that variables related to land cover were important for both DEF and REF but those related to

Biophysical seem to be more in DEF. Among them, C_pas, C_bls, and B_alt were more impor-

tant in REF, while B_fer was only in DEF. Commodities (Fig 10B) indicates that variables

related to Infrastructures were more important in REF but those related to Agriculture were

more important in DEF. Among them, variables I_min and I_ngt were more important in

REF, while A_cao, A_fru and A_plm were more important in DEF. The Socioeconomic (Fig

10C) indicate that Work was more important in REF but Education was more important in

DEF with the exception of E_ilt. Furthermore, the variable group Age showed a similar result

Fig 7. (a) Population density differences between dasymetric mapping and census data for 2001 and 2010; and (b) subtraction to derive population

density change between 2001 and 2010. In both cases, variables were ordered according to magnitude and transparent color was used to see

overlapping areas (red is over blue).

https://doi.org/10.1371/journal.pone.0226224.g007
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between DEF and REF, but variable D_old appears to be more important in REF. Finally, the

Sociocultural (Fig 10D) indicate that all of them (Gender, Household, and Language) were

more important in DEF, with a few exceptions. It was seen that G_chf and L_wao variables

were only important in REF, while the rest of the variables were important in DEF.

Following, we mapped variables: B_fer, I_ngt, E_sec and H_med; as they showed opposite

predictive power. Fig 11 shows results for DEF and here it can be seen that high LVI values are

spatially related to high DEF rates as well. In REF, this was different as its observed low to

medium LVI values (Fig 12) except for variables E_sec and I_ngt whose values are higher in

areas with also high REF rates. This is particularly interesting, as these variables seem to be

good predictors in both DEF and REF when correlation exists. Following, results from correla-

tions between LVI and forest change rates (see S2 Appendix) indicated that E_pri and W_agr

were also good predictors (correlation > 0.131), while worse predictors were A_fru and L_wao

(correlation < 0.061). It was observed, that the latter were associated to zero LVI values (see

Fig 10) as this was the result of the cleaning routine of GWRF (see section 1.3.5). Furthermore,

it was observed that variables such as G_chm, E_hgr, H_med, L_kcw, B_alt and G_chf gener-

ated the opposed effect in DEF and REF. These variables have inverse relationships and high-

lights the complex structure of these land cover change dynamics. To facilitate the analysis of

these dynamics, in the next section, we report results from the clustering and the hypothesis

testing.

1.4.4 Clustering and hypothesis testing

After clustering LVI into two groups, we tested our hypothesis. In the case of CLUSDEF|Vars we

observed that its rate q achieved 2.0 ± 7.5% and included 1160 grid cells (464,000 ha), while in

CLUSREF|Vars the rate achieved 4.1 ± 16.4% and included 722 grid cells (288,800 ha). The

Fig 8. Accuracy metrics error bars for different bw sizes in GWRF: (a) classification (kappa) and (b) regression (R-squared). Points connect mean values in Kappa

and R-squared, while bars indicate standard deviations.

https://doi.org/10.1371/journal.pone.0226224.g008
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CLUSDEF|Vars was larger than CLUSREF|Vars with 438 grid cells (175200 ha) but also its rate was

lesser by 2.1%. Regarding their locations, both groups matched cantons where higher rates

were observed (Fig 13). Interestingly, a boundary between CLUSDEF|Vars and CLUSREF|Vars

appears at ~482 m.a.s.l. at cantons CH, LR, TN, and AJ (El Chaco, Loreto, Tena and Arajuno),

indicating the limit between these regions and their governing forest change phenomena.

Moreover, an overlap was seen between CLUSDEF|Vars and CLUSREF|Vars but it was marginal as

it included only three grid cells (or 1200 ha).

Following, we describe the results of the hypothesis. We first show results for variables

where CLUSDEF|Vars and CLUSREF|Vars medians were equal. This is summarized in the Table 5

and it can be noted that only variables from the Socioeconomic and Sociocultural macro levels

were present. These similitudes were also evidentiated by the Cliff´s delta, as resulting effect

sizes were negligible. We identified the next variable groups: Education (E_hgr), Gender

(G_chm), Household (H_med, H_sma), Language (L_kcw, L_spa and L_wao) and Work

(W_agr) and could observe that variables H_sma (small families) and W_agr (agriculture

workers) were close to be significant but their Cliff´s delta indicates that their magnitude

effects were still negligible.

The next section belongs to variables whose H0 was rejected. We first report variables

whose median value was lower in CLUSDEF|Vars. This is shown in Table 6 and here its seen vari-

ables from Commodities, Landscape and Socioeconomic macro levels exclusively. They were

represented by variables groups: Work (W_ind, W_ser), Agriculture (A_mlk, A_cao, A_fru),

Infrastructure (I_oil) and Biophysical (B_alt, B_rfl). From them, variables with the largest

Fig 9. Kappa for GWRF classification with b = 400 in (a) DEF and (b) REF datasets. Rates were filtered to values greater than 1% to enhance visualization.

https://doi.org/10.1371/journal.pone.0226224.g009
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difference meant that CLUSDEF|Vars was characterized by: higher accessibility to oil palm

extraction facilities (A_plm), closer distance to oil wells (I_oil), lower altitudes (B_alt) and

lower annual rainfall (B_rfl). Following, higher accessibility to fruit, coffee and cacao collection

centers (A_fru and A_cao) was also seen in CLUSDEF|Vars but their differences with CLUSREF|

Fig 10. LVI radar plot for: (a) landscape, (b) commodities, (c) socioeconomic, and (d) sociocultural macro levels. The asterisk (�) highlight mapped variables.

https://doi.org/10.1371/journal.pone.0226224.g010
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Vars were smaller. The opposite picture can be inferred from the abovementioned to describe

CLUSREF|Vars characteristics. On the other hand, the zero value of L_wao variable can be attrib-

uted to its absence in these regions. Finally, variables A_mlk, W_ind and W_ser seem to

achieved negligible differences; therefore, we qualified them as not relevant for our analysis.

Contrasting these results, we now report variables whose median value was higher in CLUS-

DEF|Vars. This is shown in Table 7 and in this case, all macro levels were observed. Among iden-

tified variable groups, we can mention: Infrastructure (I_ngt, I_min), Biophysical (B_fer),

Land cover (C_frac, C_pas, C_sze, C_bsl), Age (D_adt, D_ygr, D_old), Education (E_pri,

E_ilt, E_sec), Gender (G_pof, G_pom, G_chf) and Household (H_lar). From them, the only

variable that achieved a large difference was bare soil frequency (C_bsl). This indicated that

CLUSDEF|Vars was more prone to experience land clearing after tree removal. This is reasonable

if we consider that forest succession implies vegetation regrowth after land clearing. Following,

variables with medium effect size meant that CLUSDEF|Vars was characterized by: larger

patches sizes (C_sze) and higher pasture frequency (C_pas). In addition, other variables

with small effect size indicated higher population density for: secondary education (E_sec),

older adults (D_old), Illiterate (I_ilt), and female chief household (G_chf). Remaining also

in small magnitude, larger distance to mining infrastructures (I_min) seems to also charac-

terize CLUSDEF|Vars. For the remaining variables, i.e. I_ngt, B_fer, C_fra, D_adt, D_ygr,

E_pri, G_pof, G_pom and H_lar, a negligible effect size is observed and were less informa-

tive to identify differences between CLUSDEF|Vars and CLUSREF|Vars.

1.5 Discussion

1.5.1 Utility of remote sensing time series–related products for FDD

analysis

Some studies have successfully identified proximate causes in FDD analysis by using remote

sensing time series–related products [105,106]. In this research, we extended these applications

through the use of (i) grid-based rate calculations, (ii) derivation of land-cover metrics, and

(iii) trend analysis of Nighttime Lights Time Series to explore correlations with DEF and REF
rates. Except for the (i), due its simplicity, the other two deserve further discussion as they rep-

resent innovative approaches which are not well documented to our current knowledge. Deri-

vation of land-cover metrics indicates that it is possible to extract additional information from

remote sensing time series that can be useful for determining the degree of land-use intensity

from previous or posterior land-cover change events. This has been done using spectral trajec-

tories [107,108], but here we show how they can be derived from land-cover maps, with a less

sophisticated approach and comparatively limited results. With more dense optical and radar

time series availability, it might be possible to more precisely detect land-cover classes that are

usually not identifiable by their spectral features (e.g., coffee, cacao, forest plantations) but

rather by their spectrotemporal signatures, as other studies have demonstrated [109–111].

This could help to improve forest monitoring, but also improve agriculture-related accessibil-

ity models, which are more difficult to derive and validate. Furthermore, trend analysis of

Nighttime lights Time Series has shown that despite the low spatial resolution, they are still

useful for investigating unknown patterns that strengthen model predictions (see Section

1.4.3). This was made possible thanks to free cloud-based platforms that allow processing of

vast amounts of data from remote sensing time series and derivation of unprecedented

Fig 11. LVIDEF|Vars maps for selected variables: a) B_fer (soil fertility), b) I_ngt (stable nighlights), c) E_sec (secondary education); and d) H_med (medium

families). High values refer to increased predictive power. Rates were filtered to values greater than 1% to enhance visualization.

https://doi.org/10.1371/journal.pone.0226224.g011
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Fig 12. LVIREF|Vars maps for selected variables: a) B_fer (soil fertility), b) I_ngt (stable nighlights), c) E_sec (secondary education); and d) H_med (medium

families). High values refer to increased predictive power. Rates were filtered to values greater than 1% to enhance visualization.

https://doi.org/10.1371/journal.pone.0226224.g012
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products [25,112]. This opens new possibilities for future research and reformulating known

limitations due to processing capabilities and data availability. This does not mean that field

data, novel algorithms, and local knowledge can be shared to such platforms naively, as sensi-

tive information could be exposed and distributed without any ethical concern [113].

Fig 13. Local variable importance (LVI) clustering groups for (a) deforestation (DEF) and (b) reforestation (REF). Rates were filtered to values greater than 1% to

enhance visualization.

https://doi.org/10.1371/journal.pone.0226224.g013

Table 5. Wilcox test and Cliff´s delta magnitude calculation for variables where DEF and REF were equal.

Variable Median values Wilcox test Cliff´s Delta

DEF REF DEF−REF P−value (p) Significance1 Estimate (d) Magnitude2

E_hgr 0.0012 0.0011 0.0001 0.2753 � 0.0299 negligible

G_chm 0.0072 0.0029 0.0042 0.3264 � 0.0269 negligible

H_med 0.0021 0.0018 0.0004 0.8309 � 0.0058 negligible

H_sma 0.0018 0.0007 0.0011 0.0507 �� 0.0535 negligible

L_kcw 0.0099 0.008 0.002 0.408 � 0.0227 negligible

L_spa 0.0294 0.0264 0.003 0.5073 � -0.0182 negligible

L_wao 0 0 0 0.1773 � -0.0218 negligible

W_agr 0.0071 0.0007 0.0064 0.0528 �� 0.053 negligible

1 Significance thresholds: � (p> 0.1), �� (p < 0.1), and ��� (p< 0.05).
2 Based in Romano 2006: negligible (d < 0.33), small (d < 0.474), medium (d < 0.474), and large (d> 0.474).

https://doi.org/10.1371/journal.pone.0226224.t005
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1.5.2 DAS achievements and failures in intercensal analysis

Previous studies applying DAS have shown its effectiveness and improved performance for

census processing in urban areas [114,115], specifically its capability to harmonize data and

allow intercensal analysis. However, few studies have explored DAS in rural areas, as it was

done in this study to enhance our comprehension of underlying causes in FDDs. This is

because DAS reduces uncertainty in rural population mapping, as census blocks in rural areas

are generally large in their extension, depending mostly on larger administrative units and

have small population counts. Therefore, their population density calculations result in low

Table 6. Wilcox test and Cliff´s delta magnitude calculation for variables where DEF is lower.

Variable Median values Wilcox test Cliff´s Delta

DEF REF DEF−REF P-value Significance1 Estimate Magnitude2

B_rfl 3460,5 3927,8 -467,3 6.93e-96 ��� -0,5688 large

B_alt 332,9 639,5 -306,6 1,89e-210 ��� -0,8475 large

I_oil 89,1 391,6 -302,5 2,61e-195 ��� -0,8162 large

A_plm 1–3 >3 - 1,13e-147 ��� -0,6697 large

A_fru 1–3 1–3 - 4,96e-37 ��� -0,2846 small

A_cao 0.5–1 1–3 - 1,86e-33 ��� -0,3214 small

A_mlk 1–3 1–3 - 0,002 ��� -0,0771 negligible

W_ind 0,0001 -0,0005 -0,0004 3,89e-7 ��� 0,1389 negligible

W_ser 0,0006 0,0004 0,0002 0,0346 ��� 0,0578 negligible

1 Significance thresholds: � (p> 0.1), �� (p < 0.1), and ��� (p< 0.05).
2 Based in Romano 2006: negligible (d < 0.33), small (d < 0.474), medium (d < 0.474), and large (d> 0.474).

https://doi.org/10.1371/journal.pone.0226224.t006

Table 7. Wilcox test and Cliff´s delta magnitude calculation for variables where DEF is greater.

Variable Median values Wilcox test Cliff´s Delta

DEF REF DEF−REF P-value Significance1 Estimate Magnitude2

C_bsl 30,9 13,5 17,3823 2,97e-108 ��� 0,6035 large

C_sze 4,7 2,4 2,3 2,096e-43 ��� 0,3782 medium

C_pas 81,8 71 10,8 3,13e-56 ��� 0,4325 medium

G_chf 0,0017 0,0002 0,0014 1,49e-19 ��� 0,2476 small

E_sec 0,0137 0,0072 0,0065 5,25e-9 ��� 0,1598 small

E_ilt 0,0002 -0,0016 0,0018 2,78e-14 ��� 0,2083 small

D_old 0,0068 0,0031 0,0037 2,01e-9 ��� 0,1642 small

I_min 88,6 60,2 28,4 2,49e-16 ��� 0,2244 small

I_ngt -0,2907 -0,2906 -0,0001 0,0023 ��� 0,0709 negligible

B_fer 1–2 1–2 - 1,04e-7 ��� 0,1254 negligible

C_fra 1,0754 1,0707 0,0047 1,911e-6 ��� 0,1304 negligible

D_adt 0,0077 0,0024 0,0053 0,0002 ��� 0,1011 negligible

D_ygr 0,006 -0,0008 0,0068 7,97e-8 ��� 0,1469 negligible

E_pri -0,0008 -0,003 0,0022 0,0035 ��� 0,08 negligible

G_pof 0,0077 0,0016 0,0061 1,46e-5 ��� 0,1187 negligible

G_pom 0,0112 0,003 0,0082 3,73e-7 ��� 0,1391 negligible

H_lar -0,0116 -0,0125 0,0009 1,63e-5 ��� 0,118 negligible

1 Significance thresholds: � (p> 0.1), �� (p < 0.1), and ��� (p< 0.05).
2 Based in Romano 2006: negligible (d < 0.33), small (d < 0.474), medium (d < 0.474), and large (d> 0.474).

https://doi.org/10.1371/journal.pone.0226224.t007

A geographically weighted random forest approach for evaluate forest change drivers in the Ecuadorian Amazon

PLOS ONE | https://doi.org/10.1371/journal.pone.0226224 December 23, 2019 26 / 37

https://doi.org/10.1371/journal.pone.0226224.t006
https://doi.org/10.1371/journal.pone.0226224.t007
https://doi.org/10.1371/journal.pone.0226224


figures that tend to obscure negative trends. Assuming that the data were collected properly,

we saw this effect with CEN results, as it hid negative trends for the variables L_wao and H_lar

(i.e., variables with small counts), contradicting DAS as well as other research observations in

this region [116]. This is particularly important, as future research may consider more precise

mapping approaches than choropleths to perform more reliable population density

calculations.

Furthermore, as we used a road accessibility model to enhance its location, some observa-

tions are worth mentioning. First, this input data incorporated restrictions on non-forest

masks with regard to areas less likely to be inhabited. Therefore, their use is valid under the

assumption that road accessibility and rural populations are related. However, other transpor-

tation sources (e.g., rivers, airfields) may attract rural populations, especially among indige-

nous groups in the Amazon [117]. This can generate a bias effect that forces allocation of

populations to exclusively road-related intervention areas. Moreover, errors in non-forest

masks (e.g., confusion with nonanthropic deforestation events, misclassified pixels) could add

additional noise that may explain why populations were allocated to areas not known to be

occupied (see eastern side of canton CH in Fig 6B, which is a ridge). While identifying and

eliminating these artifacts are important tasks in this approach, our recommendation is that

future research must improve the methods of rural population mapping before applying DAS,

such as using products from Nightlights products with higher spatial resolution than the used

in this research.

1.5.3 Advantages and limitations of GWR and RF

GWR is a proven methodology for capturing spatial nonstationary relationships, not as a

global overview but as a local estimate [118]. However, the use of this approach depends on its

calibration (especially for the bw parameter) and variable selection to reduce its sensitivity to

multicollineary. While some studies have proposed different ways to do this [119,120,121], in

this study we present a novel approach using the RF algorithm. Even though it was not possible

to determine the impact of variables directly from LVI, we could analyze all proposed variables,

no matter their multicollinearity, noise, or even type. This represents an advantage in over-

coming multicollinearity in GWR, but also selection bias effects [122], which are more com-

plex to control in multivariate problems. Moreover, LVI and its mapping showed the

predictive power of selected variables that helped not only to identify those relevant for model-

ling but also their spatial extent. This subsequently facilitated to extract regions with similar

physical and human impact characteristics, which allowed us to discuss with more detail

where spatial determinants were relevant to DEF and REF. This strengthens the need for better

strategies in land planning. Also future work is needed to explore more applications of

GWRFC, as we do not discuss other additional results (e.g. prediction probabilities) or RF

model interpretation approaches (e.g. partial dependence plots), which are also possible to

derive using this methodology (See S3 Appendix). Furthermore, clustering of LVI spatial rep-

resentations to later extract the impact of variables without any transformation of original val-

ues should be considered as another advantage. While Wilcoxon rank sum test allowed to

identify a similitude or difference between rates and variables; it was the Cliff´s Delta test,

which gave additional detail to quantify these findings. Critics of null hypothesis significance

testing [123, 124] and GWR [125], may have found this procedure more convenient that appli-

cation of parametric approaches in GWR, as assumptions failures and bias effects are less rele-

vant to non-parametric algorithms such as RF. Its further LVI clustering and identification of

focus areas allowed to conduct exploratory analysis of original data and statistical tests to better

discriminate specific variables interactions.
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Nevertheless, some limitations of the proposed methodology are important to mention.

Our approach does not constitute a GWR but rather a geographically weighted RF classifica-

tion (GWRFC; see S3 Appendix). As seen in Section 1.4.2, RF regression achieved a relatively

poor performance with respect to GWRFC, forcing our FDD analysis from a regression to a

classification problem. That is why we discretized our independent variables into classes and

up-sampled unbalanced cases during RF training. The latter operation allowed the GWRFC to

obtain acceptable results, as other studies also found [126]; however, is unknown whether

unbalanced sampling affected RF regression as well. Breiman [41] also warned the limited per-

formance of RF regression that may be also applied to our results. This highlights the need for

further research, and our recommendation is that experimentation with other nonparametric

algorithms, especially for regression analysis (e.g., support vector machines, neural networks)

should be considered, as novel studies has shown [127]. However, we must caution that GWR

is more accepted as an exploratory or interpolation technique rather than a predictive tool

[128,129], something already known in the literature but with only marginal discussion [130].

1.5.4 Linkages between DEF and REF in the NEA

Prior works on FDD analysis in Latin America have documented contrasting dynamics where

population growth, socioeconomic development, and agricultural expansion affect DEF and

REF differently [131]. In our research, we extend these findings to identify more specific and

localized FDDs, which enrich the explanations from those already known in the NEA (see Sec-

tion 1.1). With respect to their location, our results indicated two hotspots that highlighted the

tendency for DEF and REF to be spatially clustered, which supports Fagua et al. [132], showing

that forest change is not an accidental process, but rather is determined by geographical loca-

tion and intensity. In this regard, DEF showed a relationship with intense land-use changes

associated with oil extraction, increasing nightlight intensity, suitability for commercial agri-

culture [133], and accesibility to facilities (especially for palm oil, coffee and cacao). This land-

scape verifies the expansion of the oil industry, economic oportunities, and colonization of the

northern and western Ecuadorian Amazon [21,57,134]. This is in contrast to REF, as its bio-

physical setting (>482 m.a.n.m.) indicated less suitability for commercial agriculture (except

for coffeee and cacao) and diminished accesibility to their facilities. Moreover, an increasing

distance from oil wells but less distance from mining blocks indicates other natural resource

extraction interests [135]. Here, agroforestry systems with patches less than 4 ha combining

secondary forests, cacao, and coffee plantations seem to dominate the landscape. This is similar

to the traditional “chakra” land-use system described by Torres et al. [136] and to naturally

regenerated forests as a consequence of the abandonment of degraded pastures due to nutri-

tional limitations of soils in the region [137,138]. The latter may explain why accessibility to

milk production facilities was better than other related agriculture products in REF, but also

compares well with Rudel et al. [9] for the highest probability of REF at the shortest distances

to roads. This was manifested especially in abandoned pastures where colonos experienced an

important out-migration from the late 1980s, as is also described by Carr [81] as a regional

trend in Latin America. Nevertheless, future research may consider incorporate migration

censuses to corroborate these findings and identify where they manifest locally.

These differences between DEF and REF landscapes were also reflected in their demo-

graphic structure. Despite people of all ages (especially older adults, i.e. 45–72 y) from colonos
and Kichwas groups related to agricultural activities and secondary education showing more

of a link to DEF than REF, we found some variables that highlighted their particularities. In

this respect, the diminishing trend of high fertility and large families, which favors more REF
than DEF, is remarkable. This resembles the demographic and forest transition theories
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[11,139] that fit well considering the economic development after the discovery of oil in the

Ecuadorian Amazon. Another finding in this direction is increasing education years that

seems to have a positive effect on DEF and REF but the latter only when is related to higher

education. This suggests environmental externalities produced by education, as has also been

reported in other regions [140,141]. Furthermore, a slight DEF association was seen where the

male population exceeded the female population, a phenomenon observed in other studies

[142,143], but it was not true at all in our case, as chief female households were more strongly

associated with DEF, similar to the results of Sellers [144]. However, we found that the number

of chief male households exceeded female households for both DEF and REF indicated differ-

ent proportions. This suggests that land-tenure and land-use decision-making is mostly domi-

nated by males in the NEA, but this could be different among ethnicities, since a diminished

effect in both DEF and REF was observed for the Kichwa group respect to colonos but little or

no effect compared with the Huaorani group. This agrees with the results of Sierra et al. [145],

who reported levels of DEF and REF of 42.7% and 35.7% in the Kichwa territory and 0.3% and

0.4% in the Huaorani territory for almost the same period of time (2000–2008). This indicates

that language (as a proxy of ethnicity) together with gender should be considered in future

research to better characterize and discuss FDDs, as other studies have also suggested

[146,147].

1.6 Conclusions

This research underlines the importance of downscaling global problems to the local scale and

assessing individual drivers of land-use change in coupled socioecological systems. Applying

an experimental methodology fusing remote sensing time series products, dasymetric map-

ping, and GWRFC, we were able to support the analysis of the spatial distribution of the popu-

lation and forest dynamics in the Ecuadorian Amazon in more detail. Our findings reveal that

at the local scale, key FDDs identified at the global scale can be better described. This was dem-

onstrated in our study, as different groups played different roles in forest change, with varying

impact in different regions in the NEA. Accessibility to agricultural collection centers and dis-

tance to infrastructure had an influence on both DEF and REF. However, biophysical and

land-cover variable groups demonstrated that they could not be minimized, since they are

ancillary sources that support and corroborate findings focused on them, i.e., describing suit-

able conditions for agriculture or natural resource extraction. Furthermore, socioeconomic

and sociocultural variable groups had a strong influence on untangling population dynamics

and their relationship with forest change, which made interpreting the results challenging and

final statements fuzzier. Nevertheless, combining forest dynamics and population information

in a geospatial environment underlines their variable complexity and extent. Combining

aspects of livelihood patterns can be more meaningful than using proxies to represent individ-

ual aspects. The results of this study also highlight the roles of education, gender, and language

in forest dynamics, which are more studied in social sciences but therefore show a strong rele-

vance also for environmental studies. Interdisciplinary expertise and transdisciplinary

exchange are needed to foster a better understanding of coupled socioecological systems from

local to global scales. This can only be facilitated by inter- and transdisciplinary research.
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