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Abstract

Aim—To review how machine learning (ML) is applied to imaging biomarkers in neuro-oncology, 

in particular for diagnosis, prognosis, and treatment response monitoring.

Materials and Methods—The PubMed and MEDLINE databases were searched for articles 

published before September 2018 using relevant search terms. The search strategy focused on 

articles applying ML to high-grade glioma biomarkers for treatment response monitoring, 

prognosis, and prediction.

Results—Magnetic resonance imaging (MRI) is typically used throughout the patient pathway 

because routine structural imaging provides detailed anatomical and pathological information and 

advanced techniques provide additional physiological detail. Using carefully chosen image 

features, ML is frequently used to allow accurate classification in a variety of scenarios. Rather 

than being chosen by human selection, ML also enables image features to be identified by an 

algorithm. Much research is applied to determining molecular profiles, histological tumour grade, 

and prognosis using MRI images acquired at the time that patients first present with a brain 
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tumour. Differentiating a treatment response from a post-treatment-related effect using imaging is 

clinically important and also an area of active study (described here in one of two Special Issue 

publications dedicated to the application of ML in glioma imaging).

Conclusion—Although pioneering, most of the evidence is of a low level, having been obtained 

retrospectively and in single centres. Studies applying ML to build neuro-oncology monitoring 

biomarker models have yet to show an overall advantage over those using traditional statistical 

methods. Development and validation of ML models applied to neuro-oncology require large, 

well-annotated datasets, and therefore multidisciplinary and multi-centre collaborations are 

necessary.

Introduction

A biomarker, a portmanteau of biological and marker, is defined as a characteristic that is 

measured as an indicator of normal biological processes, pathogenic processes, or responses 

to a therapeutic intervention.1 Molecular, histological, imaging, or physiological 

characteristics are types of biomarkers. Well-known biomarkers in neuro-oncology include 

demographic features (such as age) and tumour features (such as grade and O6-

methylguanine-DNA methyltransferase [MGMT] promoter methylation status), while 

imaging biomarkers are used for diagnosis, prognosis, and treatment response monitoring.

Magnetic resonance imaging (MRI) is typically used throughout the neuro-oncology patient 

pathway because routine structural imaging provides detailed anatomical and pathological 

information, and advanced techniques (such as 1H-magnetic resonance spectroscopy) 

provide additional physiological detail.2 Qualitative analysis of a new intracranial mass aids 

diagnosis and can determine whether or not to proceed to confirmatory biopsy or resection 

in routine clinical practice. For example, with some basic demographic information, such as 

patient age, and with some clinical information, such as knowledge that the mass was found 

incidentally whilst investigating an unrelated condition, the qualitative routine structural 

imaging features of a grade 1 meningioma allow diagnosis with high precision (positive 

predictive value) without the need for confirmatory biopsy. Advanced imaging techniques 

allow quantitative analysis of abnormalities that can change management. For example, 

cerebral blood volume values obtained using dynamic susceptibility-weighted contrast-

enhanced imaging (DSC) imaging within an area of tumour contrast enhancement, or 1H-

magnetic resonance spectroscopic ratios acquired from a mass, may help determine whether 

a tumour is of high histological grade (grade 3 or 4) in certain scenarios.

Some image analysis recommendations, which determine treatment response of high 

histological grade gliomas (Box 1), have become common in the research setting and rely on 

simple linear metrics of image features, namely the product of the maximal perpendicular 

cross-sectional dimensions of contrast enhancing tumour (in “measurable” lesions, which 

are defined as >10 mm in all perpendicular dimensions).3,4 Nonetheless, seemingly simple 

measurements can still be challenging because tumours have a variety of shapes, may be 

confined to a cavity rim, and the edge may be difficult to define. Indeed, large, cyst-like 

high-grade gliomas are common and are often “non-measurable” unless a solid peripheral 

nodular component fulfils the above “measurable” criteria.
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Much research in image analysis aims to extract underlying quantitative information from 

the imaging dataset to develop biomarkers that may not be readily visible to individual 

human raters; this is radiomics. Typically, radiomics consists of the following phases: pre-

processing images, feature estimation (quantifying or characterising the image), feature 

selection (dimensionality reduction to remove noise and random error in the underlying data, 

and therefore, reduce overfitting), classification (decision or discriminant analysis) and 

evaluation11 (Fig 1). Pre-processing typically constitutes a major part of most studies. 

Although many steps can be taken prior to patient imaging to reduce the pre-processing 

burden (e.g., overcoming geometric distortion through phantom analysis or reduce image 

noise through signal averaging), typically images will require intensity non-uniformity 

correction (through estimation of bias field), noise reduction (through careful application of 

filters), motion correction, and intensity normalisation (through transformation of intensity 

to standard scale), and often spatial normalisation (different brains anatomically aligned 

through geometrical transformation), and segmentation. Pre-processing pipelines are 

complex, but potentially can have empirical, data-driven, and complete machine learning 

(ML) solutions to the problems described above,13 including quantification of the inherent 

uncertainty.14

Some research has leveraged applied statistical models, some ML models and many both. 

The basic difference between them is that statistics draws population inferences from a 

sample, and ML finds generalisable predictive patterns.15 Some of the recent shifts towards 

ML can be attributable, firstly, to ML methods being effective when applied to “wide data”, 

where the number of input variables exceeds the number of subjects; and secondly, to 

applied statistical modelling being inherently designed for data with tens of input variables 

and sample sizes smaller than those seen with current data curation (big data). Together, 

these explain some of the recent shifts towards ML. In this review, we focus on ML 

approaches to neuro-oncology radiomics (Box 2).

There has been a long history of using ML in neuro-oncology, and even neural networks 

have been applied to classifier tasks for more than two decades16; however, recent work has 

made use of improvements in technology to allow the use of much more complex 

supervised, unsupervised, and reinforcement ML including the use of deep (multiple 

layered) neural networks (some relevant open source tools are listed in Electronic 

Supplementary Material Box S1). Nonetheless, for now, most radiomic work uses explicit 

rather than implicit feature engineering techniques (i.e., features chosen by imaging 

scientists such as texture,17 rather than features identified by an algorithm).

Evaluation in image analysis research initially consists of analytical validation, where 

accuracy and reliability of the biomarker are assessed.18 Accuracy determines how often a 

test is correct in a given population (the number of true positives and true negatives divided 

by the number of overall tests). Accuracy alone is limited and other metrics derived from the 

confusion matrix are typically employed such as precision (positive prediction value), recall 

(sensitivity), the F1 score (recall and precision combined), balanced accuracy (the mean of 

sensitivity and specificity) and area under the receiver operator characteristic curve (AUC). 

Clinical validation is the testing of biomarker performance, typically in a clinical trial. One 

weakness of much current work is that novel approaches are validated against existing 
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biomarkers. For example, an attempt to validate a new DSC imaging biomarker for treatment 

response monitoring may involve benchmarking it against a common biomarker for 

treatment response, such as the product of the maximal perpendicular cross-sectional 

dimensions of contrast enhancing tumour, rather than overall survival; however, the common 

biomarker itself may not be rigorously proven to be clinically valid. Indeed, when the 

maximal perpendicular cross-sectional dimensions of contrast-enhancing tumour have been 

used to determine progression-free survival in high-grade glioma, there may be false-

positive progression (pseudoprogression described below) or, when bevacizumab is added to 

the treatment regimen, false-negative progression (pseudoresponse). Even expert 

recommendations4 for avoiding false-positive progression through careful timing of cross-

sectional measurements are flawed, requiring modifications.12 False-negative progression is 

a concern in the United States, but rarely in Europe as the European Medicines Agency 

concluded that the progression-free survival bevacizumab trial outcome measures were 

inherently confounded and the use of bevacizumab is not supported.19

This review describes several illustrative radiomic studies aimed at developing imaging 

biomarkers for treatment response monitoring, prognosis, and prediction as well as diagnosis 

(outlined in the adjoining publication: deep learning can see the unseeable: predicting 

molecular markers from MRI of brain gliomas). We demonstrate how different ML 

strategies are used in classification in particular, as well as in feature estimation and 

selection. As is fundamental to biomarker development, the extent of analytical and clinical 

validation is highlighted. The studies described here, many of which are retrospective and 

performed in single centres, show that while there is considerable research on applying ML 

to neuro-oncology, the evidence is often poor thereby limiting clinical utility and 

deployment.20

Material and methods

The PubMed and MEDLINE databases were searched for articles published between 

September 2008 and 2018 (reviews) and September 2013 and 2018 (original research) using 

the search terms listed in Electronic Supplementary Material Table S1 based on variants of 

glioma and ML search term combinations. Those articles where there was no mention of a 

ML algorithm used in feature extraction, selection, or classification/regression were 

excluded. All articles that were not in the English language or did not have an obtainable 

English language translation were excluded. All articles that had no mention of imaging in 

the abstract or title were excluded.

Given that the review describes a broad range of studies involving several imaging 

approaches (a range of MRI sequences including structural and advanced techniques; also 

PET) and several target conditions (pseudoprogression, radiation necrosis, or a combination 

of both; complete response) it is not suitable for a PRISMA-DTA analysis addressing a 

specific question on diagnostic accuracy.21 Nonetheless, components of the PRISMA-DTA 

methodology have been incorporated where practicable.
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Results

The search strategy returned 1,549 initial candidate articles. Following the exclusion criteria 

(Electronic Supplementary Material Fig. S1), the final dataset consisted of 20 studies 

primarily assessing prognostic biomarkers and 14 studies primarily assessing monitoring 

biomarkers.

Monitoring biomarkers

Monitoring biomarkers are measured serially and may detect change in extent of disease, 

provide evidence of treatment exposure, or assess safety.1 There is an overlap with safety 

biomarkers that specifically determine any treatment toxicity. Monitoring blood or cerebral 

spinal fluid for circulating tumour cells, exosomes, and microRNAs shows promise18; 

however, imaging is particularly useful as it is non-invasive and captures the entire tumour 

volume and adjacent tissues and has led to recommendations to determine treatment 

response in trials.3,4 Clinical validation is typically not proven. Common biomarkers are 

frequently used as benchmarks in an attempt to validate indirectly the monitoring biomarker 

under development.

The commonest primary malignant brain tumour, glioblastoma, is a devastating disease with 

a progression free-survival of 15% at 1 year and a median overall survival of 14.6 months 

despite standard of care treatment.22,23 The standard of care treatment consists of maximal 

debulking surgery and radiotherapy, with concomitant and adjuvant temozolomide,22 but is 

associated with pseudoprogression. This describes false-positive progressive disease within 

6 months of chemoradiotherapy, typically determined by changes in contrast enhancement 

on T1-weighted MRI images, representing non-specific blood–brain barrier disruption24,25 

(Fig 2). Pseudoprogression confounds response assessment and may affect clinical 

management. It occurs in 20–30% of cases and is associated with better clinical outcomes.26 

Apparent tumour progression on MRI, therefore, commonly presents the neuro-oncologist 

with the difficult decision as towhether to continue adjuvant temozolomide or not. An 

imaging technique that reliably differentiates patients with true progression from those with 

pseudoprogression would allow an early change in treatment strategy with cessation of 

ineffective treatment and the option of implementing second-line therapies.27 This is an area 

of significant potential impact: only 50% of patients with glioblastoma receive second-line 

treatment, even in clinical trials.

Pseudoprogression is an early-delayed treatment effect, in contrast to the late-delayed 

radiation effect (or radiation necrosis).28 Whereas pseudoprogression occurs during or 

within 6 months of chemoradiotherapy, radiation necrosis occurs after this period, but at an 

incidence that is an order of magnitude smaller than the earlier pseudoprogression. In the 

sameway that it would be beneficial to have an imaging technique that discriminates true 

progression from pseudoprogression, an imaging technique that discriminates true 

progression from radiation necrosis would also be beneficial to allow the neuro-oncologist to 

know whether to implement second-line therapies or not.

For these reasons, multiple radiomic studies have attempted to develop monitoring 

biomarkers and ML has been central to the method (Table 1). Several of these studies are 
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described below in order to demonstrate a range of ML techniques, which incorporate 

different imaging approaches (e.g., different sequences and combinations of sequences) and 

serve as examples containing methodological strengths and weaknesses. Other monitoring 

biomarkers have been developed for other reasons including surveillance imaging of low-

grade gliomas, which will invariably transform to a high-grade glioma.29

Going solo: a single imaging type can be used to analyse pseudoprogression

In the first example, the study aim was to use an ML algorithm to differentiate progression 

from pseudoprogression in glioblastoma at the earliest time point when an enlarging 

contrast-enhancing lesion is seen within 6 months following chemoradiation completion, 

using T2-weighted images alone.12 Unsupervised feature estimation was performed to 

investigate topological descriptors of image heterogeneity (Minkowski functionals). 

Confounders were determined using principal component analysis and they showed that 

simple clinical features (e.g., Karnofsky performance status), were not discriminatory. 

Feature selection reduced the number of features to consider from 32 to seven. Supervised 

analysis with a support vector machine (SVM) and leave-one-out cross validation (LOOCV) 

gave an accuracy of 0.88 and AUC of 0.9 in a retrospective training dataset of 17 patients 

and the model gave 0.86 accuracy in a prospective test dataset of seven patients with 100% 

recall and 80% precision. Although not apparent to the reporting radiologist, the T2-

weighted hyperintensity phenotype of those patients with progression was heterogeneous, 

large, and frond-like when compared to those with pseudoprogression. The 

pseudoprogression phenotype on T2-weighted images was shown to be a distinct entity and 

different from vasogenic oedema and radiation necrosis.

Additional analytical validation was performed firstly in the form of reliability testing, 

which showed that a different operator performing segmentation achieved 100% 

classification concordance. Secondly, the same results using a different software package 

and a different operator were also obtained. Thirdly, a different feature selection method 

(random forest) and classifier (least absolute shrinkage and selection operator; LASSO) 

were used and also gave the same evaluation values with six similar selected features.

A strength of the study is that T2-weighted images alone were used increasing the chance of 

translation to the clinic; however, the study was small and performed in a single centre and 

the biomarker requires clinical validation in a larger multicentre test dataset (open access 

code was provided for others to study this).

In another study, the aim was also to use an ML algorithm to differentiate progression from 

pseudoprogression at the earliest time point when an enlarging contrast-enhancing lesion is 

seen, using [18F]-fluoroethyl-L-tyrosine (FET) positron-emission tomography (PET).30 The 

small, single-centre, proof-of-concept study which included all high-grade gliomas, showed 

that ML could be applied to imaging techniques other than MRI. First- and second-order 

statistics were obtained from the images of 14 patients and underwent unsupervised 

consensus clustering. The cumulative distribution function was used to determine the 

optimal class size. Feature selection by predictive analysis of microarrays methodology 

using 10-fold cross validation reduced the features from 19 to 10. Three class PET-based 

clusters were derived and progression and pseudoprogression could be differentiated with 
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90% recall and precision; however, there was no test dataset and the performance was 

similar to standard PET analysis using the maximal tracer uptake in the tumour divided by 

that in normally appearing brain tissue. This study highlights some of the challenges with 

such studies: the sample size is small, and there is no clear proof that the new approach is 

better than existing ones.

Another glioblastoma study aimed to differentiate progression from pseudoprogression at 

the earliest time point when an enlarging contrast-enhancing lesion is seen, using post-

contrast T1-weighted images alone.31 They constructed a convolutional neural network 

(CNN) using data from 59 patients and tested its performance in 19 patients. The model 

performed better when combined with clinical parameters than without, giving an AUC of 

0.83, area under the precision-recall curve (AUPRC) of 0.87, and F1-score of 0.74. As is the 

case with much CNN-based work, they were unable to determine which features were 

important among the input data. The optimal CNN model also performed better than a 

random forest model with clinical parameters alone, although it is worth noting that 

performance status was not included.32 The strengths were that the testing dataset came 

from a second hospital and that it used post-contrast T1-weighted images alone, which 

makes the approach potentially more applicable. Again, open access code is provided.

In summary, the three studies above demonstrate that a range of ML techniques can be used 

to differentiate progression and pseudoprogression using a single imaging type alone 

(whether T2-weighted or post-contrast T1-weighted MRI images or FET images) thereby 

increasing the chance of translation to the clinic. The importance of carefully crafting the 

clinical methodology in ML applications is high-lighted in the CNN and FET studies 

described above, because the aim to differentiate progression and pseudoprogression was not 

truly addressed. This is because pseudoprogression and radiation necrosis (late-delayed 

radiation effects) are not interchangeable terms.28 Although some researchers have 

interchangeably used the terms radiation necrosis and pseudoprogression,33,34 this should be 

avoided as there are differences in the clinical and radiological course of the two entities28 

and the histopathological and molecular phenotype differ.35 The CNN study and the FET 

study included a mixture of cases of pseudoprogression and radiation necrosis.

Over time: a longitudinal imaging series can be used to analyse pseudoprogression

Dictionary learning has been employed to differentiate progression from pseudoprogression 

by performing implicit feature engineering without the need for tumour segmentation. In one 

glioblastoma study, features were estimated by using spatiotemporal discriminative 

dictionary learning of longitudinal diffusor tensor imaging (DTI) images to determine the 

sparse coefficients that were not shared between those with progression and 

pseudoprogression.36 Then, after applying a score to each coefficient, a feature set was 

selected by sequentially adding the highest scoring coefficients using 10-fold cross-

validation and classifying the cases using an SVM. The best performance gave an accuracy 

of 0.87 and an AUC of 0.92. Again, it was unclear whether second-line agents had been 

used, and there was no test dataset to validate the model; however, they were able to 

demonstrate some interpretability in that those with progression represented higher 

fractional anisotropy as might be expected due to the orientation of overproduced 
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extracellular matrix in glioblastoma. Translation may be challenging because multiple 

concatenated DTI time points were required for the optimal classifier, which might be 

logistically difficult to obtain in routine practice, and again, it is noteworthy that simple 

clinical features were not included.

Combinations: multiple imaging types can be combined as a means to analyse 
pseudoprogression

Traditional explicit feature engineering was used to differentiate progression from 

pseudoprogression within 3 months following chemoradiation of glioblastoma using simple 

and first-order three-dimensional shape features.37 Post-contrast T1-weighted and fluid 

attenuated inversion recovery (FLAIR) images were combined, applying SVM and fourfold 

cross-validation. Sixty features were reduced to five, and gave an accuracy of 0.9 in both a 

training dataset of 59 patients and a test dataset of 41 patients, which achieved 100% recall. 

Correlation coefficients comparing the most discriminant features at the two sites were high. 

The T2-weighted hyperintensity phenotype of those patients with progression compared to 

those with pseudoprogression was round rather than elliptic; the post-contrast T1-weighted 

phenotype was round and compact. As with the longitudinal DTI study, clinical data were 

not included in the analysis, and the results were not compared with simpler models, but the 

use of routine post-contrast T1-weighted and T2-weighted images increases the chance of 

translation.

Old and new: long-established ML methods have been used with advanced imaging to 
analyse pseudoprogression

As an alternative to SVM, a generalised linear model was applied to first-order, second-order 

and wavelet-transformed imaging features to differentiate progression from 

pseudoprogression in glioblastoma.38 Post-contrast T1-weighted, FLAIR, DSC and apparent 

diffusion coefficient (ADC) images were obtained within 3 months following 

chemoradiation from a training dataset of 61 patients. Feature selection by LASSO using 10-

fold cross validation reduced the features from 6,472 to 12. Classification using a 

generalised linear model showed that a multiparametric model of predominantly second-

order features (texture) gave an AUC of 0.90. Although relevant clinical and molecular data 

were collected, they were not included in any model despite MGMT promoter methylation 

status being shown to be significantly different in those with progression and 

pseudoprogression. The work was validated in a test dataset of 34 patients from a second 

hospital, although with a reduced AUC and accuracy, with some evidence of overfitting in 

the DSC component. This is likely to be associated with variation in how DSC is performed 

between centres,39 and is one reason why multiparametric techniques are challenging to 

translate.

Other long-established regression analyses within the definition of ML include multivariate 

logistic regression, which has been employed in studies aiming to differentiate progression 

from pseudoprogression in glioblastoma.40–43 A multivariate logistic regression model 

(LRM) employing LOOCV was applied in a study using DTI and DSC metrics to 

differentiate tissue containing pseudoprogression from tissue containing progression within 

6 months following chemoradiation.41 Using maximum relative cerebral blood volume (i.e., 
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normalised to contralateral white matter; rCBV) and fractional anisotropy features obtained 

from the segmented enlarging contrast-enhancing lesions of 41 patients, the LRM gave an 

AUC of 0.81, recall of 0.79, and accuracy of 0.63.

LRM with LOOCV was also applied to 33 patients using dynamic contrast-enhanced 

imaging (DCE) metrics acquired from the enlarging contrast-enhancing lesion within 2 

months after chemoradiation.42 Unlike the other neuro-oncology monitoring studies in this 

review, this study was an entirely prospective study. Key clinical predictors were analysed 

and shown not to be discriminative. There was good interobserver reliability. Using mean 

Ktrans (the volume transfer constant is a measure of capillary permeability obtained using 

DCE, which reflects the efflux rate of gadolinium contrast from blood plasma into the tissue 

extravascular extracellular space), the LRM gave an accuracy of 0.76 and recall of 0.59.

In a further study of 35 patients, LRM was applied to subtracted ADC and DSC histograms 

of contrast-enhancing lesions obtained at baseline (around the time of chemoradiation) and 

at the point of enlargement within 6 months after chemoradiation.40 Using the mode rCBV, 

LRM gave an AUC of 0.88, recall of 0.82 and accuracy of 0.94.

In summary, long-established ML methods can be used with advanced imaging techniques, 

such as DSC or DCE, to differentiate progression and pseudoprogression. A strength of the 

LRM studies is that the results are interpretable as they relate to the increased perfusion 

(CBV) and permeability (Ktrans) occurring as a result of increased angiogenesis, the 

orientation of overproduced extracellular matrix (fractional anisotropy) and increased 

cellularity (ADC) known to be present in the enhancing rim of a glioblastoma; however, 

unlike in the generalised linear model approach, there were no test datasets employed in 

these single centre LRM studies.

Clustered combinations: unsupervised analyses can also be applied to multiple imaging 
types to analyse either pseudoprogression or the broader group of treatment-related 
effects

An unsupervised volume-weighted, voxel-based, multiparametric clustering method was 

used to differentiate progression from pseudoprogression within 3 months following 

chemoradiation44 as well as recurrence from radiation necrosis in enlarging contrast-

enhancing lesions seen after 3 months.45 Pseudoprogression can occur up to 6 months,46 so 

the classifier in the second study is not examining radiation necrosis alone but two distinct 

entities combined35 (or “treatment-related effects”). In the first study, metrics from ADC, 

DSC, and DCE underwent k-means clustering in a training dataset of 108 patients and a test 

dataset of 54 patients. AUC in the test dataset was >0.94 and accuracy and recall was >0.87 

for each of two readers with reliability intra-class correlation coefficient of 0.89. In the 

second study, the same metrics were included although a necrosis cluster was added to the 

finalised clusters analysed in the previous study. Boot strapping with LOOCV and fivefold 

cross-validation were used for evaluation. AUC in the training dataset of 75 patients was 

>0.94 and recall was >0.95 for each of two readers, but there was no separate test dataset. As 

with many neuro-oncology monitoring biomarker studies, including the three studies using 

LRM above, it was unclear whether second-line agents had been used, which may confound 

the results. The results are impressive, particularly in the test dataset in the first study; 
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however, as with the LRM studies, multiparametric techniques are challenging to translate, 

particularly with the known variation in advanced imaging techniques, including DCE, 

between centres.39

Combinations and radiation necrosis: multiple imaging types can be combined as a means 
to analyse radiation necrosis

A feasibility study to differentiate radiation necrosis and progression in enlarging contrast-

enhancing lesions seen after 9 months of chemoradiation was performed for both 

glioblastoma and brain metastases using FLAIR, T2-weighted and contrast-enhanced T1-

weighted images.47 There were 22 patients in a training dataset and 11 in a test dataset for 

glioblastoma patients and 21 in a training dataset and four in a test dataset for patients with 

brain metastases. Feature selection was performed with a feed-forward minimum 

redundancy and maximum relevance algorithm to reduce 119 features, including first- and 

second-order features as well as Laws and Laplacian pyramid features, to five. Classification 

was performed by SVM recursive feature elimination with threefold cross-validation. In the 

training datasets, AUC was 0.79 for both tumour types using FLAIR images alone. In the 

test datasets, accuracy was 0.91 and 0.5 for glioblastoma and metastasis sub-studies, 

respectively, although all three MRI sequences were not available for all cases, which makes 

interpretation challenging. The authors postulate that the features extracted in the study may 

relate to patterns similar to what is sometimes observed qualitatively in radiation necrosis, 

namely that the extracted Laws features relate to a soap-bubble appearance and that 

Laplacian pyramid features relate to an enhancing feathery rim. Furthermore, the Haralick 

features (second-order texture features that are functions of the elements of the grey-level 

co-occurrence matrix and represent a specific relation between neighbouring voxels) may 

relate to hypointensities and hyperintensities seen on all three MRI sequences due to 

microhaemorrhage in tumours. Because routine structural images were used, the chance of 

translation to the clinic is increased. Clinical data were not included in the analysis or 

models.

Voxel-based approaches can be used in the analysis of treatment-related effects

Proof-of-concept voxel-based approaches using ML to differentiate radiation necrosis and 

progression were developed in 2011 using DSC and ADC data.48 In a recent study with the 

aim to differentiate progression from treatment-related effects (both pseudoprogression and 

radiation necrosis) in high-grade glioma, a linear kernel SVM classifier was trained using 

DCE metrics (including Ktrans) of 10 voxels within the enlarging contrast-enhancing lesion 

taken from 25 images from 20 patients.49 Twofold cross-validation gave a recall of >0.97. 

The model was applied to all voxels from a larger dataset of 44 images from the same 20 

patients and shown to be interpretable and meaningful, including when there was a locally 

different treatment response in different lesions in the same patient; however, translation of 

the model may be challenging because it was trained on a small number of patients 

incorporating mixed grade, mixed treatment-effect (pseudoprogression and radiation 

necrosis), and mixed time points of the enlarging contrast-enhancing lesion (i.e., images not 

only from the first time point that an enlarging lesion is seen). There is also the potential for 

overfitting because images from several time points were used from the same patient to train 

the model.
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Analysis of complete response

One study aimed to differentiate a complete response from progression a month before 

routine imaging assessment3,4 would detect this using data from two immunotherapy 

studies.50 Immunotherapy was added to the standard of care in one study and as a second-

line therapy in another. First- and second-order features were extracted from FLAIR, T2-

weighted, contrast-enhanced T1-weighted images, and other metrics were obtained from 

DTI and DSC images. Feature selection was performed using several algorithms including 

minimum redundancy maximum relevance and random forest to reduce 1,248 features to 10 

or less features. Classification was also performed by a range of algorithms and these 

included SVMs, random forest, linear discriminant analysis, and stochastic gradient 

boosting. LOOCV, which consisted of leaving one patient out as opposed to one image out 

as multiple images were used for each patient, was performed during feature selection and 

classification. The highest balanced accuracy came from features derived from contrast-

enhanced T1-weighted and DSC images using a radial basis function SVM or boosting 

classifiers; however, no test dataset was used, and the methodology has significant 

weaknesses, in that it does not cater for a range of clinically likely outcomes, such as stable 

disease.

Prognostic biomarkers

Prognostic biomarkers identify the likelihood of a clinical event, recurrence, or progression 

based on the natural history of the disease.1 They are generally associated with specific 

outcomes, such as overall survival or progression-free survival. The potential for 

confounding in prognostic biomarker and monitoring biomarker studies overlaps. Both may 

be influenced by second-line treatments and a range of clinical variables. Most studies 

leveraging ML (Table 2) are also performed in a single centre and are retrospective.

Diagnostic biomarkers (described in detail in the other Special Issue publication dedicated to 

the application of ML in glioma imaging) may predict molecular information within a 

tumour from the imaging. Examples include MGMT promoter methylation status, 1p/19q 

chromosome arm co-deletion status and isocitrate dehydrogenase (IDH) mutation status. It is 

noteworthy that because some molecular markers are prognostic biomarkers in the same 

way, that histopathological grade is a prognostic biomarker, diagnostic biomarkers may be 

prognostic biomarkers using the molecular marker or grade as a common biomarker. 

Another similarity of diagnostic and prognostic biomarker studies is that they both typically 

extract features from preoperative MRI examinations and they often share methodology.

Given the overlap in principles described here and in the adjoining publication, we describe 

just two instructive studies as examples. In one study, an ML algorithm aimed to determine 

overall survival using imaging features from preoperative routine MRI in patients with 

glioblastoma.51 Pre- and post-contrast T1-weighted, FLAIR, DSC, and DTI images were 

obtained from a training dataset of 105 patients. Enhancing tumour tissue, non-enhancing 

tumour tissue, and oedematous tissue regions were segmented to produce imaging 

descriptors including location and first order statistics features and added to limited 

demographic features. Sixty features with the best survival prediction following 10-fold 

cross validation were selected from >150 extracted features. Two SVMs were used to 
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classify patients as survivors or not at 6 and 18 months, respectively, and a combined 

prediction index calculated. Tenfold cross-validation was used and gave an accuracy of 0.77 

for predicting short-, medium- and long-term survivors. A prospective test dataset of 29 

patients gave an accuracy of 0.79. Again, simple data such as performance status, which is 

known to be an important co-variate in multivariate analyses of glioma survival, were not 

included. To make the findings interpretable and meaningful, histograms were produced in 

order to understand the predictive features. Older patients, large tumour size, increased 

tumour diffusivity (potentially representing necrosis), larger proportions of T2 hypointensity 

within a region, and highest perfusion peak heights, were all predictive of short survival. 

Although the findings have a plausible biological basis, translation is limited as this was 

performed in a single centre. It is also noteworthy that the process of predicting survival at 

set time points (6 and 18 months) is generally less useful than producing estimates over time 

(as survival curves allow).

An ML algorithm was used to determine overall survival of patients with high-grade glioma 

using data from the brain tumour segmentation challenge (BRaTS).52 Pre- and post-contrast 

T1-weighted, T2-weighted, and FLAIR images were obtained from a training dataset of 163 

patients. Segmented regions including enhancing tumour tissue, non-enhancing tumour 

tissue, and oedematous tissue regions were segmented manually. Different sets of features 

were selected for classification. These included simple features such as location; histograms; 

discrete wavelet transform first and second order statistics; and a CNN that produced over 

4,000 deep features. The CNN was built using transfer learning based on AlexNet (a 

convolutional neural network that is trained on more than a million images from the 

ImageNet database53), and so benefits from the work already undertaken as part of the 

construction of an open-source “off-the-shelf” algorithm. Patients were classified as 

survivors or not at 10 and 15 months, respectively. SVMs, k-nearest neighbours, linear 

discriminant analysis, tree, ensemble, and logistic regression were all independently applied 

to each set of features. A combination of CNN deep features and a linear discriminant 

classifier with fivefold cross-validation gave the best predictive result, although the reduction 

in accuracy between the training and test dataset (0.99 to 0.55) provides clear evidence of 

overfitting.

Predictive biomarkers

Predictive biomarkers identify individuals likely to experience a favourable or unfavourable 

effect from a specific intervention or exposure.1 Therefore, a predictive biomarker requires 

an interaction between treatment and the biomarker. Biological subsets (such as MGMT 

promoter methylation status, 1p/19q chromosome arm co-deletion status and IDH mutation 

status) may correlate with a favourable or unfavourable effect, and in these cases, there is an 

overlap with diagnostic and prognostic biomarkers.54 There are few truly predictive 

biomarkers in neuro-oncology, molecular, or otherwise. One study has applied unsupervised 

and supervised ML techniques to genomic information to predict whether 

pseudoprogression or true progression will occur after treatment.55 Analytical and clinical 

validation in this radiogenomic study strongly suggested that interferon regulatory factor 

(IRF9) and X-ray repair cross-complementing gene (XRCC1), which were involved in 

cancer suppression and prevention respectively, are predictive biomarkers.
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Conclusion

ML applications to imaging in neuro-oncology are at an early stage of development and 

applied techniques are not ready to be incorporated into the clinic. Many ML studies would 

benefit from improvements to their methodology. Examples include the use of larger 

datasets, the use of external validation datasets and comparison of the novel approach to 

simpler standard approaches. Initiatives and consensus statements have provided 

recommended frameworks17,56,57 for standardising imaging biomarker discovery, analytical 

validation, and clinical validation, which can help to improve the application of ML to 

neuro-oncology.

Studies taking advantage of enhanced computational processing power to build neuro-

oncology monitoring biomarker models, for example using CNNs, have yet to show benefit 

compared to ML techniques using explicit feature engineering and less computationally 

expensive classifiers, for example using multivariate logistic regression. It is also notable 

that studies applying ML to build neuro-oncology monitoring biomarker models have yet to 

show overall advantage over those using traditional statistical methods58,59; however, 

regardless of method, increased computational power and advances in database curation will 

facilitate integration of imaging data with demographic, clinical, and molecular marker data.

MRI is typically used throughout the neuro-oncology patient pathway; however, a major 

stumbling block of MRI is its flexibility. The same flexibility that makes MRI so powerful 

and versatile, also makes it hard to harmonise images from different centres. After all, MRI 

physics is complex and it is challenging (if not impossible) to fully harmonise parameters 

from different sequences, manufacturers, and coils. These problems can be mitigated to 

some extent by manipulating the training dataset, such as through data augmentation, 

thereby allowing more generalisable ML models to be applied to MRI. Other approaches can 

describe the disharmony through modelling prediction uncertainty including the generation 

of algorithms that would “know when they don’t know” what to predict.

Development and validation of ML models applied to neuro-oncology require large, well-

annotated datasets, and therefore, multidisciplinary and multi-centre collaborations are 

necessary. Radiologists are critical in determining key clinical questions and shaping 

research studies that are clinically valid. When these models are ready for the clinic as a 

routine clinical tool, as with the application of any medical device or the introduction of any 

therapeutic agent, there needs to be judicious patient and imaging selection reflecting the 

cohort used for validation of the model.

Alongside the drive towards clinical utility, the related issue of interpretability is likely to be 

important. As well as increasing user confidence, interpretability might help to generate new 

biological research hypotheses derived from image feature discovery.
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Refer to Web version on PubMed Central for supplementary material.
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Box 1

Neuro-oncology epidemiology

The global incidence of central nervous system (CNS) tumours is unknown, but is at least 

45/100,000 patients a year.5,6 CNS tumours are categorised as primary or secondary. 

Secondary CNS tumours (metastases) are the commonest type of CNS tumour in adults. 

The reported incidence of metastatic CNS tumours is increasing but the exact incidence is 

unknown. Primary CNS tumours are diverse histological entities with different causes 

and include malignant, benign, and borderline tumours. The 2016 World Health 

Organization classification of primary CNS tumours is based on histopathological and 

molecular criteria.7 In the USA, the incidence of primary CNS tumours is 21/100,000 

patients a year.8 The two main histological types are meningiomas and gliomas 

accounting for 36% and 28% of primary CNS tumours, respectively.

There are four histological glioma grades. Grade 4 gliomas (glioblastoma) are the 

commonest glioma (53%).9 Diffuse grade 2 (diffuse low-grade) and 3 (anaplastic) 

gliomas account for approximately 30% of all gliomas. The median age at diagnosis of 

these gliomas are 64, 43, and 56 years, respectively. In contrast, the commonest 

paediatric gliomas are grade 1 (predominantly pilocytic astrocytomas) accounting for 

33% of paediatric gliomas.10 Almost all machine learning studies applied to neuro-

oncology have focused on gliomas, particularly high-grade gliomas (grades 3 and 4), 

which are the malignant gliomas.
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Box 2

Assessing machine learning methodology in neuro-oncology radiomic 
studies

One of the challenges when interpreting the literature on machine learning (ML) 

approaches to neuro-oncology is that different researchers may use different technologies 

as the basis for their work. As a result, the reader can face technical details that may 

appear challenging. In fact, many techniques share similar underlying motivations, and 

even when they do not, there are some basic principles that apply to assessing ML 

applications. Firstly, because ML models tend to start with the data and then generalise, 

overfitting is a substantial challenge. For this reason, model validation on dual training 

and testing datasets is recommended. Secondly, common, simple clinical data 

incorporation or comparison is likely to be important. Thirdly, assessing performance 

against an existing standard (typically an existing assessment system or human expert 

performance) is essential.
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Figure 1. 
The phases of radiomics are shown using explicit feature engineering. Some pre-processing 

steps are shown here: manual segmentation of hyperintense voxels associated with a 

glioblastoma in a T2-weighted image is performed. A mask is extracted, which undergoes 

quantisation. Some feature estimation steps are shown here: in this example, the pixels are 

made into three features that are topological descriptors of image heterogeneity12 (area is the 

number of white pixels = 1; perimeter around a white pixel = 4; genus is the number of rings 

subtracted from number of holes = 0). Note that deep learning uses implicit feature 

engineering and some of the feature estimation steps may not be required.
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Figure 2. 
A longitudinal series of T1-weighted images after gadolinium administration. On the left is 

an image demonstrating a glioblastoma 1 month after surgery before chemoradiotherapy. In 

the middle is an image demonstrating the appearances 2 months after radiotherapy and 

concomitant chemotherapy. On the right is an image demonstrating the appearances 4 

months after radiotherapy and concomitant chemotherapy. There was no new treatment 

between 2 and 4 months therefore this shows pseudoprogression occurred at 2 months.
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Table 1
Recent studies applying machine learning to the development of neuro-oncology 
monitoring biomarkers.

Author(s) Prediction Dataset Method Results

Cha et al., 201440 True progression 35 CBV & ADC Retrospective
Multivariate logistic regression, 
longitudinal subtraction of ADC 
& CBV histograms

Mode of rCBV
AUC: 0.877

Park et al., 201544 Early true progression 162 (training = 108 & testing 
= 54) DWI, DSC, DCE

Retrospective
Volume-weighted, MP clustering

Sensitivity: 87%
Specificity: 87.1%
AUC: 0.96

Yun et al., 201542 True progression 33 DCE Prospective
Multivariate logistic regression, 
Ktrans, ve, vp

Ktrans

Accuracy: 76%
Sensitivity: 59%
Specificity: 94%

Artzi et al., 201649 Pseudoprogression 20 longitudinal patients DCE 
& MRS (training = 25/44 
DCE & MRS studies; testing 
= 19/44 studies)

Prospective
Voxel-wise SVM with Ktrans, ve, 
Kep, vp

Sensitivity: 98%
Specificity: 97%

Tiwari et al., 201647 Radiation necrosis 58 (training = 43 & testing = 
15) MRI

Retrospective
119 features, mRmR feature 
selection, SVM. Sequence 
independent

AUC: 0.79
AUC (primary): 0.77
AUC (metastatic): 0.72

Qian et al., 201636 True progression 35 longitudinal DTI Retrospective
Spatiotemporal dictionary 
learning & SVM classification

Accuracy: 86.7%
AUC: 0.92

Ion-Margineanu et 
al., 201650

True progression 29 T1, T1 C, DKI, DSC Prospective
Compared 7 classifiers over 
various global and local features

T1 C
Max BAR (balanced 
accuracy rate) value: 
0.96 for AdaBoost

Yoon et al., 201745 True progression 75 MRI, DWI, DSC, DCE Retrospective, unsupervised
MP clustering of ADC, rCBV, 
IAUC

Sensitivity: 96.4%
Specificity: 81.8%
AUC: 0.95

Booth et al., 201712 True progression 50 feature estimation.
24 (training = 17 & testing = 
7) T2

Prospective testing set. SVM 
using Minkowski functionals

Accuracy: 88%
AUC: 0.9

Kebir et al., 201730 True progression 14 18F-FET-PET Retrospective, unsupervised 
Consensus clustering, 19 
conventional and textural features

Sensitivity: 90%
Specificity: 75%
NPV: 75%

Nam et al., 201743 True progression 37 DCE Retrospective
Multivariate logistic regression 
using pharmacokinetic 
parameters

Kep

Accuracy: 70.3%
AUC: 0.75
Sensitivity: 71.4%
Specificity: 90%

Jang et al., 201831 Pseudoprogression 78 (training = 59 & testing = 
19)
T1 C MRI, Age, Gender, 
MGMT status, IDH 
mutation, radiotherapy dose 
& fractions, follow up 
interval

Retrospective
9 T1 C axial slices centred on 
lesion, CNN

AUC: 0.83
AUPRC: 0.87
F1 score: 0.74

Ismail et al., 201837 True progression 105 (training = 59 & testing 
= 46) MRI

Retrospective
SVM using global & local 
features of lesion & peritumour 
habitat

Accuracy: 90.2% 
Sensitivity: 100%
Specificity: 94.7%

Kim et al., 201838 Early true progression 95 (training = 61 & testing = 
34)
T1 C, FLAIR, DWI, DSC

Retrospective
Generalised linear model, 
LASSO feature selection on 
multiparametric first- & second-
order statistics

AUC: 0.85
Sensitivity: 71.4%
Specificity: 90%
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18F-FET-PET, [18F]-fluoroethyl-L-tyrosine positron emission tomography; NPV, negative predictive value; T1 C, post contrast T1-weighted; 

MGMT, O6-methylguanine-DNA methyltransferase; IDH, isocitrate dehydrogenase; CNN, convolutional neural network; AUC, area under the 

receiver operator characteristic curve; AUPRC, area under the precision-recall curve; DCE, dynamic contrast-enhanced imaging; MRS, 1H-
magnetic resonance spectroscopy; SVM, support vector machine; mRmR, minimum redundancy and maximum relevance; CBV, cerebral blood 
volume (rCBV, relative CBV); ADC, apparent diffusion coefficient; IAUC, initial area under the curve; MP, multiparametric; DWI, diffusion-
weighted imaging; DSC, dynamic susceptibility weighted; LASSO, least absolute shrinkage and selection operator; DTI, diffusor tensor imaging; 
DKI, diffusor kurtosis imaging.
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Table 2
Recent studies applying machine learning to the development of neuro-oncology 
prognostic biomarkers.

Author(s) Dataset Method Results

Choi et al., 201560 61 preoperative DCE Retrospective
Multivariate Cox regression using MRI, 
pharmacokinetic, & clinical parameters

C-index: 0.82

Kickingereder et al., 
201661

119 (training = 79 & testing = 40) T1, 
T1 C, FLAIR, DWI, DSC

Retrospective
Supervised principal component analysis with 
Cox regression analysis

C-index: 0.70

Chang et al., 201662 126 (training = 84 & testing = 42) 
patients T1, T2, FLAIR, T1 C, DWI

Retrospective
Random forest on radiomic features (including 
Laws, Haralick)

Accuracy: 76%

Liu et al., 201663 147 rs-fMRI and DTI Retrospective
SVM using clinical features & network 
features of structural & functional network

Accuracy: 75%

Nie et al., 201664 69 T1 C, rs-fMRI, DTI Prospective
SVM using supervised CNN-derived features

Accuracy: 89.9%
Sensitivity: 96.9%
Specificity: 83.8%
PPR: 84.9%
NPR: 93.9%

Macyszyn et al., 201651 134 (training = 105 & testing = 29) 
T1, T1 C, T2, FLAIR, DTI, DSC

Prospective
SVM for OS <6 months & SVM for OS <18 
months

Accuracy (<6 
months): 82.76%
Accuracy (<18 
months): 83.33%
Accuracy (combined): 
79%

Zhou et al., 201765 32 TCGA T1 C, FLAIR, T2 & 22 T1 
C, FLAIR, T2

Retrospective
Group difference features to quantify habitat 
variation Supervised forward feature ranking 
with SVM

Accuracy: 87.5%, 
86.4%

Dehkordi et al., 201766 33 pre-treatment DCE Retrospective
Adaptive neural network with fuzzy inference 
system using Ktrans, Kep and ve

Accuracy: 84.8%

Lao et al., 201767 112 (training = 75 & testing = 37) 
pretreatment T1, T1 C, T2, FLAIR

Retrospective
Multivariate Cox regression analysis using 
radiomic features as well as "deep features" 
from pre-trained CNN

C-index: 0.71

Liu et al., 201768 133 T1 C Retrospective
Recursive feature selection with SVM

Accuracy: 78.2%
AUC: 0.81
Sensitivity: 79.1%
Specificity: 77.3%

Li et al., 201769 92 (training = 60, testing = 32) T1, T1 
C, T2, FLAIR.
TCGA data used.

Retrospective
Random forest for segmentation into 5 classes
Multivariate LASSO-Cox regression model

C-index: 0.71

Chato & Latifi, 201752 163 T1, T1 C, T2, FLAIR. Short-, 
mid-, long-term survivors

Retrospective
SVM, KNN, linear discriminant, tree, 
ensemble & logistic regression applied to 
volumetric, statistical & intensity texture, 
histograms & deep features

Accuracy: 91%
Linear discriminant 
using deep features

Ingrisch et al., 201770 66 T1 C Retrospective
Random survival forests using 208 global & 
local features from segmented tumour

C-index: 0.67

Li et al., 201771 92 (training = 60 & testing = 32) T1, 
T1 C, T2, FLAIR.
TCGA data used.

Retrospective
LASSO Cox regression to define radiomics 
signature

C-index: 0.71

Bharath et al., 201772 63 TCGA preoperative: T1 C, FLAIR Retrospective
LASSO Cox regression using age, KPS, 
DDIT3 & 11 principal component shape 
coefficients

C-index: 0.86
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Author(s) Dataset Method Results

Shboul et al., 201773 163 T1, T1 C, T2, FLAIR Retrospective
Recursive feature selection & random forest 
regression

Accuracy: 63%

Peeken et al., 201874 189 T1, T1 C, T2, FLAIR & clinical 
data.

Retrospective
Multivariate Cox regression using VASARI 
features and clinical data

C-index: 0.69

Kickingereder et al., 
201875

181 (training = 120 & testing = 61) 
pretreatment MRI

Retrospective
Penalised Cox model for radiomic signature 
construction

C-index: 0.77

Chaddad et al., 201876 40 (training = 20 & testing = 20) 
preoperative MRI, T1 & FLAIR.

Retrospective
Random forest on multi-scale texture features

AUC: 74.4%

Bae et al., 201877 217 (training = 163 & testing 54) 
preoperative MRI, T1 C, T2, FLAIR, 
DWI

Retrospective
Variable hunting algorithm for selection & 
random forest classifier

iAUC: 0.65

TCGA, The Cancer Genome Atlas; T1 C, post contrast T1-weighted; SVM, support vector machine; DCE, dynamic contrast-enhanced imaging; 
CNN, convolutional neural network; KNN, k-nearest neighbours/rs-fMRI, resting state functional MRI; KPS, Karnofsky performance status; 
DDIT3, DNA damage inducible transcript 3; DTI, diffusor tensor imaging; DSC, dynamic susceptibility weighted; OS, overall survival.

Clin Radiol. Author manuscript; available in PMC 2020 January 01.


	Abstract
	Introduction
	Material and methods
	Results
	Monitoring biomarkers
	Going solo: a single imaging type can be used to analyse pseudoprogression
	Over time: a longitudinal imaging series can be used to analyse pseudoprogression
	Combinations: multiple imaging types can be combined as a means to analyse pseudoprogression
	Old and new: long-established ML methods have been used with advanced imaging to analyse pseudoprogression
	Clustered combinations: unsupervised analyses can also be applied to multiple imaging types to analyse either pseudoprogression or the broader group of treatment-related effects
	Combinations and radiation necrosis: multiple imaging types can be combined as a means to analyse radiation necrosis
	Voxel-based approaches can be used in the analysis of treatment-related effects
	Analysis of complete response
	Prognostic biomarkers
	Predictive biomarkers

	Conclusion
	References
	Figure 1
	Figure 2
	Table 1
	Table 2

