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Background: ‘Last-line’ antimicrobial usage has promoted the emergence of MDR bacteria. Production of
Klebsiella pneumoniae carbapenemases (KPCs) is increasingly common and leads to resistance to most antimi-
crobials. However, ceftazidime/avibactam demonstrates activity against KPC-producing strains. Ceftazidime/avi-
bactam in the empirical setting remains unknown.

Methods: Strains underwent genetic analysis evaluating blaKPC presence/production and MICs were determined.
Four strains were assessed in an in vitro, one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) model
for 96 h. The following bolus dosing exposures were tested: 2.5 g of ceftazidime/avibactam every 8 h, 2 g of
meropenem every 8 h, 1.25 mg/kg polymyxin B every 12 h, amikacin ‘once-daily dosing’ (peak of 70–80 mg/L),
tigecycline at 200 mg %1 dose followed by 100 mg every 12 h, and a drug-free growth control.

Results: Thirty blaKPC-producing strains were evaluated; 97% of strains were ceftazidime/avibactam susceptible
with MIC50/MIC90 values of 0.38/1.5 mg/L (range 0.032–16 mg/L). Two K. pneumoniae strains, one Klebsiella oxy-
toca strain and one Citrobacter freundii strain underwent further analysis in PK/PD models. Ceftazidime/avibac-
tam displayed potent activity with a reduction of 4.23+0.42 cfu/mL from the initial inoculum at 96 h. Against
susceptible isolates, amikacin displayed similar activity compared with ceftazidime/avibactam at 96 h, although
this was not demonstrated against all strains. Polymyxin B produced comparable activity to ceftazidime/avibac-
tam against two strains. Neither meropenem nor tigecycline produced effective killing and were comparable to
the drug-free growth control at 96 h.

Conclusions: blaKPC-producing organisms demonstrated susceptibility to ceftazidime/avibactam and bacteri-
cidal activity was observed in the PK/PD model. Based on these data, ceftazidime/avibactam is a valuable agent
for treating KPC-producing organisms and should be considered for treatment of infections caused by these
pathogens.

Introduction

Gram-negative bacteria demonstrating resistance to antibacterial
agents represent a significant public health burden worldwide.
The emergence of isolates of Enterobacteriaceae producing carba-
penemases, most frequently harbouring the Klebsiella pneumo-
niae carbapenemase (KPC) enzyme in the USA, as well as other
countries, is of significant concern due to their ability to render all
b-lactams ineffective. Fortunately, many of these carbapenem-
resistant Enterobacteriaceae (CRE) are colonizers or are pathogen-
ic in infections with inoculums that are relatively easy to treat,

such as urinary tract infections.1,2 Mortality rates for more severe
higher inoculum infections, however, including bacteraemia, are
high and range�20%–70%.3–6

The poor chance of survival observed among patients with inva-
sive Gram-negative infections producing KPCs is likely attributed to
both significant delays in time to appropriate therapy and the
lack of effective antimicrobial options, given that the majority of
strains display resistance to the fluoroquinolones and carbape-
nems. While, polymyxins, aminoglycosides and tigecycline remain
the most active in vitro options to treat these pathogens, these
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drugs are hindered by their inefficiency as monotherapeutic
options and/or toxicity.7,8

The FDA approved ceftazidime/avibactam for the treatment of
complicated intra-abdominal infections in combination with
metronidazole, complicated urinary tract infections and hospital-
acquired bacterial pneumonia and ventilator-associated pneumo-
nia. While ceftazidime is a well-described ‘third-generation’
b-lactam, avibactam represents a unique class of non-b-lactam
b-lactamase inhibitors, which demonstrates inhibitory activity
against Ambler class A, C and some D b-lactamases.9 In vitro stud-
ies demonstrated potent activity of ceftazidime/avibactam
against KPC-producing strains with reported MIC50/90 values of
1/2 mg/L in one study and 0.5/2 mg/L in another, both well below
the approved breakpoint of 8/4 mg/L.10–13

Early observational studies reporting experiences with ceftazi-
dime/avibactam have been encouraging, but data are limited to
small sample sizes. Additionally, ceftazidime/avibactam was fre-
quently utilized as salvage therapy or in combination with other
antimicrobials.14–16 The objective of this study was to evaluate the
activity of ceftazidime/avibactam alone compared with standard-
of-care agents in an in vitro pharmacokinetic (PK)/pharmacody-
namic (PD) model simulating bacteraemia with KPC-producing
pathogens.

Materials and methods

Bacterial strains

A total of 30 clinical strains from the Detroit Medical Center underwent gen-
etic analysis to confirm blaKPC production. blaKPC was amplified using estab-
lished primers and each amplicon was sequenced.17 Four representative
KPC strains (two K. pneumoniae, one Klebsiella oxytoca and one Citrobacter
freundii) were utilized for in vitro PK/PD modelling experimentations.

Antimicrobials
Avibactam was provided by its manufacturer (Allergan, Parsippany, NJ,
USA). Ceftazidime, meropenem, amikacin, polymyxin B and tigecycline
were commercially purchased (Sigma Chemical Co., St Louis, MO, USA).

Antimicrobial susceptibility testing
In vitro antimicrobial susceptibility testing was performed on all 30 strains.
VitekVR 2 or Microscan was utilized when possible to determine MIC. For cef-
tazidime/avibactam, polymyxin B and tigecycline, Etests were utilized fol-
lowing methodology according to the manufacturer. Antibiotic containing
plates for resistance screening used brain heart infusion agar (Difco, Detroit,
MI, USA).

In vitro PK/PD model
An in vitro, one-compartment PK/PD model with a 250 mL capacity and in-
put/outflow ports was used. The apparatus was prefilled with medium
(Mueller–Hinton broth) and antimicrobials were administered as boluses
over a 96 h time period. A starting inoculum of �1%106 cfu/mL was tar-
geted for each experiment. Fresh medium was continuously supplied and
removed from the compartment along with the drug via a peristaltic pump
(Masterflex; Cole-Parmer Instrument Company, Chicago, IL, USA) at an ap-
propriate rate to simulate the average human half-lives of the antimicro-
bials or at the longest half-life for the drug-free growth control.
The apparatus was maintained at 37�C throughout the duration of experi-
mentation. All experiments were performed in duplicate.

The antimicrobial regimen simulations evaluated as bolus doses were
as follows: 2.5 g of ceftazidime/avibactam every 8 h (fCmax 93.2/13.6 mg/L,
average t1=2 2.7 h),18–20 2 g of meropenem every 8 h (fCmax 110 mg/L, aver-
age t1=2 1 h),21,22 1.25 mg/kg polymyxin B every 12 h (fCmax 6.13 mg/L, aver-
age t1=2 6 h),23,24 amikacin once-daily dosing to achieve a peak of 70–80 mg/L
(average t1=2 2 h),24–27 tigecycline at 200 mg%1 dose followed by 100 mg
every 12 h (fCmax 0.3 mg/L, average t1=2 42 h)28 and a drug-free growth
control.

PD analysis
Samples were removed at 0, 4, 8, 24, 32, 48, 72 and 96 h and serially diluted
in cold 0.9% sodium chloride. Bacterial counts were determined by spiral
plating appropriate dilutions using a Whitley automatic spiral plater (DW
Scientific, Shipley, West Yorkshire, UK). Tryptic soy agar plates were incu-
bated at 37�C for 24 h before colonies were counted. Antimicrobial killing
was demonstrated via plotting mean+ SD colony counts (log10 cfu/mL)
versus time with the lower limit of detection being 1 log10 cfu/mL.
Bactericidal activity was defined as �3 log10 cfu/mL reduction from
baseline.

PK analysis
PK samples were obtained, through the injection port of each model at ap-
propriate timepoints throughout the model for verification of target anti-
biotic concentrations. All samples were stored at #80�C until ready for
analysis. Ceftazidime/avibactam concentrations were sent out to Keystone
Bioanalytical, Inc. for LC-MS analysis.29 All other drug concentrations
were determined by bioassay, as previously described.30–32 In brief, blank
0.635 cm discs were spotted with 10lL of the standards or samples. Each
standard was tested in duplicate by placing the disc on antibiotic medium
agar plate no. 11, which was inoculated with a 0.5 McFarland suspension of
the test organism. Plates were incubated for 24 h at 37�C at which time the
zone sizes were measured using a protocol reader (Protocol; Microbiology
International, Frederick, MD, USA). The half-life, AUC0–24, peak concentra-
tions and time above MIC were determined utilizing PK Analyst software
(version 1.10; MicroMath Scientific Software, Salt Lake City, UT, USA) using
the linear trapezoidal method.

Resistance
Emergence of resistance (treatment emergent resistance) was evaluated
daily by plating 100 lL samples from the model on plates supplemented at
a concentration 3% the MIC of the tested antimicrobial. Plates were exam-
ined for growth after 48 h of incubation at 37�C. Resistant colonies growing
on screening plates were evaluated by Etest or broth microdilution meth-
ods to determine the MIC.

Statistical analysis
Changes in cfu/mL at 96 h were compared by one-way analysis of variance
with Tukey’s post hoc test. All statistical analyses were performed using
SPSS Statistical Software (Release 22.0; IBM Corp., Armonk, NY, USA).

Results

Susceptibility testing

The MIC results for the isolates evaluated are summarized in
Table 1. A total of 29 of 30 (97%) of isolates were ceftazidime/avi-
bactam susceptible with MIC50 and MIC90 values of 0.38 and
2 mg/L (range 0.032–16 mg/L) despite only five of the isolates
being ceftazidime susceptible. Strains 6R, 11R, 4299 and 4329
were evaluated in the PK/PD models. These strains were MDR and
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were not susceptible to ceftazidime, meropenem or ciprofloxacin.
Two strains (4299 and 4329) were susceptible to amikacin with
MICs of �2 and 4 mg/L, respectively. Only one strain (4329) was
susceptible to trimethoprim/sulfamethoxazole. All four strains
were susceptible to ceftazidime/avibactam, polymyxin B and
tigecycline.

In vitro PK/PD model

The observed fCmax and t1=2 values for amikacin were 74.6+5.9 mg/L
(target 70 mg/L) and 2.12+0.2 h (target 2 h). The observed fCmax

and t1=2 values for meropenem were 104+7.4 mg/L (target
110 mg/L) and 0.96+0.2 h (target 1 h). The observed fCmax and t1=2

values for polymyxin B were 6.2+0.9 mg/L (target 6.13 mg/L) and
5.92+0.5 h (target 6 h). The observed fCmax and t1=2 values for
tigecycline were 0.4+0.1 mg/L (target 0.3 mg/L) and 38.4+4.1 h
(target 42 h). The observed fCmax and t1=2 values for ceftazidime/
avibactam were 93.1+5.14/12.9+2.07 mg/L (target 93.2/13.6 mg/L)
and 2.5+0.25 h (target 2.7 h), respectively.

The changes in log10 cfu/mL for the tested regimens against
the four strains are displayed in Figure 1. Against all strains, ceftazi-
dime/avibactam demonstrated bactericidal activity with an aver-
age reduction of 4.23+0.42 cfu/mL from the starting inoculum
within 8–24 h. By 96 h, ceftazidime/avibactam was statistically the
most effective antimicrobial against three of the four strains
(P , 0.01). However, against strain 4299, both amikacin and poly-
myxin B were comparable to ceftazidime/avibactam. Amikacin dis-
played potent killing (3.85+0.72 reduction in starting inoculum)
within the first 8 h in all strains. However, regrowth was noted at
24 h in amikacin non-susceptible strains 6 R and 11 R (MICs 32 and
�32 mg/L, respectively). Similar to amikacin, polymyxin B demon-
strated bactericidal activity within 8 h (3.08+0.84 reduction in
starting inoculum) and continued throughout the duration of the
experiment (3.78+1.45 reduction in starting inoculum) against
two of the strains (4299 and 4329). However, in the other two
strains (6 R and 11R), sustained killing was not observed.
Tigecycline reduced the initial inoculum within the first 4–8 h but
regrowth was noted in all strains by 24 h. As expected due to
meropenem resistance in all strains (MICs .8 mg/L for four strains

Table 1. Susceptibilities (mg/L) of study organisms

Isolate Organism CZA CAZ MEM AMK TOB CIP LVX SXT TGC PMB

1 K. pneumoniae 0.25 4 .8 �2 �0.5 �0.5 �1 �1 0.19 0.125

3 Escherichia coli 0.5 �0.5 .8 �8 �2 �0.5 �1 �1 2 0.19

4 K. pneumoniae 0.38 .16 .8 .32 .8 .2 .4 .2 1.5 0.38

6 K. oxytoca 0.94 .16 .8 .32 .8 .2 .4 .2 3 0.38

10 K. pneumoniae 0.38 .16 .8 16 .8 .2 .4 .2 3 0.25

12 K. pneumoniae 0.75 .16 .8 32 .8 .2 .4 .2 1.5 0.38

14 K. pneumoniae 0.064 .16 .8 16 .8 .2 .4 .2 4 0.38

18 K. pneumoniae 0.25 .16 .8 32 .8 .2 .4 .2 1 0.38

20 K. pneumoniae 0.75 .16 .8 32 .8 .2 .4 .2 3 0.75

21 K. pneumoniae 0.064 .16 .8 �2 .8 .2 .4 �1 3 0.38

22 K. pneumoniae 0.032 �1 .8 �2 �0.5 �0.5 �1 �1 2 0.38

24 K. pneumoniae 0.75 .16 8 16 .8 .2 .4 .2 3 0.38

30 K. pneumoniae 2 .16 .8 32 .8 .2 .4 .2 3 0.5

34 K. pneumoniae 0.75 .16 .8 32 .8 .2 .4 .2 2 0.5

35 K. pneumoniae 0.38 .16 .8 �4 .8 .2 .4 .2 3 0.5

36 K. pneumoniae 3 .16 .8 32 .8 .2 .4 .2 0.38 1

38 K. pneumoniae 2 .16 .8 32 .8 .2 .4 .2 2 0.5

43 K. pneumoniae 0.5 .16 .8 32 .8 .2 .4 .2 3 0.38

45 K. pneumoniae 0.125 .16 .8 32 .8 .2 .4 .2 4 0.38

46 E. coli 1 .16 .8 16 .8 .2 �1 .2 3 2

4091 K. pneumoniae 0.047 .16 �16 �2 .16 �4 .4 .320 0.75 0.19

4164 K. oxytoca 16 .16 .8 �2 4 .2 2 .40 1.5 128

4234 K. pneumoniae 0.125 4 �16 �2 �1 1 �1 40 2 0.38

4299 C. freundii 0.19 .16 �16 �2 8 �4 .4 .320 6 0.38

4329 K. pneumoniae 0.5 .16 �16 4 �1 �4 .4 �20 1.5 0.75

1R K. pneumoniae 1.5 .16 .8 .32 �1 .2 .4 .2 1.5 1

3R K. pneumoniae 0.047 .16 .8 32 .8 .2 .4 .2 3 0.5

5R K. pneumoniae 0.38 4 .8 .32 2 �0.5 �1 �1 1.5 0.75

6R K. oxytoca 0.75 .16 .8 32 .8 .2 .4 .2 1 0.5

11R K. pneumoniae 0.19 .16 .8 .32 .8 .2 .4 .2 3 0.38

CZA, ceftazidime/avibactam; CAZ, ceftazidime; MEM, meropenem; AMK, amikacin; TOB, tobramycin; CIP, ciprofloxacin; LVX, levofloxacin; SXT, tri-
methoprim/sulfamethoxazole; TGC, tigecycline; PMB, polymyxin B.
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evaluated in PK/PD models), meropenem activity at 96 h was com-
parable to the drug-free growth control in all strains evaluated,
with regrowth occurring as early as 8 h in two of the four strains
and by 24 h in the remaining two.

Resistance emergence

Isolates with MICs that were higher than the baseline MICs were
not detected on resistance screening plates.

Discussion

Studies have demonstrated that inappropriate empirical coverage,
particularly for bloodstream infections, yields higher mortality
compared with appropriate therapy.33 In light of the increasing
presence and degree of Gram-negative antimicrobial resistance,
clinicians face an increasing challenge when attempting to cover
empirically the most likely pathogens with an agent that has
retained activity against those organisms. In centres with a high
prevalence of CRE, this is particularly challenging, as effective and
safe treatment options are limited.

In this evaluation, in an in vitro model, we demonstrated that
initial monotherapy with ceftazidime/avibactam displays potent
bactericidal activity against CRE regardless of resistance to other
classes of antimicrobials. Bactericidal activity was noted in all
strains evaluated and susceptibility was restored despite high
prevalence to ceftazidime resistance. While tigecycline displayed
an initial kill in the first 4–8 h of experimentation, it was not antici-
pated that this agent would produce a sustained killing effect due
to low concentrations utilized for the simulation of a bloodstream

infection. However, this agent may still be beneficial for other in-
fection types where the drug achieves high concentrations. In two
strains (6R and 11R) treated with polymyxin B, regrowth was noted
despite no development of resistance. However, this could be due
to limitations of Etest methodology for the polymyxins with up to
20% of isolates being falsely reported as susceptible.34,35

Additionally, there is potential that resistant mutants could have
been pumped out of the model system due to the type of in vitro
modelling utilized with high flow rates.

Given the challenges with treating CRE, ceftazidime/avibactam is
a viable therapeutic option. However, in clinical settings where cef-
tazidime/avibactam has been employed, it is frequently prescribed
in combination or as salvage therapy. In a multicentre study evalu-
ating clinical outcomes in 60 CRE-infected patients treated with cef-
tazidime/avibactam, microbiological cure and clinical success were
observed in 53% and 65% of patients, respectively.14 The majority
of these patients demonstrated a high degree of acute illness with
invasive infections. What makes the impact of ceftazidime/avibac-
tam particularly difficult to interpret is that roughly half of the
patients received concomitant therapy most commonly with an
aminoglycoside, polymyxin and/or tigecycline.

Several studies evaluated ceftazidime/avibactam for salvage
therapy with high cure rates (74%) and low mortality (8%).15,36

However, it is important to note that combination therapy was
common and occurred in 66%–85% of patients. One study
reported outcomes in 37 CRE-infected patients treated with cef-
tazidime/avibactam demonstrated similar clinical success in 59%
of patients.14 Unlike the previously mentioned evaluations, the
majority of patients in this evaluation received monotherapy
(70%) with a clinical success rate of 58%.

6R K. oxytoca
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Figure 1. PK/PD graphs for four study pathogens in in vitro models. Open circles, amikacin; filled triangles, ceftazidime/avibactam; filled circles, mero-
penem; open triangles, polymyxin B; filled squares, tigecycline; open squares, drug-free growth control.
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There are several limitations of the current study. First, experi-
ments were only conducted for 96 h with only four strains. While
no ceftazidime/avibactam resistance development was noted dur-
ing this time, organisms can develop resistance after 96 h of ther-
apy. However, development of resistance after 96 h has only been
described in three ceftazidime/avibactam-treated patients to
date.37 Many patients receive Gram-negative antimicrobial ther-
apy prior to the identification of a carbapenem-resistant organism.
In our experiment, isolates were not subjected to antimicrobial ex-
posure prior to the receipt of ceftazidime/avibactam. Combination
therapy is often utilized to treat these organisms and this was not
assessed. Lastly, all analyses were conducted based upon simula-
tion of normal renal clearance; therefore, altered killing may be
observed in patients with decreased or increased renal function.

In conclusion, in this in vitro model, ceftazidime/avibactam was
efficacious against carbapenem-resistant organisms, specifically
those producing KPC enzymes. In patients at high risk for CRE infec-
tion caused by KPC production, ceftazidime/avibactam monother-
apy appears to be an effective empirical therapeutic agent although
future studies with combination therapy are still warranted.
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