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Abstract
Many different adjuvants are currently being developed for subunit vaccines against a number of pathogens and diseases.
Rational design is increasingly used to develop novel vaccine adjuvants, which requires extensive knowledge of, for
example, the desired immune responses, target antigen-presenting cell subsets, their localization, and expression of
relevant pattern-recognition receptors. The adjuvant mechanism of action and efficacy are usually evaluated in animal
models, where mice are by far the most used. In this review, we present methods for assessing adjuvant efficacy and
function in animal models: (1) whole-body biodistribution evaluated by using fluorescently and radioactively labeled vaccine
components; (2) association and activation of immune cell subsets at the injection site, in the draining lymph node, and the
spleen; (4) adaptive immune responses, such as cytotoxic T-lymphocytes, various T-helper cell subsets, and antibody
responses, which may be quantitatively evaluated using ELISA, ELISPOT, and immunoplex assays and qualitatively
evaluated using flow cytometric and single cell sequencing assays; and (5) effector responses, for example, antigen-specific
cytotoxic potential of CD8+ T cells and antibody neutralization assays. While the vaccine-induced immune responses in
mice often correlate with the responses induced in humans, there are instances where immune responses detected in mice
are not translated to the human situation. We discuss some examples of correlation and discrepancy between mouse and
human immune responses and how to understand them.
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Introduction: Adjuvants for Subunit Vaccines
Many vaccines currently licensed for human use are based on
whole, inactivated, or attenuated pathogens, of which some
have additionally been adjuvanted with aluminum salts. These
vaccines are very effective for prevention of disease with a
number of pathogens, for example, measles, mumps, and diph-
theria.1 Traditional vaccines mainly induce strong neutralizing
antibody responses, and the target pathogens do not change
their surface structure over time.1,2 However, novel vaccine for-
mulations are necessary to prevent or treat a number of diffi-
cult pathogen and disease targets, requiring complex immune

responses. Possible targets include pandemic influenza, chla-
mydia, tuberculosis, HIV, and cancers.1,2 For these, vaccines
inducing concomitant humoral and cell-mediated immune re-
sponses or cytotoxic T-lymphocytes are necessary. Such vac-
cines can be prepared by including appropriate vaccine
adjuvants designed to induce and control immune responses
against co-administered antigens.

The term adjuvant covers delivery systems and immunosti-
mulators, while some adjuvants possess both properties.3–5

Adjuvants can be designed based on the characteristics and
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localization of the identified target cells and the immunostimu-
lators required to induce the desired immune responses.
Several types of delivery systems are applied in vaccines for
humans or are being evaluated in preclinical and clinical stud-
ies, typically with the common feature of being particles, for
example, aluminum salts, emulsions, liposomes, and viro-
somes.6,7 The immunostimulators are introduced to induce the
required immune responses by acting as ligands for pattern
recognition receptors (PRRs), for example, Toll-like receptors
(TLRs), C-type lectin receptors, retinoic acid-inducible gene-I-
like receptors, and nucleotide-binding oligomerization domain
(NOD)-like receptors.8–11 Due to the diverse nature of the recep-
tors, the ligands also arise from diverse classes of molecules,
for example, lipids, proteins, peptides, sugars, DNA, and RNA,
and different formulation approaches are required to incorpo-
rate them into the delivery systems.12 The functionality and
development of both delivery systems and immunostimulators
as adjuvants are reviewed elsewhere.6,13–19

Aluminum-based adjuvants have been extensively used in
human vaccines for almost a century, and for most of that
period no other adjuvants were approved for human use.20 The
adjuvant effects of aluminum-based adjuvants were empiri-
cally discovered, while the exact mechanisms of action have
remained relatively obscure until recently.21,22 However, novel
vaccine adjuvants are increasingly tailored to induce specific
immune responses, which have been identified as critical for
the prevention of target diseases. We have at our laboratory de-
signed a palette of liposomal vaccine adjuvants capable of
inducing various immune response profiles. The ones most
advanced were made specifically to induce strong T-cell-
mediated immune responses; Th1-skewed CD4+ T-cell re-
sponses induced by CAF01 (dimethyldioctadecylammonium
bromide [DDA] and trehalose-6,6´-dibehenate) and CD8+ T-cell
responses induced by CAF09 (DDA, synthetic monomycoloyl
glycerol [MMG], and polyinosinic:polycytidylic acid [poly(I:
C)]).23,24 The adjuvants have been evaluated in vivo in different
animal models using a variety of immunization routes.24–26 Our
experience with these vaccines, including the evaluation of
their immunostimulatory and mechanistic profile, will be the
basis for the present review.

Rational Design of Vaccine Adjuvants
Progress has been made in guiding immunity through a
detailed mechanistic understanding of innate immune cell
biology and the response of professional antigen-presenting
cells (APCs) to various stimuli. Based on this, rational design
can be applied, taking into account antigen type, target cell
subsets and phenotype, and immunization routes, which guide
the choice of delivery system and immunostimulators. Rational
design basically means designing the vaccine to present suffi-
cient amounts of the right antigen in the right conformation to
the appropriate cell populations while supplying the right co-
stimuli for a sufficient amount of time. Choice of conformation
and dose of antigen are often handled by antigen discovery
programs with focus on specific disease targets. In this review,
we will focus on rational design of adjuvants, and thus immu-
nogen design will not be further discussed here. Targeting of
appropriate cell populations with the right co-stimuli and tim-
ing serve as guidance for rational design of novel adjuvants
and require knowledge of numerous aspects: (1) what is the
required immune response to prevent disease from a given
pathogen, (2) which innate immune cells are relevant to induce
said immune response, (3) where are these innate cell subsets

located, and (4) which PRRs do the cells express (Figure 1). The
questions can be answered by using animal models, as they
enable mapping the whole-body effects of vaccination.
Knowledge of the required immune responses, and the innate
cells and cytokines involved, and the localization in the body
can be acquired by evaluating stimulation and proliferation of
innate and effector cells upon administration of the vaccine via
a number of different assays as described below.

Evaluation of the Biodistribution and Cellular
Association of Adjuvanted Vaccines
Many vaccines have been developed without detailed knowl-
edge of the targeted cell populations. However, the biodistribu-
tion and cellular association patterns of adjuvanted vaccines
are of utmost importance for the induction of specific immune
responses. One such example is the CAF09 adjuvant that in-
duces strong CD8+ T-cell responses when given intraperitone-
ally (i.p.), but not upon subcutaneous (s.c.) or intramuscular (i.
m.) immunization. This is presumably due to the formation of
a persistent depot at the site of injection (SOI), which prevents
targeting of the innate immune cell subsets specialized in CD8+

T-cell induction.24,27 The adjuvanted vaccines will predomi-
nantly be actively transported or drain via the lymphatics, and
it is therefore of importance to know the draining lymph nodes
(LNs) from a given injection site.

In vivo evaluation of the draining pattern from various injection
sites can be performed by injection of fluorescently labelled parti-
cles followed by noninvasive imaging of the animal, allowing for
assessment of the biodistribution pattern of the injected particles
in the same animal over time (Figure 2a). For example, the draining
LNs following i.p. administration were evaluated in rats by injection
of near infra-red fluorescent quantum dots and human serum
albumin conjugated with IR-Dye800.28 The draining LNs and lymph
flow was identified by imaging the rats in intervals up to 24 hours
after i.p. administration, revealing primary and secondary draining
LNs.28 Alternatively, lymphatic mapping can be performed by using
a visible dye such as Evans Blue dye, which was used to visualize
the draining LNs following hind leg and lateral tail vein administra-
tion in mice.29 Mapping the biodistribution pattern of a vaccine
administered via a certain route provides important information
about which compartments are affected by the vaccine. Thus, it
may be possible to assess if the correct organs and cell types are
targeted to induce the desired immune response.

Vaccine Interaction with Innate Immune Cells

Localization of vaccine components in the organs, particularly
the LNs, has been illuminated by confocal microscopy
(Figure 2a). The spatial localization of the vaccine components
in the draining LNs was evaluated following s.c. immunization
with the emulsion-based adjuvant MF59 fluorescently labeled
with the lipid tracer dioctadecyl-tetramethylindodicarbocyanine
perchlorate and intrinsically fluorescent PE-antigen.30 The LNs
were stained for relevant expression markers (eg, the macro-
phage marker F4/80 and the germinal center [GC] marker GL7),
which made it possible to assess the co-localization of the vac-
cine components with specific LN compartments.30 In a study
evaluating the dependence of particle size on LN entry, red fluo-
rescent 20-nm and green fluorescent 1000-nm particles were co-
administered in the footpad of mice.31 The results showed that
the small particles likely entered the LNs freely, whereas the
large particles required trafficking by dendritic cells (DCs).31 In
another study, fluorescently labelled chicken egg ovalbumin
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(OVA) formulated in nanoparticles based on poly(lactide-co-hy-
droxymethylglycolic acid) was used to perform in vivo tracking
over 13 days following s.c. administration with concomitant
assessment of the levels of OVA at the SOI and in the draining
LNs.32

Cellular association of fluorescently labeled vaccine compo-
nents can be evaluated by flow cytometry, where cell subsets are
detected by staining with appropriate fluorescently labeled anti-
bodies.27,33 This approach was used to identify targeting of DCs in
the draining LNs by liposomal adjuvants (labeled with 7-nitro-2-
1,3-benzoxadiazol-4-yl or 3,3′-dioctadecyloxacarbocyanine per-
chlorate) administered via different administration routes.27,33

This allows for concomitant evaluation of the target lymphoid
tissues the antigen drains to and the phenotype and activation of
the targeted cell subsets (Figure 2b). Furthermore, the localization
of fluorescently labeled antigen and adjuvant can be investigated
by immunofluorescent staining and microscopy.

Using CAF09, we tracked fluorescently labeled antigen and
noticed that i.p. administration targeted the CD8+ T-cell priming
CD8α+ DCs in LNs and spleen while s.c. and i.m. administration

did not.27 Thus, s.c./i.m. administration of CAF09-adjuvanted
vaccines prevented efficient vaccine drainage to the intended
target cells. Based on this information, as an example of rational
vaccine design, we have recently demonstrated that reformulat-
ing the CAF09 adjuvant to limit the depot effect can be an effec-
tive means to obtain CD8+ T-cell responses after s.c./i.m.
immunization.34

Characterization of the association of the vaccine adjuvant
and antigen with specific innate cell subsets at the injection site
and in the lymphoid organs can be used to identify cell-
mediated transport to the injection site and give an insight into
the APC subsets priming the resulting immune response.35–37

The cellular association of the emulsion-based adjuvant MF59
was evaluated in the injected muscle and the draining LNs using
a flow cytometry panel of fluorescently labeled anti-Ly6C, -Ly6G,
-CD11b, -CD11c, -F4/80, and -MHC-II antibodies, the expression
patterns of which could be combined to identify neutrophils, eo-
sinophils, inflammatory monocytes, macrophages, and different
DC subsets.35 MF59 was found to be mainly associated with neu-
trophils and inflammatory monocytes in the muscle tissue,
which were thought to facilitate rapid cell-mediated transport to
the draining LNs.35 In another study, the liposome-based adju-
vant AS01 was shown to induce a transient influx of neutrophils
(SSChighCD11b+Ly6Ghigh) and monocytes (Ly6ChighCD11b+Ly6G-)
into the muscle injection site.36 Similar innate cell reactions
were observed in rhesus macaques immunized with HIV-1 enve-
lope protein adjuvanted with an aluminum-TLR7-ligand com-
plex or MF59. In this study, fluorescently labelled antigen was
found to associate with neutrophils, monocytes, and myeloid
DCs at the muscle injection site. Furthermore, the study showed
that priming of antigen-specific CD4+ T cells happened exclu-
sively in the draining LNs.37 Flow cytometry coupled with high-
throughput imaging of immunofluorescent staining, such as im-
agestream, represents a novel promising tool to investigate
innate immune cell targeting, uptake, and subcellular location.
For example, it was shown that the experimental adjuvant car-
bomer carbopol was located intracellularly in a number of differ-
ent innate immune cells and that many cells had taken up
multiple carbopol particles.38

Activation of DCs can be evaluated by assessing the increase
in expression of activation markers such as CD40, CD80, CD86,
and MHC-II using flow cytometry.33,39,40 Thus, it is the change of
surface marker expression on a single cell level that is evaluated,
typically measured as the mean fluorescence intensity, rather
than the number of cells expressing a certain cell marker. Mice
immunized with the 2-component adjuvant IC31 showed signifi-
cantly increased levels of CD40, CD80, and CD86 expression spe-
cifically on adjuvant-associated DCs in the LNs compared with
control mice and mice immunized with the TLR-9-ligand CpG.40

To investigate the heterogeneity of innate immune cells re-
sponding to vaccination, single cell sorting followed by RNA
sequencing is a powerful technique. It enables genome-wide
profiling of mRNA expression and has the potential to reveal the
heterogeneity of APCs, otherwise masked at the bulk cell level.41

Quantitative Assessment of Vaccine Biodistribution

Injection of radiolabeled vaccine particles is also used for quali-
tative and quantitative assessment of the biodistribution on
both organ and cellular levels (Figure 2a). Quantitative evalua-
tion of the biodistribution of an adjuvanted vaccine can be per-
formed by injection of radioactively labelled particles.27,42–46

The method enables quantitative assessment of injected vaccine
particles in separate excised organs, for example, the draining

Figure 1. Rational design of vaccine adjuvants. The required immune responses

are identified based on pathogen vaccinology and defined by the type of vac-

cine; different immune responses might be required for a prophylactic vaccine

preventing disease, and a therapeutic vaccine treating disease or preventing

clinical symptoms. Based on the required immune responses, the relevant

innate immune cells must be identified along with evaluation of their localiza-

tion within the body and PRR expression on target cells. Knowledge of these

factors can be used to design the delivery system and identify relevant immun-

ostimulatory molecules, respectively. The delivery systems are often

nanoparticle-based structures of diverse origin, for example, liposomes, emul-

sion, virosomes, or aluminum salts. The design choices of delivery systems

depend, amongst other things, on the location of the target innate cells, the

route of administration, the chosen immunostimulators, and association mode

of antigen. Relevant immunostimulators are often identified based on the PRR

expression of target innate cells subsets. These may be antigen-presenting cells

(eg, DCs and macrophages) or cells with bystander function. Antigen discovery

programs can, independently of adjuvant design programs, identify immuno-

genic antigens for a given pathogen and be used to develop recombinant anti-

gens that in combination with suitable adjuvants induce pathogen-specific

immune responses. The vaccine formulation (adjuvant + antigen) is tested

in vivo in relevant animal models to characterize the induced immune re-

sponses and, possibly, the response to a pathogen challenge.
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LNs, the spleen, and the SOI, typically calculated as the ratio of
the initial vaccine dose. One benefit of using radiolabeling of the
vaccine is the possibility of performing concomitant evaluation
of the levels of different components of the vaccine in various
organs. Individual labeling of a liposomal adjuvant and a protein
antigen with 1H-cholesterol and covalent linkage with 125I,
respectively, enabled separate assessment of the relative antigen
and adjuvant levels at the SOI and in the draining LNs.43,46 This
approach was used to evaluate the co-localization of antigen
and adjuvant at the SOI and in the draining LNs as a conse-
quence of protein and particle charge.43 After i.m. administra-
tion, a negatively charged antigen adjuvanted with a cationic
liposome remained at the SOI for a longer time than a positively
charged antigen (lysozyme) adjuvanted with the same cationic
liposome, while neutral liposomes also caused rapid drainage of
the negatively charged antigen from the SOI.43 In a study using
similar techniques, the lipid bilayer fluidity of the cationic lipo-
somal adjuvant was shown to be critical for the biodistribution

pattern.47 Thus, liposomes, which are in a rigid gel state at body
temperature, form a depot at the SOI over the 15-day study
period, whereas fluid liposomes do not form a depot at a SOI but
enter the draining LNs in appreciable amounts already 1 day
after administration.47 Evaluation of how vaccine adjuvants
associate with immune cells, locally and systemically, and how
these cells are activated can provide valuable knowledge of the
mechanism of action of the adjuvants. Furthermore, this knowl-
edge can aid the design of novel vaccine adjuvants as the con-
nection between activation of innate immune cells and the
induced immune responses may be determined.

Characterization of Immunostimulators That Activate
Target Cells

Identification of the optimal combination of immunostimula-
tors to be used for activating specific subsets of immune cells
requires knowledge of the expression of PRRs on the cells in

Figure 2. Evaluation of vaccines—from identification of target cells to desired immune response profile. A number of different assays can be utilized to assess adju-

vanted subunit vaccine function and efficacy. (A) Assays evaluating biodistribution and organ localization of vaccine components on a whole-body level are often

based on detection of fluorescently or radiolabeled adjuvants and antigens. (B) In target organs such as the injection site and draining lymph nodes, association of

vaccine components with innate immune cells and antigen-presenting cells can be evaluated using flow cytometry-based assays. These assays can be used to eluci-

date the mechanism of action for vaccine adjuvants and which antigen presenting cells that are activated by the adjuvant. (C) Qualitative and quantitative evaluation

of the adaptive immune responses to subunit vaccines is used to assess vaccine efficacy. Quantitative responses can be measured by ELISA, ELISPOT, and immuno-

plex assays, whereas flow cytometry-based assays and antibody avidity assays can be used to evaluate the qualitative immune responses. (D) Vaccine efficacy can be

assessed using alternative assays to pathogen challenge models. The cytotoxic potential of CD8+ T cells can be evaluated in antigen-specific lysis assays, while anti-

body functionality may be evaluated in neutralization assays or with methods to assess antibody Fc-dependent functionalities such as cytotoxicity, complement acti-

vation or phagocytosis.

| Schmidt et al.312



question. As an example, TLR3 is expressed on both LN-
resident CD8α+ and migratory CD103+ cross-presenting DCs,
and activation of TLR3 is required to induce cross-priming of
CD8+ T cells.48 Thus, TLR3 ligands are often used in adjuvant
formulations intended for induction of CD8+ T-cell responses.49

Advances in sequencing as well as systems and computational
immunology have provided the field with online databases
such as the Immunological Genome Project (Immgen), where
the PRR gene expression on a large number of immune cells
can be found for mouse and human (www.immgen.org). Such
databases can be used as a tool to identify possible immunosti-
mulators in the design phase of novel adjuvant formulations. It
should be noted that dependent on the activation signals, the
PRR expression profile may change. Thus, whereas Immgen
displays PRR expression in the unpertubed steady state, initial
activation by adjuvants may change the PRR profile of target
cells, possibly providing access to additional PRRs. Importantly,
gene expression analyses do not necessarily reflect actual pro-
tein expression. Protein expression of target PRRs should there-
fore be confirmed by such means as flow cytometry or by
proteomic approaches.

Due to the complexities of the immune system, which re-
quires interactions of several different cell subsets to induce
and maintain antigen-specific immune responses, functional
evaluations of vaccine candidates are preferably performed in
animal models. For example, antibody responses to T-cell-
dependent antigens require that antigen is complexed, for
example, via complement deposition, is transported/drained to
lymphoid tissue, and then taken up by specialized macrophage
and DC subsets and delivered to follicular B cells. At the same
time, T cells must be activated by DCs and form contact with
the B cells in the draining LN.

Immunostimulators are often evaluated in vitro to identify
the activation pathways in the target cells. Furthermore,
in vitro evaluation of the immunogenic effects of an immunos-
timulator on the chosen cell strain can indicate the effects
achieved upon in vivo administration. Correlation between
in vivo and in vitro studies has been shown for the TLR7/8-
ligand R848, which produced cytokines corresponding to a Th1-
skewed CD4+ T-cell response both in human-derived leuko-
cytes and following s.c. immunization in an o/w-emulsion.50 A
synergistic effect of co-administration of MMG and the TLR9-
ligand CpG was observed in vitro in J774 macrophages mea-
sured as secretion of IL-6.51 A similar synergistic effect was
observed following immunization of mice with H56-adjuvanted
CpG/DDA/MMG-liposomes with respect to IFN-γ and IL-17
secretion.51 The TLR3-ligand poly(I:C) formulated in poly-(L-
lysine)-microspheres stimulated in vitro CD8+ T-cell prolifera-
tion by monocyte-derived DCs and secretion of IL-6, IL-12p70,
and TNF-α.52 In vivo administration to mice of poly(I:C) formu-
lated with CAF01 similarly induced strong CD8+ T-cell re-
sponses but low levels of IL-6 and TNF-α.53 Thus, in vitro
studies can provide insights into early stimulation patterns by
immunostimulators but should not replace in vivo evaluation
of the complete vaccine adjuvant.

The complex interplay between the different cells of the
immune system may be the cause of the vastly different results
obtained with the synthetic MMG analogue MMG-6 in both
in vitro and in vivo studies, respectively.54,55 In the in vitro
studies, neat MMG-6 failed to stimulate monocyte-derived DCs,
whereas MMG-6 incorporated into DDA-based liposomes were
capable of inducing robust Th1-skewed CD4+ T-cell and total
IgG antibody responses in vivo.54,55 This illustrates the impor-
tance of evaluating the immunostimulators as part of the final

adjuvant, as the formulation might alter the configuration of
the molecules and the mode of presentation to the receptors.
Furthermore, in vitro studies often rely on the function of a sin-
gle cell subset, whereas in vivo studies enable simultaneous
activation of several types of cell subsets. Further, in vitro eval-
uation of the Mycobacterium tuberculosis (M.tb)-derived MMG
showed stimulation of the human Mincle receptor, which was
not induced in the murine Mincle receptor.56 However, MMG in-
duces strong immune responses when administered in combina-
tion with DDA-based liposomes in murine studies,57 indicating
that it either stimulates the immune response through unknown
receptors or adopts a conformation within the liposome, which
enables interaction with the Mincle receptor.

The signaling pathway of trehalose-6,6´-dibehenate has
been Investigated via both in vitro stimulation of bone marrow
macrophages and in vivo administration of CAF01.58,59 In vitro
stimulation of macrophages, measured as release of nitrites
and G-CSF, is dependent on cellular expression of the Mincle
receptor and independent on MyD88 expression.58 In contrast,
antigen-specific secretion of IFN-γ and IL-17 by draining LN-
isolated cells required expression of both MyD88 and Mincle.59

This illustrates that the signaling pathways in the in vivo situa-
tion may be different from those found in in vitro studies, pos-
sibly due to the interaction between several different immune
cell subsets in vivo. Furthermore, the cell lines or peripheral
blood mononuclear cells tested in in vitro studies may be vastly
different in composition compared with the cellular popula-
tions at the injection site.

Evaluation of Vaccine-Induced Adaptive
Immune Responses
Evaluation of Antibody Responses

The best-established correlate of protection against a number
of diseases is antibody responses.60 Antibody responses can be
measured as antibody titer by standard enzyme-linked immu-
nosorbent assay (ELISA)-based approaches or by more disease-
specific approaches, such as virus or bacterial neutralization
(Figure 2, c and d). Vaccination elicits B-cell activation in the
draining LNs, followed by formation of GCs in which affinity
maturation and antibody class-switching occurs.61 Adjuvants
may affect the magnitude of GC responses, which can be mea-
sured by flow cytometry or immunofluorescent staining and
confocal microscopy. Some spontaneous GC formation may
occur in naïve animals, and it may therefore be beneficial to
include a fluorescently labeled antigenic probe in the analy-
sis,62 thus enabling detection of antigen-specific GC responses.
It should be noted that the kinetics of GC responses might vary
with properties of the antigen and adjuvant used, thus requir-
ing kinetic studies to define the peak response for a given vac-
cine. The affinity maturation of the antibody response can also
be followed, using ELISA-based methods, such as limiting anti-
gen dilution or chaotrope methods. In the latter, the resistance
of the antigen-antibody complex to urea or NaSCN is evaluated
as a measure for antibody affinity. Antibody avidity may corre-
late with protection. For example, for a meningococcal vaccine,
serum antibody avidity significantly correlated with bacteri-
cidal titres.63 Other methods to measure the strength of
antigen-antibody interactions include surface plasmon reso-
nance.64 Ultimately, the GC B cells may undergo 1 of 2 produc-
tive fates, which are desired for all infections requiring
antibody-dependent protection: memory B cells or plasma cells.
It has recently become appreciated that early GCs have a
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preponderance for generating memory B cells, while plasma
cell formation requires more progressed GCs.65 An interesting
possibility would be to modify immunization protocols or adju-
vants to change GC persistence and thereby possibly alter the
plasma cell to memory B cell output ratio. Memory B cells are
circulatory and can be followed using flow cytometry. The phe-
notype of memory B cells is quite diverse and both class-
switched and IgM positive memory B cells exist.66,67 The best
way to quantify memory B cells is therefore to use a probe
(fluorescently labeled antigen) in combination with standard
memory B cell markers (eg, B220+, IgD+, CD38+ in mice).
Antigen-specific memory B cells can further be sorted by FACS
and used to provide information on B-cell receptor heavy- and
light-chain gene usage (variable, diversity, and joining genes)
after vaccination, or single-cell sorted and used for production
of antigen-specific monoclonal antibodies.68 For example, in
macaques immunized with HIV-1 Env, memory B cells were
single-sorted for CD4 binding site-reactivity using 2 fluorescent
probes and used to produce monoclonal CD4 binding site reac-
tive antibodies. This allowed for the further studies of vaccine-
induced antibody recombination events and CD4 binding site
specificities.69 B cell receptor sequencing may also be per-
formed to investigate how immunoglobulin sequence reper-
toire changes following vaccination70 or how the type of
vaccine or adjuvants may potentially influence B cell receptor
variable gene usage. For example, upon immunization with a
Plasmodium vivax antigen, including a TLR agonist expanded
the diversity of the variable region sequences in comparison
with the use of an oil-in-water emulsion adjuvant alone.71 It is
also possible to stimulate plasma cell formation from memory
B cells using B cell mitogens, such as the TLR7 agonist R848 or
the TLR9 agonist CpG B.72 The number of antibody secreting
cells can then be evaluated by enzyme-linked immunospot
(ELISPOT) or secreted antibodies can be measured by ELISA.
Dependent on the vaccine, plasma cells can be maintained for
lifetime. Long-lived plasma cells home to the bone marrow and
can be phenotypically characterized by flow cytometry and
their antibody secretion can be followed by ELISPOT.73 Tetanus-
specific plasma cells were evaluated 10 years post-vaccination
by ELISPOT from bone marrow samples.74

Standard evaluation of vaccine-induced antibody responses
include determination of antigen-specific serum IgG levels.
Dependent on the properties of the vaccine antigen, or the type
of adjuvant, different antibody isotypes may be elicited. For
example, in response to protein antigens, the CAF01 adjuvant
elicits a balanced Th1/Th2 profile, characterized by both IgG1
and IgG2a/c antibodies, while aluminum hydroxide induces
mainly IgG1 antibody responses to the same antigens in
mice.75 These antibody subclasses may (due to the structural
properties of the Fc region) differentially bind to Fc receptors
(FcR), which in turn may affect FcR-mediated antibody func-
tions such as antibody-dependent cellular cytotoxicity, comple-
ment activation, and phagocytosis.76,77 In humans, an ENV
GP120 vaccine (VAX003) elicited IgG4 antibodies that may have
outcompeted more functional Ig subclasses (IgG1 and IgG3),
and depletion of IgG4 gave higher antibody functional re-
sponses.78 An intriguing possibility is also that vaccines may
influence the antibody Fc region glycosylation patterns, which
may also affect Fc receptor binding and thus antibody FcR-
mediated functions.79 For example, it was found that an
aluminum-adjuvanted recombinant gp120 vaccine induced a
different antibody FC region glycan profile compared with an
adenovirus based HIV-1 envelope A vaccine.79 Dependent on
the disease target, it may therefore be important to broaden

the evaluation of antibody responses to include antibody avid-
ity as well as antibody isotypes and functional attributes. To
probe correlates of vaccine-induced immunity in more detail,
transcriptomics and metabolomics show great promise. For
example, evaluation of innate and adaptive immunity to
Herpes zoster vaccination in humans was supplemented with
metabolomics to reveal an interconnected immune network of
metabolic pathways that correlated with adaptive immune
responses.80

Evaluation of CD4+ and CD8+ T-cell Responses

Antigen-specific CD4+ and CD8+ T cells are important to pre-
vent or combat infectious diseases. Therefore, evaluation of
antigen-specific CD4+ and CD8+ T cells induced by novel vac-
cine formulations is an important measure of vaccine efficacy
(Figure 2c).

A well-established method for evaluating antigen-specific
CD4+ and CD8+ T-cell responses is stimulation of single-cell
suspensions from target organs with the subunit antigen and
minimal CD8 epitope peptides, respectively. Intracellular flow
cytometry can be applied to single cell suspensions stimulated
for a short amount of time to assess the production of cyto-
kines on a cellular level. Furthermore, harvested supernatants
of single cell suspensions stimulated for a longer time (typically
3–5 days) may be used to quantify the cytokine production on a
cell population level using ELISAs and multiplex assays such as
Luminex and Meso Scale Discovery.72,81,82

The CD8+ T-cell responses induced by immunization with
CAF09-adjuvanted M.tb.-antigen TB10.3 (as the whole protein
or the CD8 epitope-containing peptide, P1) were evaluated by
stimulating single cell suspensions of splenocytes with the
minimal CD8 epitope, IMYNYPAM.24 Subsequent fluorescent
antibody staining of the splenocytes permitted evaluation of
IFN-γ, IL-2, and TNF-α expression by CD4+ and CD8+ T cells
using flow cytometry.24 A similar flow cytrometry panel was
used to evaluate the CD4+ and CD8+ T-cell responses in spleno-
cytes of rhesus macaques immunized with the influenza vac-
cine Fluzone adjuvanted with the cationic lipid/DNA complex-
adjuvant JVRS-100. Immunization with the adjuvanted vaccine
resulted in higher levels of multifunctional CD4+ and CD8+ T
cells compared with macaques immunized with unadjuvanted
Fluzone.83 This assay evaluates the quantitative functionality
of the CD8+ T cells as the level of cytokine producing cells in
response to the stimulus. Furthermore, the levels of polyfunc-
tionality in the stimulated cells can be used to assess the
potential of a vaccine to induce lasting immune responses.
Thus, IFN-γ+,IL-2+,TNF-α+ CD8+ T cells are considered memory
T cells, which give rise to a long-lived immune response,
whereas a short-lived effector response may be defined as IFN-
γ+,TNF-α+ and IFN-γ+ CD8+ T cells.84

The repertoire of induced CD4+ T cells is critical for the
induced functional immune responses; Th1 responses induce
proinflammatory responses and help the induction and sus-
taining of CD8+ T-cell responses, whereas Th2 responses help
promote antibody class switching, and Th17 CD4+ T cells are
thought to be important for establishing mucosal immune re-
sponses.85 Intracellular staining and flow cytometry on single
cell suspensions stimulated with the antigen can also be used
for evaluation of CD4+ Th1-cell responses utilizing the IFN-γ+,
IL-2+, and TNF-α+ intracellular staining assay,83,84 which may
also include anti-IL-17-antibodies to assess the Th17-skewed
CD4+ T-cell response.85
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Flow cytometry has limitations to the number of antibodies
that can be analyzed at one time due to spectral overlap of the
fluorophores conjugated to the antibodies. An alternative
method for analysis of T-cell populations is cytometry by time-
of-flight (CyTOF), where the antibodies are conjugated to heavy
metal isotopes by metal chelating polymers rather than the
fluorophores used for flow cytometry assays.86 Staining of stim-
ulated cells with heavy metal isotope-conjugated antibodies
enables detection of the cells by using mass spectroscopy. Due
to little overlap between the heavy metal isotopes, the number
of antibodies used for each assay can be increased compared
with flow cytometry. However, the data acquisition rate is low
at 300 to 500 events/s compared with the acquisition rates of
flow cytometry at orders of magnitude at 103 to 105 events/
s.86,87 Thus, 36 different antibodies were used to identify subpo-
pulations of human CD8+ memory and effector T cells. The
functionality of subpopulations of CD8+ T cells were identified
by principal component analysis and combinatorial diversity
achieved by Boolean gating, which were distinct for different
virus-specific CD8+ T cells.88 These data analysis approaches
are suitable for simultaneous assessment of different immune
cell populations due the large amounts of data generated using
CyTOF.87 Thus, differences in cytokine and receptor expression
patterns of immune cell subsets (CD4+ and CD8+ T cells, B cells
and monocytes) were assessed for naïve and influenza-
vaccinated mice after influenza challenge.87 CyTOF has poten-
tial for assessing changes in type and functionality of immune
cell subsets after immunization with different subunit vaccine
adjuvants. It may be possible to identify correlates of protection
in disease challenge models or show differences between
different adjuvants. Furthermore, the method requires low
sample volumes enabling longitudinal studies using blood
samples.87

The cytokine levels in response to stimulation with antigen
can also be assessed by using ELISPOT, where the released cy-
tokines are captured by cytokine-specific antibodies adsorbed
to the well.89,90 This approach was used to quantify the expres-
sion of IFN-γ, IL-4, and IL-2 in mice immunized with virus-like
particles, which showed that concomitant co-stimulation with
poly(I:C) increased the cytokine responses.89 ELISPOT is also
very useful in other animal models where flow cytometry anti-
bodies are scarce. For example, to assess the IFN-γ responses in
splenocytes to different tetanus toxoid doses adjuvanted with
CAF09 in a study in Göttingen minipigs. The study showed that
low doses of tetanus toxoid (1 and 10 μg/dose) resulted in the
induction of IFN-γ responses, which were diminished when the
dose was increased to 100 μg.90 In one study, Luminex, ELISPOT,
and intracellular flow cytometry were used with antibody
ELISA assays to compare different adjuvants in a DNA plasmid
prime/adjuvanted protein boost regimen.91 The combination of
assays allowed the identification of adjuvants capable of
robustly boosting the primed immune responses, while provid-
ing detailed information on the differences in induced cytokine
levels and T-cell responses induced by the different adjuvants.
Thus, the results showed that MPLA, ISCOMATRIX, and QS-21-
based adjuvants were capable of inducing antibody responses
towards the antigen, though the cytokine profiles differed.91

Identification of CD4 and CD8 epitopes in novel protein- or
peptide-based antigens can be achieved by epitope-mapping,
where splenocytes from immunized mice are stimulated with
individual peptides spanning the entire protein. Assessment of
cytokine-producing T cells by intracellular flow cytometry in
response to the individual peptides serve to identify CD4+ and
CD8+ T-cell epitopes. This approach was used to elucidate the

induction of CD4+ and CD8+ T-cell responses following immu-
nization with recombinant NS3 protein antigen or the corre-
sponding peptide mix both adjuvanted with CAF09.92 The
epitope mapping revealed that immunization with the peptide
mix resulted in recognition of more CD4 epitopes compared
with the recombinant protein, whereas 2 CD8 epitopes were
induced by the peptide mix, while none were observed with the
NS3 protein.92

Pentamer/tetramer/dextramer-conjugated CD8 epitope-
loaded MHC-I molecules are used to assess the level of antigen-
specific CD8+ T cells in the relevant organs using flow cytome-
try. In a DC-based vaccine pulsed with the antigen TRP2 and
adjuvanted with soluble poly(I:C), the percentage of TRP2-
specific CD8+ T cells was assessed using a Kb/TRP2 tetramer
and an anti-CD8 antibody.93 The induction of CD8+ T-cell re-
sponses against the antigens TB10.3-P1, OVA, Gag p24, and E7
adjuvanted with CAF09, compared with using CAF01 as adju-
vant, were evaluated using the specific minimal CD8-epitopes
loaded onto the appropriate pentamer/dextramer-conjugated
MHC-I molecules. The cell subsets were identified by co-
staining with anti-CD8, -CD4, -CD19, and -CD44 antibodies.24

While assessment of the number of antigen-specific CD8+ T
cells give a good indication of the efficacy of the administered
vaccine, the results should be evaluated in combination with
functionality assays, for example, production of cytokines or
antigen-specific cytotoxicity assays as described below.

The proliferation of antigen-specific CD4+ and CD8+ T cells
upon therapeutic vaccination can be used as a measure of how
well the cells respond to vaccination. In the bromodeoxyuridine
(BrdU) assay, mice are fed BrdU in the drinking water, or by i.v.
or i.p. administration, for a few days prior to euthanization.
BrdU is incorporated into the DNA of proliferating cells and can
be imaged by fluorescent anti-BrdU antibodies in flow cytome-
try assays.94,95 In a study of therapeutic vaccination of mice in-
fected with chronic lymphocytic choriomeningitis virus, it was
shown that a low amount of antigen-specific CD8+ T cells pro-
liferated in presence of a chronic infection compared with non-
infected, preimmunized control mice.94 In another study, mice
were vaccinated with recombinant M.tb. antigen adjuvanted
with cationic liposomes for the prime and boosted as an adeno-
vector. Following M.tb. pulmonary challenge, proliferative
antigen-specific CD4+ T cells were recruited to the lungs to a
higher degree than antigen-specific CD8+ T cells.95

It may be of interest to investigate where vaccine-induced,
antigen-specific CD4+ and CD8+ T cells localize upon pathogen
challenge. Evaluation of tissue and circulatory localization of
immune cells can be performed by i.v. injection of fluorescently
labelled anti-CD45 antibodies a few minutes before killing.96

The antibodies bind to CD45-expressing lymphocytes in the
blood, thus enabling sorting of circulatory immune cells (CD45+)
from tissue resident immune cells (CD45−) in highly perfused
organs, such as the lungs.96,97 In a study of a M.tb. subunit vac-
cine, fluorescently labelled antigen-specific CD4+ T cells were
adoptively transferred from donor mice immunized with low
(5 μg) and high (50 μg) doses of adjuvanted antigen into M.tb-in-
fected mice. One day after adoptive transfer, the CD45-labelling
assay was used to evaluate the level of transferred antigen-
specific CD4+ T cells that homed to the lung parenchyma. It was
shown that CD4+ T cells from mice immunized with a low dose
of antigen homed most efficiently to the lung parenchyma.97 In
another study, the assay was used to evaluate how the immuni-
zation routes affected the levels of IgA+ B cells levels in the
lungs and vasculature.82 It was shown that a s.c. priming fol-
lowed by an intranasal booster vaccination with adjuvanted
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ScpA antigen induced higher levels of homing to the lung
parenchyma of IgA+ B cells compared with a subcutaneous
booster vaccination.82 There are several assays to assess the
CD4+ and CD8+ T-cell responses in animal models. The choice
of assay may depend on the animal model, as the use of flow cy-
tometry requires the access to antibodies, which organs are
being assayed, and whether information on an individual cellu-
lar, organ, or systemic level is required.

Evaluation of Antigen-Specific Cytotoxic Potential for
CD8+ T Cells

When assessing the efficacy of a subunit vaccine, it may be
desirable to use alternatives to disease challenge models for
evaluation of antigen-specific cytotoxicity of CD8+ T cells. The
study animals are spared from experiencing the target disease,
which may cause discomfort and pain. Furthermore, it enables
separation of adjuvant function and efficacy from immunity pre-
venting disease. Specifically, the latter may not be completely
elucidated, as is the case for M.tb infection, where for example a
strong pathogen-derived antigen-specific CD8+ T-cell response
was not preventive of disease in a mouse model.98

Several different assays exist to measure cell-mediated
cytotoxicity, where the 51Cr release assay is regarded as the
“golden standard.”99 Cell-mediated cytotoxicity is detected
when radioactive 51Cr is released from target cells, which were
initially pulsed with sodium chromate.99 The assay is per-
formed ex vivo, which enables selection of specific target cell
populations at different effector to target cell ratios.100 In a
mouse study of a cell-based vaccine against renal cell carci-
noma, this approach was used to show that the vaccine
induced tumor-specific cytotoxicity, with little lysis of tissue
control cells.100

One assay is measuring the specific lysis of i.v.-injected,
fluorescently labeled, minimal CD8 epitope-pulsed splenocytes
into immunized animals. A weakness of the assay is that the
transfer of epitope peptide-pulsed splenocytes to immunized
mice limits the results to encompass only the chosen epitopes.
Thus, synergistic (or opposing) immune responses involving
simultaneous antibody, CD4+, and CD8+ T-cell responses can-
not be evaluated using this method alone but must be done in
combination with ex vivo stimulation of target cells.

In the specific lysis assay, single cell suspensions of spleno-
cytes from naïve mice are pulsed with different concentrations
of the cellular dye carboxyfluorescein succinimidyl ester (CFSE)
resulting in distinct populations, which can be further pulsed
with the minimal CD8+ epitopes of interest, always leaving one
population unpulsed. The pooled populations are injected i.v.
into recipient mice, and the specific lysis of the pulsed spleno-
cytes is determined typically after 24 hours by calculating the
ratio of peptide-pulsed to unpulsed splenocytes in relevant or-
gans in the recipient mice. In a study evaluating a CAF09-
adjuvanted pepmix vaccine against hepatitis C virus, the level
of specific lysis to 2 different peptides containing CD8 epitopes
was compared by i.v. injection of splenocytes labeled with 3 dif-
ferent concentrations of CFSE and 10 μg/mL of each peptide.92

A complex protocol involving up to 216 separately fluores-
cently stained splenocyte populations was developed by Quah
et al., intended for detailed in vivo assessment of CD8+ T-cell
avidity and concomitant evaluation of several CD8 epitopes.101

Splenocyte populations derived from naïve mice were stained
with 4-6 concentrations of the fluorescent dyes CFSE, celltrace
violet, and cell proliferation dye, including a nonstained popu-
lation, followed by pulsing with different concentrations of

minimal CD8 epitopes prior to injection into immunized mice.
Separation of donor and recipient cells was achieved by using
B6.CD45.1 donor mice, thus allowing selective fluorescent anti-
body staining of CD45.1 in the B6.CD45.2 recipient mice. The
avidity of induced antigen-specific CD8+ T cells was shown to
depend on the type of antigen, as SIINFEKL-specific CD8+ T cells
showed a high level of specific killing even at low peptide con-
centrations on donor cells. In contrast, the epitopes GP33
and NP68 resulted in lower avidities, with distinctly peptide-
concentration dependent specific lysis levels by antigen-
specific CD8+ T cells.101

Consideration for Use of Animal Models to
Predict Immunity in Humans
One big hurdle in vaccine development is to transfer novel vac-
cines and adjuvants from preclinical studies into clinical trials.
An important aspect here is obviously the need for animal
models that optimally reflect human (or target animal) vaccine-
induced immunity, toxicology, and prevention of disease against
the pathogens in question. The choice of animal model requires
that the relevant parts of the immune system are comparable
with the target species in receptor expression and cellular re-
sponses. By far, most in vivo vaccine efficacy studies are per-
formed on inbred mice. The structure of the immune system in
mice and humans is overall highly similar, but some character-
istics are different and should be taken into consideration when
using mouse models. Covering this issue in detail is not our
scope with this review, although it deserves some attention. We
have focused on a few important topics.

Innate Sensing

The innate immune system is conserved between all multicel-
lular organisms in some form in contrast to the adaptive
immune system, which is found in vertebrates only.102 There
are vast differences in the types, numbers, and functions of
TLRs, C-type lectin receptors, retinoic acid-inducible gene-I-like
receptors, and NOD-like receptors between species, which has
been reviewed elsewhere.102 Furthermore, there are differences
in the immune cell compositions and functions (eg, the ratio of
leukocytes and the responses to IFN-γ), and, importantly, resis-
tance is favored in humans, whereas tolerance is favored in
mice.103

TLR7 and TLR8 are often grouped as they are both activated
by single-stranded RNA and imidazoquinolines, such as R848
and 3M-052. However, the 2 TLRs respond very differently to
stimulation in mice and humans, with human TLR8 responding
to stimulation with single-stranded RNA, while no response is
raised by murine TLR8.104,105 It has been suggested that murine
TLR8 has no function, but it has been shown that TLR8-
deficient mice have an increased expression of TLR7 and
develop autoimmune diseases.106 Thus, preclinical testing of
R848 and 3M-052 as vaccine adjuvants in mice likely evaluates
the activation of TLR7, whereas in humans, both TLR7 and TLR8
have a function in the induction of an immune response.107,108

Humoral Immune Responses

In all higher vertebrates, the initial antibody response to immu-
nization is mainly produced by GC-independent plasmablasts
or early plasma cells in the draining LN and constitutes primar-
ily of IgM antibodies. This is followed by formation of GCs.109,110

The kinetics of the GC responses, and the overall phenotype of
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the main cellular subsets involved (follicular B cells, DCs, and T
follicular helper cells [Tfh]) are similar between species com-
monly used in vaccine research. However, there are well-
known differences in the Ig isotypes between the species. Mice
produce IgM, IgA, IgD, IgE, and 4 subtypes of IgG: IgG1, IgG2a/c,
IgG2b, and IgG3.111 The same applies to rat, but rat IgG2b corre-
sponds to mouse IgG2a/c and rat IgG2c to mouse IgG3. Pigs
have up to 6 different IgG subclasses and rabbits have only one.
Humans also express IgM and have 2 subtypes of IgA, IgA1 and
IgA2, in addition to IgD and IgE. In humans there are also 4 sub-
types of IgG (IgG1, IgG2, IgG3, and IgG4), but these do not corre-
spond directly to those found in the rodents.111 A particularly
important aspect related to vaccine research is production of
IgG1. While this is related to an IL-4-driven Th2 response in
mice and is often paralleled by concomitant IgE production, the
same does not apply to humans, where IL-4 can instead drive
IgG4 production. Vaccination with protein antigens generally
induces IgG1, IgG2b, and IgG2a/c in mice, while IgG3 is mostly
produced in response to T-independent antigens, such as TLR
ligands or polysaccharides.112,113 In humans, protein antigens
stimulate mostly IgG1 and IgG3, and polysaccharides stimulate
IgG2.114 IgG4 is typically produced in chronic infections and
may be stimulated with repeated immunizations using high
antigen doses, which is utilized in allergen immunotherapy.115

Notably, there is no mouse equivalent to human IgG4,116 and
the mice may therefore be suboptimal as a model for potential
IgG4-mediated allergen immunotherapy.

Mucosal immune responses show some additional distinct
features between mouse and man. Thus, while the primary
mucosal antibody produced is IgA in both species, mice mainly
produce dimeric IgA both in serum and in mucosal sites. In hu-
mans the secretory IgA is mainly dimeric or polymeric,
whereas serum IgA is mainly monomeric, making it easy to dis-
tinguish between locally produced and serum IgA.117,118

Secretory IgA is transported across epithelial cells via the poly-
meric Ig receptor (pIgR). In mice, large amounts of pIgA are
cleared from plasma and transported to bile by pIgR-expressing
hepatocytes. In contrast, in humans, biliary epithelial cells
express pIgR and perform the pIgA secretion into bile. This
means that in humans there is much less circulating pIgA
transported into bile and that most IgA in bile is secretory IgA
produced by local plasma cells.117 Pigs may be a better model
for elucidating mucosal IgA responses, as porcine IgA is more
homologous to human IgA than mouse or rat IgA.117 Mucosal
immune responses can also be evaluated in pigs by measuring
mucosal pIgR levels. Another limitation of mouse models in
mucosal immune responses is the lack of FcαR, which is other-
wise conserved in mammals.119

The functional attributes of antibodies are largely deter-
mined by their Fc properties and, similar to the differences in
antibody classes and subclasses, FcR expression varies between
species used for vaccine evaluation. Both mice and humans
express the FcR for IgM (FcμR or TOSO).120 However, in contrast
to humans, mice lack FcαRI. Humans express the Fc receptors
for IgG, FcγRI, FcγRIIA, FcγRIIC, and hFcγRIIIA, which are activat-
ing, and FcγRIIB, which is inhibitory.111 Human IgGs can bind to
all the FcγR receptors, except IgG2, which cannot bind FcγRI.
FcRn, which is used for transport of Igs, can also bind to all IgG
subclasses111 and also exists in mice.121 In addition, mice
express FcγRI, FcγIIB, FcγRIII, and FcγRIV.122 Similar to humans,
FcγRIIB is inhibitory, whereas the rest of the FcγRs are activat-
ing.122 Notably, mice, but not humans, express FcγRIV, which
can only bind mouse IgG2a/b/c and not IgG1.111,123 Since FcγRIV
may function by mediating ADCC,124 IgG2 antibodies may be

more efficient to perform this function in mice. It should also
be noted that great differences in expression pattern between
mouse and human FcγR exist. For example, the expression of
human FcγRIIIA is restricted to NK and monocytic cells,
whereas this is not the case in mice.111

Cell-Mediated Immune Responses

The biggest challenges when it comes to correlating vaccine-
induced, cell-mediated immune responses between species is
that these responses are most often measured in cells derived
from lymphoid organs or tissues, whereas the same analysis in
humans is almost exclusively derived from blood samples. The
two most well-described CD4+ T-cell subsets, Th1 and Th2, are
well characterized in humans, and a clinical trial with CAF01
showed good correlation between mouse and man regarding
these subsets.125 Correlates of induction of other subsets like
Th17, Treg, and Tfh cells on the other hand are still lacking
behind.

Th17 CD4+ T cells are thought to be critical for mucosal pro-
tection against pathogen entry and are identified by their abil-
ity to produce the cytokine IL-17. For example, the populations
of Th17 CD4+ T cells vary with M.tb infection status in humans,
that is, recently infected, latently infected, and active dis-
ease.126 It has also been shown that people with impaired IL-17
function often suffer from chronic mucocutaneous candidiasis,
recurrent or persistent symptomatic infection of the nails, skin,
and mucosae by Candida albicans.127–129 Subunit vaccines adju-
vanted with CAF01 have been shown to induce robust Th17
CD4+ T-cell responses in both spleen and lungs in mice.82,85

However, attempts to detect IL-17 induction in human blood
samples after vaccinations using CAF01 have so far failed.125

The reasons for this can be multiple. The mechanism of induc-
tion of Th17 CD4+ T-cell responses have not been completely
elucidated. Thus, though there are similarities between human
and murine Th17 CD4+ T cells, it is not certain that they are
induced via similar pathways and that Th17 is in fact induced
by CAF01 in humans. Maybe more likely, the amount of Th17
cells in blood samples is below detection level with the com-
monly used techniques like IL-17 cytokine ELISA/ELISPOT and
flow cytometry. Th17 is induced and detectable but not with
the biomarkers currently used for detection. IL-17-producing
cells were detected in the blood in a recent study evaluating an
oral enterotoxigenic Eschericia coli vaccine, ETVAX, with or with-
out dmLT adjuvant.130 This vaccine was found to induce the
appearance of activated T cells with a Th17 and gut-homing
phenotype in peripheral blood.130 So far, similarly to Th17 cells,
detection of Tfh responses in humans has been hampered by
the difficulty to obtain the relevant tissue. However, a subset of
circulating Tfh cells has been identified in mice and humans,
which shares functional properties with GC Tfh cells.130–132

The primary function of Treg is to maintain immunological
homeostasis and prevent excessive inflammation. Consequently,
Treg might also interfere with vaccine-induced immunity. In a
recent clinical study, the ability of 4 commonly used antiviral
vaccines to induce human CD4+ Treg responses was investigated.
Peripheral blood mononuclear cells obtained from healthy volun-
teers that had been vaccinated with either trivalent influenza
vaccine with or without the addition of adjuvant MF59 (Fluad or
Agrippal), a HBV subunit vaccine (Engerix-B) or a live attenuated
yellow fever vaccine (Stamaril).133 At several days post vaccina-
tion, the frequency and phenotype of CD4+ Treg subpopulations
in peripheral blood was examined by flow cytometry. For com-
parison, mice were vaccinated with influenza and hepatitis B
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vaccines and the Treg frequency was analyzed in draining LNs
and spleen at several days post vaccination. Overall, the study
showed that vaccination with vaccines with an already estab-
lished safe profile have only minimal impact on frequencies and
characteristics of Treg over time. However, it also showed that
the systemic changes in Treg frequency found in mice were not
identical to the human data. The authors suggest that this may
be caused by the fact that the human systemic Treg frequency
was determined in blood and that of mice in the spleen, or that
there are differences in Treg definitions between species.133

The induction and evaluation of CD8+ T-cell responses in
humans is relatively well described. However, most successful
CD8 T-cell-inducing vaccines are based on viral vectors, the
reason most probably being that priming of antigen-specific
CD8+ T-cell responses by adjuvanted peptide-/protein-based
vaccines requires presentation of a CD8 epitope on MHC-I on
specialized cross-priming DCs.134 In humans, the CD141+CLEC9A+

DCs have been identified as a superior cross-priming DC subset
compared with other DC subsets,135 which correspond to the
cross-priming CD8α+ and CD103+ DC subsets characterized in
mice.136,137 These DC subsets are genetically closely related
between the species138 and share expression of the receptors
TLR3 and XCR1, which are important for the cross-priming func-
tionality.135,139 Thus, the mouse can generally be considered a
suitable animal model for evaluating adjuvants for their ability to
induce cross-priming and subsequent CD8+ T-cell responses.

Conclusion
The use of mice to evaluate vaccine immunogenicity, and espe-
cially adjuvant mechanism, is highly relevant, albeit one has to
take a few aspects into consideration when trying to predict
the function in humans. Does the target receptor specificity,
cell distribution, and functionality in mice reflect that in hu-
mans, and does the injection route commonly used in mice
result in the same immune responses as the one intended to be
used in humans? In addition, one has to reflect on whether the
immune responses evaluated in mouse organs like LNs, spleen,
lungs, intestines, skin, genital tract, etc. can also be detected in
blood samples, which is often the only accessible sample mate-
rial from humans. Therefore, when performing preclinical stud-
ies, it should be considered to do the same analysis in blood as
done on other tissues to counteract setbacks in clinical
development.
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