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Effects of Caffeine and Acute 
Aerobic Exercise on Working 
Memory and Caffeine Withdrawal
Anisa Morava   1*, Matthew James Fagan2 & Harry Prapavessis1

Studies show that a single bout of exercise confers cognitive benefits. However, many individuals 
use psychoactive substances such as caffeine to enhance cognitive performance. The effects of 
acute exercise in comparison to caffeine on cognition remain unknown. Furthermore, caffeine use is 
associated with withdrawal symptoms upon cessation. Whether acute exercise can reduce withdrawal 
symptoms also remains unknown. The objectives of this study were to compare the effects of acute 
moderate intensity aerobic exercise to caffeine on working memory (WM) and caffeine withdrawal 
symptoms (CWS). In Phase I, non-caffeine (n = 29) and caffeine consumers (n = 30) completed a WM 
assessment, followed by acute exercise and caffeine. In Phase II, caffeine consumers (n = 25) from 
Phase I underwent the WM assessment and reported CWS following a 12-hour deprivation period. Acute 
moderate intensity aerobic exercise and caffeine (1.2 mg/kg) significantly improved WM accuracy and 
reduced CWS comparably. WM performance was not reduced following caffeine deprivation.

Cognitive functions are critical for navigating everyday life challenges1. Previous work has demonstrated a sin-
gle bout of exercise has been shown to improve cognitive functions2–4. In a comprehensive meta-analysis con-
ducted by Chang et al.2, the authors found acute exercise (aerobic, anaerobic, resistance, and combination) 
had a small (Hedge’s g = 0.097), but positive effect on cognition. Furthermore, these positive cognitive effects 
were found during exercise, immediately following exercise, and after a delay2. Although acute exercise elic-
its cognitive enhancements, individuals often utilize psychoactive substances to improve cognition. Caffeine (1, 
3, 7-trimethylxanthine) is one of the most widely used psychoactive substances worldwide5. The cognitive and 
mood-enhancing benefits of caffeine have been cited as one of the primary motivators for its consumption6,7. 
Caffeine elicits improvements to multiple cognitive domains including information processing, attention, and 
specific types of memory8–12. Although caffeine elicits benefits to cognitive domains, concerns associated with 
increased anxiety/anxiety-like symptoms13,14, muscle tremors15,16, and withdrawal symptoms17,18 are present.

Withdrawal symptoms in particular are experienced by a large proportion of caffeine consumers17. Caffeine 
withdrawal symptoms include headache, fatigue, decreased contentedness, and decreased alertness upon cessa-
tion17. Furthermore, caffeine withdrawal has been associated with reduced cognitive performance18–20. Caffeine 
administration has been shown to reverse caffeine withdrawal symptoms8. Interestingly, in other substance use 
contexts, namely nicotine, acute exercise has been used to reduce the intensity and frequency of withdrawal 
symptoms and cravings21,22. In two comprehensive systematic and meta-analysis reviews, Roberts et al.22, using 
aggregate data and Haasova et al.21, using individual participant data found weighted mean differences in both 
“desire to smoke” [−1.90 and −2.04 points, respectively] and “strength of desire to smoke” [−2.41 and −1.91 
points, respectively] that favoured the acute exercise condition over the control condition following a tempo-
rary period of abstinence. The effect sizes found in these studies ranged from d = 0.4 to 1.9, which are consid-
ered moderate-to-large in size23. Furthermore, craving reduction effects lasted up to 30 minutes post-exercise24. 
Although the mechanisms behind the post-exercise craving and withdrawal symptom reduction remain to be 
elucidated, the shared symptomatology lends to assessing the utility of acute exercise in reducing caffeine with-
drawal symptoms.

Limited studies have examined the effects of acute exercise and caffeine intake on cognition concurrently25, 
however none to our knowledge have examined acute exercise in comparison to caffeine administration on either 
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cognition or caffeine withdrawal symptoms. By comparing acute exercise directly to caffeine administration, 
which has well-established mechanistic pathways (i.e., antagonism of adenosine receptors), the mechanisms 
underlying acute exercise-induced benefits to cognitive function can be further elucidated. Thus, the objectives 
of the present study were to compare acute aerobic exercise to caffeine administration on cognitive performance 
and caffeine withdrawal symptoms. The first objective (Phase I) was to determine the effects of an acute bout of 
moderate intensity aerobic exercise and caffeine administration on WM in both non-caffeine and caffeine con-
sumers. The second objective (Phase II) was to determine whether an acute bout of moderate intensity aerobic 
exercise and caffeine administration could reduce caffeine withdrawal symptoms and restore WM performance 
after a 12- hour caffeine deprivation period among the caffeine consumers used in Phase I. It was hypothesized 
in Phase I that in comparison to baseline WM performance, aerobic exercise and caffeine administration would 
improve WM comparably in both non-caffeine and caffeine consumers. In Phase II, it was hypothesized that aero-
bic exercise or caffeine administration would reduce caffeine withdrawal symptoms and restore WM performance 
comparably following a 12-hour caffeine deprivation period.

Results
Phase I.  Non-caffeine consumers.  A repeated measures ANOVA for 3-back accuracy was statistically sig-
nificant: F(2, 56) = 3.315, p = 0.044, η2 = 0.106 (Fig. 1). Paired sample post-hoc t-tests uncovered non-signifi-
cant differences between baseline and the caffeine condition: t(28) = 2.60, p = 0.052, d = 0.345, baseline and the 
exercise condition: t(28) = 2.30, p = 0.107, d = 0.313, and caffeine and exercise condition t(28) = 0.25, p = 1.000, 
d = 0.0148. A repeated measures ANOVA for 3-back RT was not statistically significant: F(2, 56) = 1.233, 
p = 0.299, η2 = 0.042.

Caffeine consumers.  A repeated measures ANOVA for 3-back accuracy was statistically significant: F(2, 
58) = 6.479, p = 0.003, η2 = 0.183 (Fig. 2). Paired sample post-hoc t-tests uncovered significant differences 
between baseline and the caffeine condition: t(29) = 2.818, p = 0.027, d = 0.512, and baseline and the exercise 
condition: t(29) = 3.454, p = 0.006, d = 0.599. No significant difference was found between the caffeine and exer-
cise condition t(29) = 0.667, p = 1.000, d = 0.112. A repeated measures ANOVA for 3-back RT was not statisti-
cally significant: F(2, 58) = 1.157, p = 0.321, η2 = 0.038.

Figure 1.  Changes to working memory accuracy (% errors) on the 3-back load following caffeine and exercise 
treatments in non-caffeine consumers. Values are means ± SD. *p < 0.05 †WM = working memory.

Figure 2.  Changes to working memory accuracy (% errors) on the 3-back load following caffeine and exercise 
treatments in caffeine consumers. Values are means ± SD. *p < 0.05 †WM = working memory.
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Phase II.  Caffeine withdrawal symptoms.  A repeated measures ANOVA between non-deprived CWSQ, 
deprived CWSQ, and post-caffeine CWSQ scores was statistically significant: F(2, 24) = 11.058, p = 0.001, 
η2 = 0.501 (Fig. 3). Paired sample post-hoc t-tests uncovered significant differences between baseline and 
the deprived condition, t(11) = −3.856, p = 0.008, d = 1.35, as well as between the deprived condition and 
post-caffeine administration: t(11) = −3.392, p = 0.018, d = 1.15.

A repeated measures ANOVA between non-deprived CWSQ, deprived CWSQ, and post-exercise CWSQ 
scores was also statistically significant: F(2, 24) = 5.786, p = 0.009 η2 = 0.325 (Fig. 4). Paired sample post-hoc 
t-tests uncovered a significant difference between baseline and the deprived condition, t(12) = −2.861, p = 0.043, 
d = 1.095, but a non-significant difference between the deprived condition and post exercise t(12) = −1.338, 
p = 0.062, d = 0.730.

Caffeine withdrawal and WM.  Repeated measures ANOVAs for 3-back accuracy and RT between 
non-deprived, deprived, and post-caffeine WM performance were not statistically significant, respectively: F(2, 
22) = 0.651, p = 0.531, η2 = 0.056; F(2, 22) = 0.684, p = 0.515, η2 = 0.059. Repeated measures ANOVAs for 3-back 
accuracy and RT between non-deprived, deprived and post-exercise WM performance were also not statistically 
significant, respectively: F(2, 24) = 1.801, p = 0.187, η2 = 0.131; F(2, 24) = 0.486, p = 0.621, η2 = 0.039.

Discussion
Results from the present study indicate that acute aerobic exercise and caffeine administration improved 
WM accuracy in non-caffeine and caffeine consumers on the most difficult load of the n-back task (3-back). 
Furthermore, acute aerobic exercise and caffeine administration demonstrated some utility in reducing caffeine 
withdrawal symptoms induced by a 12-hour caffeine deprivation period. Interestingly, no decrements to WM 

Figure 3.  Changes to caffeine withdrawal symptoms from the non-deprived state, following 12-hour 
deprivation, and post caffeine administration. Values are means ± SD. *p < 0.05. †CWSQ = caffeine withdrawal 
symptom questionnaire. ††Non-dep = non-caffeine deprived, dep = caffeine deprived, pc = post caffeine.

Figure 4.  Changes to caffeine withdrawal symptoms from the non-deprived state, following 12-hour 
deprivation, and post exercise administration. Values are means ± SD. *p < 0.05. †CWSQ = caffeine withdrawal 
symptom questionnaire. ††Non-dep = non-caffeine deprived, dep = caffeine deprived, pe = post exercise.
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were detected following a 12-hour caffeine deprivation period. Beyond these overarching findings, several issues 
warrant further discussion.

In Phase I, acute aerobic exercise and caffeine administration conferred comparable improvements to accu-
racy (absolute percent difference: 2.62%, 2.29% and relative percent difference: 20.1%, 17.5% respectively). For 
non-caffeine consumers, caffeine administration conferring a marginal accuracy benefit may be due in part to 
the novelty of caffeine as a substance. Prior research has suggested non-caffeine consumers display heightened 
physiological and psychological responses to caffeine26. Furthermore, the non-caffeine consumers in this study 
reported high physical activity participation (Table 1), suggesting tolerance of a single-bout of aerobic exer-
cise with little fatigue and discomfort27. Previous studies have identified that exercise tolerance is implicated 
in exercise-cognition investigations as individuals who do not regularly exercise are more likely to experience 
fatigue, which has been associated with impaired cognitive performance28. It is also important to note that our 
findings contribute to the body of literature8,14 supporting the notion that caffeine provides net benefits to cogni-
tion and does not rely completely on the reversal of withdrawal symptoms, as non-caffeine consumers would not 
be expected to experience caffeine withdrawal.

In caffeine consumers, acute aerobic exercise improved accuracy to a greater extent (absolute percent differ-
ence: 3.84%, relative percent difference: 26.8%) than caffeine administration (absolute percent difference: 3.07%, 
relative percent difference: 21.4%). Aerobic exercise conferring a greater benefit to WM accuracy than caffeine 
may be due in part to caffeine tolerance29. The caffeine dose administered (1.2 mg/kg) equates to less than the 
mean daily caffeine consumption reported by the caffeine group (301.5 mg/day), suggesting these consumers 
have likely developed some level of tolerance to the caffeine-driven cognitive effects. Similarly, to the non-caffeine 
consumers, caffeine consumers also reported regular participation in physical activity (Table 1) supporting the 
notion that a single-bout of aerobic exercise was tolerated comfortably by this group.

Our investigation did not find improvements to WM speed (RT) as a result of acute aerobic exercise or caf-
feine administration in both non-caffeine and caffeine consumers on the 3-back load. These findings differ from 
those reported by Haskell et al.30, and McMorris et al.31. Diverging results could be due to the wide range in 
administered caffeine doses32, type of cognitive task administered, and exercise intensity12,31. Prior work by our 
group also detected no changes to RT on the n-back task following acute aerobic exercise at a moderate intensity 
(Fagan et al., unpublished). It is important to note when examining the WM speed and accuracy findings in con-
cert, improved WM was not due to a speed-accuracy trade-off33. In other words, individuals were not committing 
less errors on the n-back task at a cost to response speed. Prior work has suggested caffeine may improve accuracy 
in cognitive tasks via increased alertness34 and modulation of neuronal activity in regions associated with atten-
tion35. When considering acute aerobic exercise it has been proposed that exercise selectively affects the activation 
and allocation of attentional resources4,36. Thus, the improved WM accuracy that was observed may be in part due 
to increased general arousal. A battery of cognitive tests could have aided in elucidating whether the effects were 
WM-specific or a reflection of global cognitive improvement.

It is important to address that a treatment by order effect was detected for accuracy on the 3-back load in 
caffeine consumers, suggesting receiving caffeine on the first day may have resulted in improved performance 
on the second day following acute aerobic exercise, although treatment order was counterbalanced. A carry-over 
effect may have been present and thus utilizing a wash-out period greater than 24-hours and employing a 
between-groups placebo design may be required in future investigations.

In Phase II, a twelve-hour caffeine deprivation period increased subjective caffeine withdrawal symptoms 
(14.88-point increase on CWSQ from non-deprived state), which was in line with prior work examining caffeine 
withdrawal17. Moreover, caffeine administration and aerobic exercise reduced caffeine withdrawal symptoms 
(12.91-point reduction, 8.07 point-reduction, respectively). Our results support previous work that suggest caf-
feine re-administration reduces caffeine withdrawal symptoms8. Furthermore, our study suggests acute aerobic 

Caffeine Consumers 
(n = 30)

Non-Caffeine 
Consumers (n = 29)

Age (years) 24.1 (4.8) 24.8 (3.4)

Sex (% males) 43.3% 51.7%

Weight (kg) 72.7 (15.1) 70.1(12.2)

Education (%)

Undergraduate 50.0% 13.33%

Graduate 43.3% 86.67%

Employed 6.67% 0%

Caffeine Intake (mg)

Weekly 2110.2(1194.8) 74.7 (64.4)

Daily 301.5 (170.7) 10.7 (9.8)

Time of Last Caffeine Consumption (h) 10.33 (9.3)

Years of Caffeine Consumption 6.7 (4.1)

Preferred Type of Caffeine Administration Coffee

Physical Activity (minutes of MVPA/week) 1213 (752.8) 1324.19 (1044.3)

Table 1.  Values represent means and standard deviations (SD) of demographic variables. h = hours, 
mg = milligrams, h = hours, MVPA = moderate-to-vigorous physical activity.
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exercise demonstrates some utility in reducing caffeine withdrawal symptoms, which is a novel finding, as well 
as provides further evidence that a single-bout of aerobic exercise improves “alertness”, “feelings of energy”, and 
mood36,37. In addition, our findings are consistent with work conducted in the exercise and tobacco withdrawal 
literature, which showed acute aerobic exercise successfully reduced withdrawal symptoms such as stress, diffi-
culty concentrating, tension, restlessness, depression, and irritability22.

In contrast to the caffeine withdrawal symptoms, a 12-hour caffeine deprivation period did not reduce WM 
performance in caffeine consumers. No significant changes to WM accuracy or speed were detected between the 
non-caffeine deprived and caffeine-deprived conditions. These findings were not in line with work conducted by 
Yeomans et al.20. Differing results may be due to the duration of caffeine-deprivation utilized in our paradigm. 
Some studies have employed a 24-hour caffeine deprivation period which may have resulted in greater caffeine 
withdrawal severity and in turn greater cognitive deficits20,38. In addition, depending on the caffeine consumption 
pattern of the individual, the 12-hour overnight deprivation period may have been sufficient to induce with-
drawal symptoms in individuals who consume caffeine in the early morning, but not those in the early afternoon.

Furthermore, when considering the cognitive tasks that were administered in the investigations of caffeine 
withdrawal that detected a caffeine-deprivation induced cognitive deficit, a variety of cognitive tasks were used 
(e.g., Rapid Visual Information Processing task, Attention Network Test) and thus perhaps, the n-back alone may 
not have been the most sensitive to detect subtle WM deficits39. Alternatively, the caffeine consumers in our study 
completed several iterations of the n-back task, thus the practice effect may have bolstered WM performance in 
the caffeine-deprived trials; however other investigations have suggested the stability of performance on higher 
loads of the n-back suggest a limited role of practice40.

Addicott and Laurienti8 have also posited participants may exert more effort during the caffeine-deprived state 
to compensate for “withdrawal-related fatigue”. Given that WM performance did not suffer following the 12-hour 
deprivation period, improvement to WM via caffeine administration or acute aerobic exercise was unlikely. 
However, it is important to note that WM performance remained stable following both treatments. Previous liter-
ature has suggested that caffeine withdrawal effects worsen with time and withdrawal related fatigue could result 
in deteriorating performance on cognitive tasks17,39. Thus, since we detected no change to WM performance, the 
caffeine administration and acute aerobic exercise treatments may have buffered the caffeine-deprivation effects.

In this investigation, a single dose of caffeine (1.2 mg/kg) and a single bout of moderate intensity exercise 
was examined. Future investigations should examine varying caffeine doses and exercise intensities to establish 
dose-response curves. Another important future direction is to determine the duration of caffeine and exercise 
effects on cognitive performance. Prior work has suggested depending on the vehicle of caffeine administration 
and cognitive assessment employed, caffeine has demonstrated cognitive effects lasting between 1–5 hours41. 
In regards to acute exercise, the duration of cognitive effects post-exercise remains an area of investigation42. 
Furthermore, an important variable to examine in conjunction with caffeine, exercise, and cognition is sleep. 
Future work should collect and examine sleep-related variables including sleep duration, sleep quality, chrono-
type, and homeostatic sleep pressure.

Findings from the present study suggest acute aerobic exercise and caffeine administration improve WM 
accuracy in both non-caffeine and caffeine consumers comparably. Furthermore, caffeine administration sig-
nificantly reduced caffeine withdrawal symptoms induced by a 12-hour deprivation period, while acute aerobic 
exercise reduced caffeine withdrawal symptoms, albeit not significantly. WM was not reduced following caffeine 
deprivation, hence whether exercise and caffeine can restore WM remains unknown. Through investigations of 
this nature, the utility of acute aerobic exercise in lieu of caffeine consumption to optimize cognitive performance 
and reduce caffeine withdrawal symptoms would be further clarified with the end-goal of guiding health-related 
interventions for both general and special populations.

Methods
Participants.  Twenty-nine non-caffeine consumers (<30 mg caffeine/day30) and thirty caffeine consumers 
(≥150 mg/day40) aged 18–40 participated in Phase I of the study. Twenty-five of the caffeine consumers in Phase I 
participated in Phase II of the study. Participants were excluded if they displayed any contraindications to exercise 
(as assessed by the Physical Activity Readiness Questionnaire; PAR-Q), reported cognitive difficulties, reported 
taking of medication for depression or anxiety, or were pregnant. Prior to participation, each participant read a 
letter of information outlining all study procedures, as well as potential risks and benefits associated with partici-
pation, which was approved by the Western University Research Ethics Board. All study procedures were carried 
out in accordance with the revised version of the Helsinki Declaration (2013). Informed consent was obtained 
from all study participants.

Study design.  Phase I utilized a randomized counterbalanced crossover design such that each participant 
was randomly assigned treatment order (i.e., caffeine administration followed by exercise or exercise followed by 
caffeine administration) but completed both treatments irrespective of being non-caffeine and caffeine consumers 
(Fig. 5). Phase II involved only caffeine consumers and utilized a randomized design such that each participant 
was randomly assigned to receiving either caffeine administration or exercise following a 12-hour caffeine depri-
vation period (Fig. 5). Randomization was completed using a computer-generated numbers table.

Sample size.  Phase I.  Giles and colleagues38 detected a change in WM accuracy (composite score of hit rate 
and false alarm rate) between placebo and caffeine administration (Cohen’s d = 0.418). Fagan, Guirguis, Smith, 
Sui, Rollo, and Prapavessis, unpublished detected a change in WM accuracy (% errors) between baseline and 
aerobic exercise (Cohen’s d = 0.511). Based on the above findings, to be adequately powered to detect differences 
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from baseline, caffeine, and aerobic exercise, a conservative approach of using a small-to-moderate effect size 
f = 0.20, power = 0.80, and alpha = 0.05, generated a sample size of 28 individuals23,43.

Phase II.  In developing the Caffeine Withdrawal Symptom Questionnaire (CWSQ), Juliano and colleagues44 
detected a 2.69-point reduction in withdrawal symptoms (Cohen’s d = 0.866) when caffeine was administered 
following a 16-hour caffeine deprivation period. Based on the above findings, to be adequately powered to detect 
the effects of caffeine administration following an overnight deprivation period, an approach of using the effect 
size of d = 0.866, power = 0.80, and alpha = 0.05, generated a sample size of 13 individuals23,43.

Measures.  Demographics.  Age, sex, weight (kg), and education level were collected (Table 1).

Caffeine and drug consumption history.  Acute and chronic caffeine history (i.e., time of last caffeine 
consumption, amount of years regularly consuming caffeine, preferred type of caffeine administration) was 
assessed. Drug and alcohol consumption in the past 18 hours were also assessed (Table 1).

Physical activity.  The Physical Activity Readiness Questionnaire (PAR-Q)45 was utilized to assess ability to 
participate in physical activity safely. The PAR-Q is appropriate to administer to individuals aged 15–69 years45.

The Short Questionnaire to Assess Health-enhancing Physical Activity (SQUASH)46 was administered to 
assess the frequency, duration, and perceived effort of physical activity during an average week in four domains: 
commuting (e.g. walking to school), leisure time (e.g. sports), household (e.g. washing dishes), and work/school 
(e.g. walking and standing between working at a desk)46. Frequency and duration are fillable options, such that 
the participant is able to indicate the number of days per week, as well as the amount of hours and minutes they 
partake in each activity, while perceived effort has three possible options: slow/light, moderate, and fast/intense.

Caffeine consumption.  The Caffeine Consumption Questionnaire Revised (CCQ-R)47 was administered 
to assess the consumption of caffeine-containing products (i.e., beverages, foods, and drugs) during an average 
week. The CCQ-R provides images of caffeine containing products to aid in the estimation of the serving size of 
products consumed. CCQ-R responses were converted to caffeine intake in milligrams/week using the reference 
values in Harland40.

Working memory.  Working memory (WM) was assessed through the n-back task. The n-back task has been 
widely used in the cognition literature to gauge WM, as it requires both short-term recognition of and operation 
on stimuli48,49. The n-back task consists of a series of stimuli that are presented rapidly on a screen, with the 
participant deciding whether the target stimuli matches the stimuli ‘n’ items back50. Participants would complete 
each load (0-back, 1-back, 2-back, and 3-back) three times in a randomized order. The 3-back load is the most 
cognitively demanding and has been shown to be most sensitive to drug effects51.

Figure 5.  Schematic representation of study protocol.
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Caffeine withdrawal.  The Caffeine Withdrawal Symptom Questionnaire (CWSQ)44 was utilized to assess 
the type and severity of caffeine withdrawal symptoms experienced by the caffeine consumers. The CWSQ uses 
twenty-three items which focus on seven symptom clusters: (1) fatigue/drowsiness, (2) low alertness/difficulty 
concentrating, (3) mood disturbances, (4) low sociability/motivation to work, (5) nausea/upset stomach, (6) 
flu-like feelings, and (7) headache. The CWSQ also includes nine additional items for consideration, four of 
which have not yet been empirically validated. Severity of each symptom is assessed on a five-point scale ranging 
from 0 (not at all) to 4 (extremely). A higher score reflects greater number of symptoms and symptom severity.

Interventions.  Aerobic exercise.  The exercise intervention consisted of a single bout of moderate intensity 
aerobic exercise completed on a Woodway PPS treadmill (Woodway, Waukesh, WI). The intervention consisted 
of a 2.5 minute warm-up walk, 15 minutes walking at a moderate intensity, and a 2.5 minute cool-down walk. 
Moderate intensity exercise was defined as 40 to 60% of Heart Rate Reserve (HRR)52,53. The researcher controlled 
the speed and incline of the treadmill to ensure the participant exercised within their moderate intensity HRR 
range.

Caffeine administration.  The caffeine administration intervention consisted of oral ingestion of powdered 
caffeine. Each participant ingested 1.2 mg/kg (body weight) of powdered caffeine (Sigma–Aldrich Foundation, 
St Louis, MO) dissolved in 100 mL of water39. The participant then waited in a seated position for 20 minutes to 
permit caffeine absorption53.

Procedures.  Participants were initially screened for eligibility via email or an in-person meeting. For those 
eligible, a first session was scheduled at the Exercise and Health Psychology Lab. The first session began with 
administration of the PAR-Q. If a participant indicated yes to any of the seven items on the PAR-Q, they were 
deemed not able to participate in physical activity and were thus excluded from the study. Upon completion of 
the PAR-Q, participants were given the demographic questionnaire, caffeine and drug history questionnaire, 
SQUASH, CCQ-R, and the CWSQ (caffeine consumers only) to complete. A non-caffeine consumer was defined 
as an individual who consumes less than 30 mg of caffeine/day26. A caffeine consumer was defined as an indi-
vidual who consumes equal to or greater than 150 milligrams of caffeine a day, which approximately equates 
to the amount of caffeine in a cup of brewed coffee40. Blood pressure (BP) was taken in a seated position with 
an electronic sphygmomanometer (MPOW). Resting heart rate (HR) was taken in a seated position with a 
heart rate monitor (Polar RS100). Weight was measured using the Health-O-Meter Professional weight scale 
(Health-O-Meter 500 KL, Boca Ration, FL) to the nearest 0.1 kg. Participants then completed the baseline n-back 
task (lasting approximately 10 to 15 minutes) on a portable computer in isolation. Participants underwent a prac-
tice phase to familiarize themselves with the task. The participant needed to score a minimum of 75% of the trials 
correctly during the practice phase to proceed to the evaluation. The 75% accuracy threshold was deemed appro-
priate for mitigating the learning effect on the n-back task in a previous study examining WM in smokers and 
non-smokers (Fagan, Guirguis, Smith, Sui, Rollo, and Prapavessis, unpublished). Upon completion of the baseline 
n-back task, participants completed either the aerobic exercise or the caffeine administration. HR and BP were 
again taken at the end of each intervention followed by the n-back task. In session two, participants underwent 
the intervention they did not receive on session one. All sessions occurred between 8 a.m. and 5 p.m. and were 
scheduled at approximately the same time of day (i.e., if the participant came in for their baseline session at 8 
a.m. all other sessions occurred at the same time) and were separated by a minimum of 24 hours apart. Regarding 
caffeine consumption during the assessments in Phase I, caffeine consumers were permitted to consume their 
regular caffeinated products up to 4 hours prior to their session. For example, if a participant was scheduled for a 
session at 10 am and they have a single serving of coffee normally every day at 6 a.m. they were permitted to do 
so. However, if their session was at 10 a.m. and they normally have their single serving of coffee between 7 a.m. 
and 10 a.m. they were not permitted to do so. This strategy mitigates the caffeine consumers from being partially 
caffeine-withdrawn before testing8.

Caffeine consumers underwent one additional session (Phase II), which required an overnight (12- hour) 
caffeine deprivation period prior to arrival (i.e., the participant stopped the consumption of any caffeinated prod-
ucts at 8 p.m. and had to come into the lab at 8 a.m.). Participants were told the researcher would be biologically 
confirming caffeine abstinence through a saliva swab, when in fact no salivary caffeine assays were conducted. 
This was simply a strategy to increase caffeine deprivation compliance54. Participants’ BP and HR were taken in a 
seated position upon arrival. They then completed the CWSQ and the n-back task to assess caffeine-deprived per-
formance. Upon completion of the n-back task, participants were randomized into receiving either the exercise 
session or caffeine administration session. At the end of either session, the CWSQ and n-back were administered 
again. At the end of the experimental protocols, participants’ email addresses were entered into a draw to win a 
twenty-five-dollar gift card.

Statistical analyses.  Phase I.  Repeated measures ANOVAs were conducted across baseline, caffeine, and 
exercise for both accuracy (% errors) and reaction time (RT) in milliseconds (ms) for non-caffeine and caffeine 
consumers on the n-back task. Analyses focused on the 3-back load. Descriptive data for two, one, and zero-back 
load can be found under Supplementary Information.

Phase II.  For the caffeine consumers assigned to the caffeine session, a repeated measures ANOVA was 
conducted across baseline (non-caffeine deprived), caffeine deprived (following 12-hour deprivation), and 
post-caffeine administration on caffeine withdrawal symptom scores. A repeated measures ANOVA was also 
conducted across baseline (non-caffeine deprived), caffeine deprived (following 12-hour deprivation), and 
post-caffeine administration on accuracy and RT on the n-back task. For the caffeine consumers assigned to 
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8Scientific Reports | (2019) 9:19644 | https://doi.org/10.1038/s41598-019-56251-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

the exercise session, identical analyses as listed above were conducted. Analyses focused on the 3-back load. 
Descriptive data for the two, one, and zero-back load can be found under Supplementary Information.

For both phases, all data were assessed for normality (Shapiro-Wilks) and following significant repeated meas-
ures ANOVAs, Bonferroni-corrected post-hoc t-tests were conducted. The level of significance was accepted at 
p ≤ 0.05 for all tests. Effect sizes (Cohen’s d, η2) accompany all reported findings. All bars in figures represent 
standard deviation (SD). Data were analyzed using IBM SPSS Statistics (Version 23).

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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