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Image reconstruction in optoacoustic imaging is often based on a delay-and-sum (DAS) or a frequency domain
(FD) algorithm. In this study, we performed a comprehensive comparison of these two algorithms together with
coherence factor (CF) weighting using phantom and in-vivo mouse data obtained with optoacoustic microscopy.
For this purpose we developed an FD based definition of the CF. Our results reveal the equivalence of DAS and
FD, with and without CF weighting, in terms of spatial resolution and contrast-to-noise ratio (CNR) but highlight
the clear advantage of FD in terms of computational cost, making it preferable for 3D reconstruction or real-time

applications. An important additional result of this research is that, contradictory to previous studies, CF
weighting does not lead to any improvement in lateral resolution.

1. Introduction

Optoacoustic imaging generates spatially resolved images with
contrast given by variations in the optical absorption coefficient of
tissue structures. Optoacoustic imaging has the distinct characteristic of
producing signals which are time-resolved and thus retain depth in-
formation. The two modalities of optoacoustic imaging, tomography
and microscopy, acquire optoacoustic pressure signals either through
an ultrasound transducer array (tomography) [1,2] or through me-
chanical scanning of a focused single-element transducer (microscopy)
[3,4]. In both cases, the raw data must be processed in order to yield
high quality images. In the raw data, signals appear spread over a range
of detection positions depending on the distance between absorbing
structure and array elements (tomography) or absorbing structure and
focus position (microscopy).

In optoacoustic tomography raw data, a signal point source appears
to be curved away from the transducer array, which is due to the in-
creasing time a pressure wave needs to propagate to detector elements
farther from the source. Images are reconstructed from the time-re-
solved signals acquired by the multi-channel unfocused transducer
array using the so called synthetic aperture focusing technique (SAFT)
[5,6]. The attainable resolution is limited laterally by the numerical
aperture and center frequency of the array probe and axially by the
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frequency bandwidth of the transducer [7]. While SAFT can be realized
in both time-domain and frequency-domain [8], the term SAFT is often
used implying an implementation in time-domain. To avoid confusion,
we refer to time-domain SAFT as DAS.

In optoacoustic microscopy, the raw data exhibits a high-resolution
focal plane with low-resolution areas above and below the focal plane,
akin to an optical microscope. In out-of-focus areas, a signal point
source appears to curve away from the focus, with the curvature de-
creasing with increasing distance from the focal plane. The image re-
solution in these out-of-focus areas can be recovered from the time-
resolved signals using the same reconstruction method by employing
the virtual detector concept introduced by Li et al. [9]. The resolution
limit is given laterally by the numerical aperture of the acoustic lens
and the transducer's center frequency and axially, as in tomography, by
the transducer's bandwidth.

In both tomography and microscopy, the reconstruction is typically
implemented using a time-domain algorithm, whereby the detected
signals are time-shifted to compensate for the delay introduced during
image acquisition and then summed up (delay-and-sum, DAS). While
the result of the reconstruction provides increased lateral resolution
and contrast compared to the raw signal, several groups have reported
that lateral resolution and contrast can be further improved by applying
the so called coherence factor, which is proposed to increase lateral
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resolution and signal-to-noise ratio and suppress side-lobes [6,10-12].

In spite of its popularity, the use of the DAS algorithm is not without
disadvantages. While easy to implement, it is computationally ex-
pensive and thus unsuitable for very large pixel counts, applications
where fast image reconstruction is required, or for 3D reconstruction
(where summing is performed over a 2D area). To increase speed, 3D-
DAS can be simplified to perform summing only in two orthogonal grid
directions [13] (as opposed to over a 2D area) in order to additionally
improve the spatial resolution in the direction perpendicular to the B-
scans. This, however, does not result in true 3D resolution as it does not
utilize the full extend of available information.

An alternative to time-domain reconstructions are frequency-do-
main (FD) algorithms, which offer the advantage of lower computa-
tional complexity when implemented using an FFT algorithm [14,15].
This leads to significantly faster processing of large numbers of pixels.
While delay-and-sum and frequency-domain algorithms are in principle
mathematically equivalent solutions to the same problem, interpolation
errors in time-domain and frequency-domain lead to numeric devia-
tions that may result in method-specific noise and artifacts in the re-
constructed images.

The speed advantage of FD algorithms stems from their lower
computational complexity: For a 2D data set of size n X n the compu-
tational complexity is omn? log>(n)) for the FD algorithm but on®) for
the DAS algorithm. For a 3D reconstruction of size n X n X n, the
complexity of the FD algorithm is omn® log>(n)), while for the DAS al-
gorithm it is 0O(n®). The relative slowdown of the DAS algorithm in the
3D case comes from the fact that for every voxel, the signal sum is
generated over a plane instead of a line. The difference in computa-
tional complexity means that the larger the number of pixels, the faster
the FD algorithm becomes in comparison. This is especially important
when reconstructing in 3D, as the difference in computational com-
plexity is more pronounced when comparing 3D-FFT with 3D-DAS.

Frequency-domain algorithms have been reported to cause more
reconstruction artifacts than time-domain algorithms [15,16]. These
artifacts can be reduced to the level of time-domain algorithms by zero-
padding, at the expense of an increased calculation time. Alternatively,
regularized inverse k-space interpolation [17] improves image quality for
a comparatively minor increase in calculation time. This interpolation
law uses only a small number of frequency components to calculate an
interpolant and is therefore much more efficient than the equivalent
summation over a large number of values performed in the DAS algo-
rithm.

Recently, model-based reconstructions started to be employed in
optoacoustic imaging for their ability to take into account specific
properties such as detector geometry or -aperture [18-20], spectral
attenuation and even local variations in speed of sound. Model-based
reconstruction is based on minimizing the difference between the
measured signals and the theoretical signals predicted by a forward
model using an iterative inversion approach [21,22], resulting in a
reduction of reconstruction artifacts [23,24] and an increased image
quality. These improvements however are obtained at the expense of a
higher computational complexity, which often makes model-based re-
construction slow, in particular for large numbers of pixels required for
3D reconstruction.

The object of this study is to experimentally demonstrate that FD
with truncated inverse k-space interpolation is equal to DAS in terms of
spatial resolution and contrast. We further aim to show that the com-
monly used coherence factor can equivalently be adapted for the FD
algorithm, using an alternative definition. In order to make the com-
parison objective, the FD algorithm is adapted to match the point
spread function of the DAS implementation by equalizing their response
to simulated signal data. The two algorithms are thoroughly compared
using experimental phantom and in-vivo data obtained with an op-
toacoustic microscopy setup. The influence of the coherence factor is
evaluated for both algorithms.
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Fig. 1. Schematic representation of FD algorithm acting on single plane wave
component. a) measured signal, b) signal frequency-domain, c) image fre-
quency domain and d) reconstructed image.

2. Materials and methods
Reconstruction algorithms

The basis of FD reconstruction is the transformation of the forward
model into the frequency-domain [17].

FD reconstruction consists of three steps, which are explained here
for the 2D case: first, the raw data is 2D-Fourier-transformed (Fig. 1).
Second, frequency components are mapped from the signal temporal
frequency domain (k,, k,) to the image spatial frequency domain (k,, k,)
according to the dispersion relation:

ke = —cg (ki + kg2 [6))

Where c; is the speed of sound and k,, k, and k, are the wave vectors
of the signal and image, respectively.

Third, the image is obtained by inverse-Fourier-transforming the
result of the mapping.

The discrete Fourier transform yields a discrete set of frequencies
due to the finite extent of the space-time domain of the experiment.
Therefore, employing equation (1) for the mapping of frequency com-
ponents necessitates the use of an interpolation scheme, as the discrete
wave vectors do not match one-to-one. The choice of interpolation law
affects magnitude and distribution of image artifacts and influences
reconstruction efficiency.

To minimize artifacts, the truncated regularized inverse k-space
interpolation law as defined in [17] is used in this study.

Whereas the FD algorithm reconstructs the entire dataset at once,
the DAS algorithm uses a pixel-wise operation in time-space-domain,
where the signal source is reconstructed through shifting signal chan-
nels by the position-dependent time-delay introduced during acquisi-
tion and subsequent summing of the channels at the reconstructed pixel
position.

The sum is calculated per pixel as [9]:

N-1

Soas(®) = 3 5@, t — AL)
DAS g (2)

where s(i, t) denotes the detector signal at position i (channel i for an
array probe) and time t, At; denotes the time delay for the corre-
sponding position i and N the number of signal channels included in the
sum.

The parameter At; in eq. (2) is calculated differently for microscopy
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and tomography. In microscopy, it is calculated from the pixel position
relative to the focal spot as:

r'=n)
cs ®

where 7 is the distance of the reconstructed pixel to the focal spot and
r = z — zythe distance of the reconstructed pixel to the focal plane, and
sign(z — 2p) changes sign based on whether the reconstructed pixel is
located above or below the focal plane. In tomography, the case is
simpler as sign(z — z) can be omitted since the focal plane is identical
with the receiver array.

Since At; can assume any fractional value between the discrete time
samples of the signal matrix, the signal s(i, t — At;) in eq. (2) must be
interpolated. In this study we used sinc interpolation for this purpose.

All reconstructed images shown in this manuscript correspond to
the envelope of the reconstructed signal amplitudes. For raw images,
the image corresponds to the envelope of the unprocessed signal am-
plitudes.

Aty = sign(z — zy)-

Coherence factor

The coherence factor was previously defined as [11,10,12]:
I3 s, t— AP

CF(t) =
© N-Z Vs, £ — AP )

it is regarded as the per-pixel ratio of the coherent energy to total en-
ergy included in the sum. The resulting value ranging from 0 to 1 de-
scribes the degree of coherence in the sum of the respective pixel. It is
applied to the reconstructed image by pixel-wise multiplication, where
it supposedly suppresses the intensity of any pixel for which the
summed signals exhibit little coherence. It is worth noting that the
multiplication with the coherence factor is a nonlinear operation and as
such, will alter the result of linear measures such as CNR in a non-trivial
way. It has also been reported that the coherence factor is sensitive to
noisy data [25].

To make the coherence factor amenable to the FD approach, we
rewrite the definition eq. (4) as:

_ IREC(s)P?
" N-REC(IsP) (5)

where s is the signal matrix, N is a normalization matrix corresponding
to the shape of the acoustic receiving beam and REC is a linear operator
describing the reconstruction. The division and multiplication are done
element-wise.

A prerequisite for the definition of the CF according to eq. (5) is that
REC(|s|?) is positive everywhere. While this is the case for the DAS
algorithm according to eq. (2) (a sum over positive values is auto-
matically positive), it does not automatically hold for any im-
plementation of the FD algorithm; a superposition of the bipolar plane
waves does normally take positive and negative values. The FD im-
plementation used in this study was adapted to closely match the point-
spread-function of the DAS implementation, and thus fulfills this pre-
requisite to a great extent. To compensate for remaining negative va-
lues, a small offset larger than the largest negative value is applied to
ensure positive, non-zero values. The matching of the two algorithms
was achieved by applying frequency-dependent phase and amplitude
scaling factors w(k,, k;) to the FD signal frequency spectrum. The fac-
tors were empirically determined to match FD and DAS reconstructions
of simulated plane wave signals:

w(ky, k) = (0.1 + Ik, [)7055.¢07 signtka)i 6)

In addition, angular apodization conforming to the receiving an-
gular aperture of the acoustic lens was matched in both algorithms.
Fig. 2 demonstrates the quality of the matching by comparing the si-
mulated lateral intensity profile of three signal sources.
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Fig. 2. Lateral intensity profiles of three simulated signal point sources (1,2,3)
reconstructed with DAS and matched FD algorithms.

Wire experiment setup

In order to compare the DAS and FD algorithms quantitatively, an
experiment was designed that allows determining the achievable
acoustic resolution in a statistically meaningful way.

Two 20 um gold wires were fixed under tension such that they cross
at a shallow angle (~ 3°). A 3D optoacoustic image (C-scan) was then
recorded of the crossing wires with the two wires oriented orthogonally
to the plane of B-scans. The closest distance at which the two wires
could be resolved was determined using Sparrow's limit, that is, just
before the disappearance of the dip in-between the two signal peaks.
Defining the resolution in this way ensures that the result is invariant to
non-linear transformations of the signal, such as CF weighting. The
experiment was conducted with the wires submerged at a depth of
2mm from the surface in both water as well as a scattering medium
consisting of a 0.5% SMOFlipid solution in water (Fig. 3). Performing
the experiment in a highly scattering medium allows the algorithms to
be investigated in a situation where artifacts are outweighed by image
noise. In such a situation, DAS and FD algorithms may show different
noise statistics, which in turn may affect the CF differently.

The setup (Fig. 3) used for the quantitative comparison of the al-
gorithms consisted of an 8 ns pulsed laser (Innolas SpitLight DPSS) at
532 nm with a pulse energy of around 85 pJ weakly focused to a beam
waist of 600 um, resulting in a radiant exposure of ~30mJ/cm?. Fo-
cused acoustic detection was achieved via a plano-concave lens (Linos,

BS
PD Light
Source
- Lens
us water drop
RhP
gold wires gold wires in
in water scattering medium

Fig. 3. Schematic of the optoacoustic microscope setup used for the wire ex-
periment showing beam splitter (BS), photodiode (PD), ultrasonic transducer
(US) and rhomboid prism (RhP). Insert shows adapted phantom for measure-
ments in scattering medium. Setup adapted from [26].
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glass N-BK7) with a surface curvature of R=4.71 mm, which was me-
chanically attached to the rhomboid prism (Edmund optics, N-BK7)
using optical contact bonding so as to avoid reflections from the lens-
prism interface. The microscope was run in acoustic-resolution mode,
meaning acoustically focused more tightly than optically [7]. Signals
were detected using a 50 MHz (70% bandwidth, -6 dB) transducer
(Olympus V215-BB-RM, Precision Acoustics submersible preamplifier).
The signal was subsequently further amplified (Miteq AU1442-R) and
digitized at 16 bit resolution (Spectrum M4i.4420-x8). Mechanical
scanning was performed using a computerized 2D stage (Prior H101)
with step sizes dx=dy=15p m and a maximum scan area of
25x25 mm.

The algorithms were evaluated with respect to lateral resolution and
contrast-to-noise level at various depths from the focal plane. CNR was
calculated as CNR = M; where S, is the wire signal envelope
amplitude averaged over agdeﬁned ROI, while myg and 0y, are the mean
and standard deviation of the background.

In-vivo experimental setup

The in-vivo datasets were acquired using an acoustic-resolution
optoacoustic microscope based on spherically-focused polyvinylidene
fluoride (PVDF) detector with 5-35 MHz bandwidth, focal distance of
6.8 mm and numerical aperture of 0.6 (OOO BARI-NN, Russia)[27].
Sample illumination was conducted via a fiber bundle with distal ends
distributed circularly around the active transducer surface, producing a
dark-field illumination pattern with a total radiant exposure of 5mJ/
cm? at the sample surface (Fig. 4).

A 532nm diode laser (HB Wedge, BrightSolutions, Italy) with a
pulse length of 1.4 ns and a pulse energy of 1 mJ was used as the light
source. Mechanical scanning was performed using two linear stages (M-
664, PI GmbH, Germany) with step sizes dx = dy = 25 pm. OA A-scans
corresponding to discrete XY positions of the scanning head were re-
corded at 200 MHz sampling frequency by a 16 bit digitizer (CSE1622,
GaGe, USA). The raw data was bandpass filtered prior to reconstructing
in order to increase SNR.

The in vivo experiment was conducted using eight week old balb/c-
nude mouse bearing human breast carcinoma SKBR3 (5-10° cells in-
jected subcutaneously to the outer side of the thigh 25 days prior to the
study). Before the investigation the mouse was anesthetized with an
intramuscular injection of the mixture of Zoletil 100 (40 mg/kg) with
Rometar (10 mg/kg). The animal was then immobilized in a side

fiber

bundle
us

acoustic
wave

water

Fig. 4. Schematic of the optoacoustic microscope setup used for in-vivo ima-
ging showing curved ultrasonic PVDF transducer (US) and fiber bundle (2 ends
shown) dark-field illumination.
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Fig. 5. Maximum amplitude projections of the OA signal of gold wires in water.
Raw images (top row), DAS and FD reconstructions (second and third rows) and
DAS and FD with coherence factor (fourth and bottom rows) at various z-po-
sitions: at the focal plane (left column), at 250 pm and at 750 pm below the
acoustic focal plane. The dotted line indicates the critical B-scan with the
corresponding intensity profile below. The uneven intensity of the wires is
likely attributed to uneven dust adhered to on the gold wire surface.
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position; the center of the tumor was placed into the center of the
scanning area. The experiments were conducted in accordance with the
requirements of codes and enactments ruling research works to the
safety and efficiency of pharmaceuticals (Regulation by Ministry of
Health and Social Development of Russian Federation No. 708-n from
23.08.2010), and international legal and ethical codes of experimental
use of animals (NIH Publications No. 8023, revised,1978).

3. Results
Wire phantom comparison

Fig. 5 illustrates how the spatial resolution without reconstruction
decreases with increasing distance from the focal plane (top row) and
how the resolution is recovered by applying the reconstruction algo-
rithms (second to bottom row). Raw images correspond to the envelope
of the unprocessed signal amplitude. The resolution was determined
from these images by finding the minimum distance between the wires
that would still allow them to be resolved. To increase robustness of the
distance measurement, a straight line was fitted to each wire and the
distance between the wires at every B-scan was calculated from the line
parameters. The resolution limit was then determined by finding the
critical B-scan (i.e. at the limit of resolution as defined by the Sparrow
criterion). Fig. 6 shows the output of the two algorithms, with and
without CF, in optically scattering / low CNR conditions, where the
effects of background noise are significant.

The performances of the FD and DAS algorithms were identical in
terms of resolution, independent of whether CF weighting was applied
or not. For both algorithms, the influence of the CF on the resolution in
both low- and high-noise conditions was not significant (Table 1). The
error of the distance measurement was estimated at + 3 pm from the
repeatability of measurements; depending on the signal shape the
identification of the critical B-scan can be subjective.

Both algorithms show a slight resolution degradation close to the
focal plane, an effect that has been observed before [25] and appears
slightly less pronounced for the FD algorithm.

The CNR appears to be affected by the CF differently for the two
algorithms (see Table 2). While application of the CF increased the CNR
for both algorithms, a significantly larger increase was observed in the
case of the FD algorithm.

In water, both algorithms were able to recover the image over the
range of focal positions to a CNR of 34-36 dB. With the CF applied, the
CNR increased to 60-71 dB for the DAS algorithm (an avg increase of
31.2 dB over the reconstruction without CF) and to 64-81 dB for the FD
algorithm (avg increase of 37.8 dB). In the scattering medium, the DAS
algorithm resulted in a CNR of 23-29 dB, while the FD algorithm pro-
duced a CNR of 29-30dB. With CF weighting, CNR increased to
34-47 dB (avg increase of 16dB) for the DAS algorithm, and to
48-49 dB (avg increase of 18.7 dB) for the FD algorithm.

On our reference machine (Intel Core i7-3770, both algorithms
running parallelized on all 4 cores in MATLAB), the DAS algorithm
performed the wire image reconstruction in 0.23s per B-scan
(200 x 495 pixels) on average. The FD algorithm was faster at 0.05 s/B-
scan, almost a factor 5 speedup. With CF weighting, computation times
increased to 0.41 s per B-scan for DAS+ CF and to 0.10 s for FD +CF, a
factor 4 speedup.

In-vivo comparison

To put the results obtained in the wire experiment in context with a
real situation, an optoacoustic image of a mouse subcutaneously im-
planted tumor was used. DAS and FD reconstructions (Fig. 7b and 7 c)
show some improvement over the raw image (Fig. 7a) and an increased
CNR. The latter was measured within two small ROI's containing ca-
pillaries, with one located near the focal plane (center of the image) and
one out-of-focus (upper part of the image). As expected, no change in
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Fig. 6. Maximum amplitude projections of the OA signal of gold wires in a
scattering medium. Raw images (top row), DAS and FD reconstructions (second
and third rows) and DAS and FD with coherence factor (fourth and bottom
rows) at various z-positions: at the focal plane (left column), at 250 pm and at
750 um below the acoustic focal plane. The dotted line indicates the critical B-
scan with the corresponding intensity profile below.
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Table 1

Distance between gold wires [ + 3 pm] at the resolution limit in water/scat-
tering medium. Missing values indicate that the critical B-scan could not be
determined due to poor CNR.

Position from focal plane

Algorithm f+0um f+250 ym f+500 pym f+750 um

Raw image 61/61 ym 71/79 um 101/-pum —/—um

DAS 64/67 um 63/64 um 63/62 um 62/62 pm

FD 63/62 pum 62/61 um 62/61 um 63/62 pm

DAS + CF 64/66 pm 62/63 um 64/63 um 65/62 pm

FD + CF 63/63 um 63/62 um 63/62 um 66/62 pm
Table 2

CNR [dB] of optoacoustic images of gold wires in water (top) and scattering
medium (bottom). CNR was computed with the avg wire signal. The error was
calculated from the standard error of the averaged wire signal.

Position from focal plane

Algorithm f+0um f+250 um f+500 um f+750 um
Raw image 31.1 £ 0.08 27.6 = 0.12 23.9 £0.17 21.9 £ 0.20
21.3 £ 0.11 19.7 £ 0.11 14.6 = 0.17 11.9 £ 0.21
DAS 34.5 + 0.08 36.0 + 0.06 35.1 + 0.06 34.4 + 0.06
22.8 £ 0.09 28.0 + 0.09 28.8 £ 0.07 28.8 £ 0.07
FD 36.6 + 0.06 36.3 + 0.06 35.0 + 0.06 34.5 + 0.06
30.0 = 0.06 29.7 = 0.06 29.2 = 0.07 30.2 + 0.05
DAS+CF 70.9 + 0.21 71.2 + 0.14 63.5 £ 0.13 59.2 £ 0.11
33.9 £0.15 45.8 + 0.12 46.4 = 0.11 46.6 = 0.11
FD+CF 81.3 £ 0.14 76.3 = 0.13 71.2 = 0.12 64.6 = 0.11
48.7 £ 0.12 48.6 + 0.11 47.9 £ 0.10 48.5 + 0.11

CNR could be observed near the focal-plane, while in the out-of-focus
part the CNR was increased by 3-4 dB. CF weighting yields another 3 dB
increase in CNR for the DAS algorithm (Fig. 7d) and a 2 dB increase for
the FD algorithm (Fig. 7e) within the same ROI. CF weighting also

P
R
DAS + CFW',
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increased the CNR in the near-focal-plane ROI by 4-5dB, as was pre-
viously observed in the phantom experiment.

On our reference machine, average computation time was 7.10 s per
B-scan (600x751 pixels) for the DAS algorithm and 0.25s for the FD
algorithm, a factor 28 speedup. With CF weighting, computation times
increased to 12s (DAS+ CF) and 0.5s (FD + CF).

4. Discussion

Our results indicate that DAS and FD image reconstruction algo-
rithms perform equally under both low- and high-CNR conditions.
Phantom experiments showed no significant difference in terms of re-
solution and CNR, with the exception of minor differences appearing in
the near-focal-plane region, where a slightly higher resolution and CNR
were measured for the FD algorithm. Both algorithms recovered the
resolution in the measured out-of-focus areas to closely match the re-
solution achieved in the focal plane in both high- and low-CNR con-
ditions, in accordance with previously reported findings [9,25]. How-
ever, the two algorithms differed greatly in terms of speed. The
observed computation times show a factor 28 speedup for the FD al-
gorithm in the reconstruction of the in-vivo data set.

Contrary to previous reports [11,25], this study clearly reveals that
the coherence factor does not yield any improvement to resolution for
either algorithm in both high- and low-CNR cases. The reason for this
discrepancy is that previous studies defined the resolution either by the
FWHM of a thin wire or by an adaptation of the Rayleigh criterion. Both
of these definitions, however, are sensitive to the nonlinear amplitude
transformations performed by CF weighting and thus not suitable for
assessing its effects on the spatial resolution. Using the Sparrow cri-
terion for determining the resolution avoids these complications and
proves that CF weighting does not improve the resolution of optoa-
coustic imaging. In contrast, using the FWHM of a single wire from
Fig. 5 to assess the effect of CF weighting on the delay-and-sum re-
construction yields a misleading result: for both wires, the FWHM cri-
terion shows an apparent improvement in resolution from 76 um to

Fig. 7. Maximum amplitude projection of subcutaneously implanted tumor (dashed area in fig. a) in mouse obtained as depicted in Fig. 4. a) raw image b) DAS
reconstruction c) FD reconstruction d) DAS+ CF weighting e) FD + CF weighting. CNR was measured for indicated ROIL
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42 pm and from 66 pm to 21 um, respectively.

Our measurements confirmed an increase in CNR when the CF was
applied, in accordance with previous findings [11,9]. However, this
improvement in CNR due to CF weighting must be viewed critically.
Since CNR, like SNR, is defined as a ratio of energies, applying any non-
linear operation to the image means that intensity no longer corre-
sponds linearly to energy and thus the calculated CNR no longer cor-
responds to energies. Much like the FWHM of a thin absorber is a po-
tentially misleading reference point for image resolution, CNR may be a
misleading reference point for assessing the detectability (as opposed to
image contrast) of a signal.

Similar conclusions to the phantom experiments can be drawn from
the more noisy in-vivo images: DAS and FD reconstruction algorithms
perform virtually identically, while CF weighting significantly in-
creased the CNR in both cases. This confirms that the FD algorithm is a
perfectly viable (yet substantially faster) alternative to DAS even for the
complex, noisy datasets that typically result from in-vivo experiments.

5. Conclusion

We have successfully demonstrated the practical equality of fre-
quency-domain to delay-and-sum reconstruction. While this equality
has limitations, such as slight differences in noise homogeneity and
focal plane resolution, in a practical scenario any disparities in the
output images are negligible. Our results demonstrate that the in-
creased image artifacts often attributed to frequency-domain re-
construction can be mitigated to a neglectable level using truncated
regularized inverse k-space interpolation and zero padding the data.
The comparison confirmed that the FD algorithm is particularly well-
suited for the reconstruction of large data sets due to its lower com-
putational complexity, an advantage especially important for potential
real-time applications.

Contrary to previous publications, we have shown that coherence
factor weighting does not influence the lateral resolution in any way. In
order to properly assess the influence of the coherence factor on the
contrast, we suggest calculating the statistical significance level of the
signal given the background noise statistics, and to then compare re-
constructions with and without CF based on this significance level. Such
a comparison, however, is only feasible when the CNR is very low, as
many statistical tests, such as Chi-squared or Cramér-von-Mises, are un-
reliable when the signal is easily differentiated from the background
noise.
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