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Abstract

Adenoviruses represent ubiquitous and clinically significant human pathogens, gene-delivery 

vectors, and oncolytic agents. The study of adenovirus-infected cells has long been used as an 

excellent model to investigate fundamental aspects of both DNA virus infection and cellular 

biology. While many key details supporting a well-established model of adenovirus replication 

have been elucidated over a period spanning several decades, more recent findings suggest that we 

have only started to appreciate the complex interplay between viral genome replication and 

cellular processes. Here we present a concise overview of adenovirus DNA replication, including 

the biochemical process of replication, the spatial organization of replication within the host cell 

nucleus, and insights into the complex plethora of virus-host interactions that influence viral 

genome replication. Finally, we identify emerging areas of research relating to the replication of 

HAdV genomes.
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Introduction:

Adenoviruses (family Adenoviridae) are medium-sized (90–100 nm), non-enveloped viruses 

with an icosahedral nucleocapsid containing a double-stranded DNA genome. The human 

adenoviruses (HAdV) comprise 7 species of the Mastadenovirus genus (A-G), including 

over 50 serotypes as defined by the absence of serological cross-neutralisation 1–3. Serotypes 

of the Mastadenovirus C species, in particular serotypes 2 and 5 (Ad2 and Ad5), are the best 

characterized in regard to their molecular biology, and are often utilized experimentally to 

study adenovirus DNA replication and other aspects of adenovirus biology. HAdV are 

prolific pathogens that represent a significant human disease burden 4. In addition to their 
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clinical importance as pathogens, HAdV can also be utilized scientifically and clinically as 

gene expression vectors, oncolytic agents, and vaccine vectors 5–9. Furthermore, the study of 

HAdV as a prototype DNA virus has provided fundamental insights into important cellular 

processes, including DNA replication, the cellular DNA damage response (DDR), and RNA 

processing 10–15. HAdV therefore present excellent opportunities to investigate fundamental 

aspects of DNA virus and cellular biology.

Viruses are obligate intracellular pathogens, and must therefore infect a host cell and co-opt 

cellular processes in order to replicate viral genomes and ultimately produce infectious 

progeny. HAdV replicates in the host cell nucleus, utilizing components of the host nuclear 

machinery for viral processes, including expression of viral genes, and replication of viral 

DNA genomes. Following attachment and entry, viral particles undergo a complex process 

of disassembly to yield viral nucleocapsids, which are transported along microtubules to the 

nuclear pore complex, where viral genomes are imported into the nucleus 16–18. Replication 

of the HAdV genome generates de novo genomes that are required for several essential viral 

processes, including further amplification of viral genome copy number and expression of 

viral late genes necessary for production of viral particles. In addition, viral genomes are 

also packaged into particles to produce infectious progeny virions (Figure 1). Therefore, 

replication of HAdV genomes is essential for the production of viral progeny. Thus, our 

understanding of viral genome replication fundamentally underpins our understanding of 

HAdV infection. Decades of work have contributed to a detailed model of biochemical 

processes of HAdV DNA replication, defining its minimal requirements in vitro, 

characterizing the replication machinery, and elucidating the fundamental mechanism 
12,13,19. However, viral genome replication within the host nuclear environment presents a 

number of challenges as well as opportunities. The virus must redirect cellular processes and 

co-opt cellular proteins, manipulate the nuclear architecture, and create its own nuclear sub-

compartments to facilitate viral genome replication. Here we present an overview of 

adenovirus DNA replication, including the biochemical mechanism of replication, the spatial 

organization of genome replication within the host cell nucleus, and the recruitment of 

cellular proteins to replicating viral genomes. In doing so, we highlight the importance of 

understanding adenovirus replication in the context of the complex nuclear environment, and 

identify emerging areas of research relating to the replication of HAdV genomes.

Replication of the adenovirus genome:

Following entry into the nucleus, viral DNA genomes initiate a program of viral early gene 

expression that includes expression of genes encoding components of the viral DNA 

replication machinery. DNA replication machinery assembles on viral genomes and 

replication takes place. This enables productive infection, further genome amplification, and 

the full complement of viral gene expression. In this section we cover key viral components 

required for viral DNA replication and discuss how they function in concert to replicate viral 

genomes.
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The adenovirus genome:

HAdV contain a linear, double-stranded DNA genome, typically 30-36 kb in length. By 

utilizing overlapping open reading frames and allowing transcription from both strands of 

the genome, as well as alternate splicing to maximize coding potential, this small viral 

genome encodes multiple genes (Figure 2). Viral early genes encode, amongst other 

proteins, the pre-terminal protein (pTP, encoded by E2B), DNA polymerase (Ad Pol, E2B), 

and DNA-binding protein (DBP, E2A), which together constitute the viral replication 

machinery. Late genes including the major late transcriptional unit (MLTU) are expressed 

following the onset of viral DNA replication, and encode the capsid and packaging proteins 

required for assembly of viral particles and encapsidation of the viral genome 20–22. The 

MLTU comprises 5 transcriptional units (L1-L5), which are typically expressed from the 

major late promoter (MLP) utilizing alternate splicing and differential polyadenylation 23–27. 

IX and IVa2, which are not encoded within the MLTU are often described as intermediate-

late genes, since pIX and IVa2 facilitate the transcription of MLTU genes, in addition to their 

role in virion assembly 28–33. The central coding region of the genome is flanked by inverted 

terminal repeats (ITR) of approximately 100 bp at each of the 5’ and 3’ ends. The terminal 

ends of each ITR possess the origin of replication. These origins span approximately 50 bp 

and contain a minimal core origin at the extreme terminal ends, as well as an auxiliary 

origin. The core origin sequence contains a binding site for pTP and Ad Pol, while the 

auxiliary origin contains binding sites for the cellular transcription factors Nuclear Factor 1 

(NF1) and the POU domain containing protein Oct-1 34,35. These proteins function with 

DBP to make up the pre-initiation complex that associates with the origin and initiates 

replication 13,35. In addition, one end of the genome also contains a packaging sequence (ψ) 

proximal to the ITR. This packaging sequence can be bound by viral packaging proteins, 

and is required for encapsulation (packaging) of the viral genome within the viral particle 
36,37. Viral genomes present within capsids also have two copies of a mature form of the 

viral terminal protein (TP) covalently attached to the 5’ ends, resulting from the addition of 

pTP during replication and its subsequent proteolytic cleavage during virion maturation 38.

The viral replication machinery:

Three viral proteins - pTP, Ad Pol, and DBP - are essential for replication of the viral 

genome. Reconstitution of HAdV DNA replication in vitro has demonstrated that these viral 

proteins represent the minimal components necessary for replication, whilst the host proteins 

NF1 and Oct-1 can enhance replication 39–43. pTP is a 76.5 kDa protein that forms a 

heterodimer with Ad Pol, and along with Ad Pol and DBP forms part of the DNA replication 

pre-initiation complex where it functions in replication priming and is covalently coupled to 

the viral DNA as part of this process. Following encapsidation of the viral genome, pTP is 

cleaved by the adenovirus protease at two sites to yield the 37 kDa mature form of TP via a 

processing intermediate (iTP) 44. Thus, replicating viral DNA is associated with pTP, while 

mature TP is present on viral genomes within mature virions and on incoming viral genomes 
38,45.

The Ad Pol is a 120 kDa protein that belongs to a subset of family B polymerases that utilize 

a protein primer for the initiation of replication 46,47. Sequence comparisons to polymerases 
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of known structure, in particular the polymerase of the φ29 bacteriophage, have provided 

great insight into the likely structure of Ad Pol 48–50. In addition, many biochemical and 

mutagenesis studies have characterized its functional domains and demonstrated the 

requirement of these domains for its activity 12,51–55. The C-terminal half of Ad Pol contains 

the palm, finger, and thumb subdomains that are common to DNA polymerases and function 

in their 5’ to 3’ polymerase activity 12,56. In common with many other DNA polymerases, 

Ad Pol contains a 3’ to 5’ exonuclease domain within its N-terminal half that is necessary 

for its proofreading activity 12. An interesting feature of Ad Pol is the presence of two sub-

domains, termed Terminal Protein Region 1 and 2 (TPR1 and TPR2), that are specific to 

family B polymerases that initiate replication by a protein-primed mechanism, and are 

thought to facilitate protein-primed replication 47,57–59.

DBP is a 70 kDa protein that likely performs several functions during HAdV genome 

replication. DBP was first isolated based on its ability to bind ssDNA 60, but can also bind 

dsDNA 61–63, and even RNA 64–66. A combination of biochemical assays, electron 

microscopy, and x-ray crystallography have demonstrated that DBP binds to ssDNA in a co-

operative manner, and can oligomerize to form a protein chain associated with ssDNA 
43,60,67–69. This binding along ssDNA is sequence-independent, with one DBP monomer 

every 10-15 nucleotides 70. Although DBP has been best characterized in relation to its 

function in the replication of viral DNA, it has been implicated in a number of different 

processes including transcription, mRNA stability, and even capsid assembly 29,71–76. DBP 

is essential for viral DNA replication recapitulated in vitro 77–79. Temperature-sensitive DBP 

mutant viruses fail to replicate in infected cells at non-permissive temperatures 73,77–80. DBP 

may contribute to viral DNA replication in multiple ways. Firstly, DBP is part of the 

replication pre-initiation complex and enhances the rate of initiation of replication 63,81–83. 

DBP also enhances Ad Pol processivity, and can facilitate template elongation and strand 

displacement by de-stabilizing the dsDNA helix 84–86. This ability to destabilize dsDNA is 

dependent on the multimerization of DBP on the displaced ssDNA during replication 87,88. 

In addition, DBP protects ssDNA intermediates generated during strand displacement from 

nuclease digestion, and regulates annealing of displaced ssDNA 89,90.

The mechanism of AdV genome replication:

HAdV replication occurs via a mechanism of strand-displacement similar to φ29-like 

dsDNA bacteriophages of the Podoviridae family 35,47,58,91,92 (Figure 3). Multiple protein-

protein and protein-DNA interactions between the viral replication machinery, NF1, Oct-1 

and the origin of replication result in the formation of the pre-initiation complex 35,93,94. 

NF1 and Oct-1 facilitate replication initiation by altering the origin conformation 35,95,96. 

The initiation of viral genome replication occurs by a protein priming mechanism in which 

pTP is covalently coupled to what will be the first nucleotide of the nascent chain. In the 

case of Ad5, the Ad Pol first covalently attaches a dCMP nucleotide to Ser580 of pTP to 

yield pTP-dCMP (pTP-C) 97,98. The generation of pTP-C acts as the first stage in the 

formation of the pTP-linked trinucleotide intermediate pTP-CAT. Although initiation occurs 

at position 4 of the template strand, a “jumping back” mechanism results in this pTP-CAT 

intermediate base pairing with positions 1-3 99. This is made possible by the presence of a 

short repeat sequence at the beginning of the AdV origin of replication 35. DBP facilitates 
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initiation by enhancing binding of Ad Pol and NF1 to the origin of replication and enhancing 

coupling of the first nucleotide to pTP. This occurs on dsDNA, suggesting that DBP does not 

enhance initiation through origin unwinding, but instead may facilitate this process by 

modulating origin conformation 63. After replication priming, the Ad Pol dissociates from 

pTP, and synthesis of the nascent strand can proceed. The pre-initiation complex 

disassembles, with NF1 dissociating early during initiation and Oct-1 displaced following 

progression of the replication fork through the origin 94. Ad Pol elongates the nascent strand, 

facilitated by the dsDNA unwinding ability of DBP as it progressively oligomerizes along 

displaced ssDNA as the replication fork proceeds. This generates a new DNA duplex while 

displacing the non-template strand. Displaced ssDNA can subsequently be replicated to 

generate a new dsDNA genome. Interestingly, ssDNA replication intermediates do not 

appear to be short-lived, as they accumulate during infection 100–103. However, functional 

consequences of ssDNA accumulation are unclear. The ITRs of displaced single strands 

anneal together either through intramolecular or intermolecular interactions to form new 

dsDNA origins of replication 104,105. Thus, newly generated dsDNA genomes as well as 

ssDNA replication intermediates can enter into subsequent rounds of replication resulting in 

amplification of genome copy number that drives productive infection.

Spatial organization of adenoviral genome replication and the role of 

genome replication in viral late processes:

The replication of HAdV genomes takes place within the host cell nucleus, which is a 

complex environment home to a vast repertoire of cellular processes. Accordingly, HAdV 

must co-opt or antagonize many cellular pathways, while reorganizing the existing nuclear 

environment. These architectural changes include the formation of virus-induced membrane-

less nuclear compartments that harbor viral genome replication, termed viral replication 

compartments (VRCs). The formation of VRCs represents a strategy that is common to 

DNA viruses which replicate in the nucleus and is thought to provide the means to organize 

and concentrate viral and cellular factors beneficial to the virus, while excluding factors that 

are inhibitory 106,107. Despite their obvious importance, there is much we still do not 

understand about how VRCs form, how these compartments change as infection progresses, 

and how virus-host interactions influence the organization of viral processes at these sites. In 

this section we address the fate of incoming viral genomes in relation to initiation of VRCs 

at dedicated sites within the nucleus, discuss details of VRC formation, and review 

compartmentalization and spatial organization of HAdV genome replication at these sites. In 

addition, we discuss how viral genome replication is required for viral late processes, and 

the changes in VRC morphology that occur as infection progresses. In doing so, we 

highlight emerging questions regarding spatial organization of HAdV genome replication.

The fate of incoming viral genomes:

Following successful viral entry and import of the viral genome into the nucleus, several 

challenges must be overcome to begin replicating. Viral genomes must avoid cellular 

intrinsic antiviral defenses and homeostatic regulatory pathways such as the DDR that 

respond to the presence of foreign DNA and act to suppress viral gene expression and DNA 
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replication 14,15,108–112(See also the review by P. Hearing in this issue). Incoming HAdV 

genomes that avoid restriction by cellular pathways undergo replication and initiate VRC 

formation in close proximity to nuclear bodies (NBs) marked by the promyelocytic leukemia 

(PML) protein 113,114. PML NBs regulate a number of important cellular processes 

including DNA repair, transcription regulation, cell senescence, apoptosis, and the interferon 

response, and have been proposed as major sites of the post-translational modification of 

proteins by small ubiquitin-like modifier (SUMO) 108,115–118. The initiation of VRCs at or 

in close proximity to PML NBs is common amongst DNA viruses that replicate in the 

nucleus 106,119. However, PML and components of PML NBs are recruited to sites 

associated with incoming genomes of DNA viruses and are known to restrict gene 

expression and replication of DNA viruses as part of an intrinsic antiviral defense. Indeed, 

many DNA viruses utilize strategies to antagonize this intrinsic defense 108,117–119. This has 

long raised the question whether the relationship between incoming viral genomes and PML 

NBs is the result of a viral strategy to utilize these nuclear domains, or a cellular strategy to 

resist infection. A study on HAdV demonstrated that incoming viral genomes do not localize 

to PML NBs at early times post-infection, suggesting instead that ongoing HAdV replication 

may be required to recruit PML NB proteins to VRCs 108. Thus, at least in the case of 

HAdV, initiation of VRCs at sites of PML NBs does not appear to result from a cellular 

response to target incoming viral genomes. PML NBs undergo a dramatic reorganization 

during HAdV infection, largely mediated by viral early proteins. For example, E4orf3 is 

responsible for a drastic redistribution of PML from spherical PML NBs into PML ‘tracks’ 
120,121, while E1B-55K facilitates the proteasome-dependent degradation of DAXX to 

relieve DAXX-ATRX mediated suppression of viral gene expression 122,123. It has also been 

suggested that PML NB proteins may be utilized by HAdV, since both anti-viral and pro-

viral roles for PML NB proteins have been reported 118–126. Interestingly, some PML NB 

proteins re-localize to VRCs during infection, including NDP55, specific isoforms of Sp100, 

and SUMO2/3 124–126. In the case of Sp100, the isoforms B, C, and HMG are reportedly 

sequestered at VRCs to inhibit their anti-viral function, while Sp100A is maintained in PML 

tracks so that it can be utilized to promote viral gene expression 126. Therefore, while some 

PML NB proteins are degraded or sequestered to limit their negative impact on virus 

infection, it is possible that others may be utilized by the virus to promote viral processes. It 

is likely that as our understanding of nuclear architecture and spatial and biophysical 

properties associated with sites of PML NBs advances, so too will our understanding of the 

role played by PML NBs during HAdV infection.

The formation of viral replication compartments:

Multiple VRCs can be observed in adenovirus infected nuclei, with the number of VRCs 

initiated dependent on MOI, up to a point of saturation where addition of more virus does 

not result in an increase in VRC number 114. This suggests that the number of VRCs formed 

is dependent on the number of incoming viral genomes, with each VRC likely initiated by a 

single genome. It also implies that the cell is only capable of supporting a limited number of 

VRCs. Evidence in support of this model can also be extrapolated from studies of other 

DNA viruses 127–131. The factors limiting the maximum number of VRCs initiated within 

each nucleus is unknown. However, given that VRCs form at PML NBs which reside within 
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interchromosomal spaces, it is possible that VRC numbers may be limited by the number of 

sites viable for their initiation and growth. Interestingly, imaging of HAdV VRCs has 

revealed that host chromatin is excluded from these virus-induced domains, as they stain 

weakly for cellular histones and the DNA intercalator DAPI when compared to the rest of 

the nucleus 132–134 (see also the review by H. Wodrich in this issue). This suggests that 

VRC growth may require the reorganization of cellular chromatin. Exactly how cellular 

chromatin is excluded from VRCs is unknown, but viral proteins as well as chromatin 

remodeling factors and components of the cellular DDR have been implicated 132,135 (See 
also the review in this issue by D. Avgousti). The VRCs of HAdV and other DNA viruses 

also demonstrate the liquid-like ability to coalesce. Thus, as VRCs grow they may merge 

with nearby VRCs resulting in fewer, larger compartments that may contain progeny derived 

from more than one founder genome 131,136,137.

A particularly interesting question regarding the initiation and formation of viral VRCs is 

how the viral genomes and viral and cellular proteins are concentrated within these 

membrane-less compartments. An exciting emerging area of cell biology addresses the 

formation of biomolecular liquid-liquid condensates (LLCs) by the process of liquid-liquid 

phase separation (LLPS). It is now believed that many cellular membrane-less compartments 

exist as LLCs, including nuclear domains such as nuclear speckles, Cajal bodies and PML 

NBs 138,139. The formation of LLCs can be driven by frequent low-affinity interactions 

between biomolecules, and thus can be facilitated by interactions with proteins containing 

intrinsically disordered regions (IDRs) and the interaction of proteins with nucleic acids. 

Hallmarks of LLCs include liquid-like properties. For example, they typically exhibit 

spherical or rounded morphologies and the ability to coalesce with similar condensates. 

These features are also exhibited by viral VRCs 106,131. Furthermore, VRCs contain high 

concentrations of viral nucleic acids and viral proteins, and the presence of IDRs is a 

common feature in many viral proteins 140,141. Indeed, many HAdV proteins contain or are 

predicted to contain IDRs including E1A, Penton, E1B-55K, and EIB-93R 142–144. This has 

led to the suggestion that VRCs may be LLCs resulting from LLPS 107,145. However, a 

recent study found that although the VRCs of HSV-1 exhibit many of the microscopic 

hallmarks of LLCs, they were not dissolved by treatment with 1,6-hexanediol, a feature of 

other cellular LLCs. Furthermore, the authors report that the recruitment of RNA Pol II to 

VRCs and its movement within VRCs are best explained by a model other than LLPS 146. 

However, it is also necessary to consider that the role of LLPS in biological processes may 

be more subtle and complex than current prototype LLCs suggest 147. Nonetheless, it 

remains an interesting notion that LLPS may play a role in formation of VRCs, including 

those of HAdV. Alternatively, understanding how such seemingly liquid-like structure might 

come about independently of classical LLPS, and how biophysical properties of these 

compartments may influence viral processes is likely to be equally important. Thus, how the 

properties of resident biomolecules influence formation of VRCs, and how the biophysical 

properties of VRCs influence HAdV DNA replication, remains an exciting and interesting 

question.
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Viral replication compartments as the sites of viral genome replication:

VRCs play a role in compartmentalizing the infected nucleus, concentrating factors 

beneficial to the virus and thus providing an environment conducive to viral processes. 

Consistent with VRCs as the site of adenovirus DNA genome replication, the three viral 

replication proteins (pTP, Ad Pol and DBP) and the co-opted cellular protein NF1 are known 

to localize to VRCs 101,103,113,148,149. Viral DNA can also be visualized at VRCs using 

fluorescent in-situ hybridization (FISH), or techniques that utilize the labelling of DNA 

through the incorporation of the nucleoside analogues such as 5-bromo-2’-deoxyuridine 

(BrdU), 5-ethynyl-2´-deoxyuridine (EdU) or 5-ethynyl-2’-deoxycytidine (EdC) during DNA 

replication 101–103,150–152. Since HAdV infection induces shutoff of host DNA replication, 

these nucleoside analogues are preferentially incorporated into viral DNA during infection 
150,153. By labelling replicating viral DNA using short pulses of EdU, it is possible to mark 

replicating (nascent) DNA 150,154. Furthermore, DNA replication activity can be detected in 

VRCs isolated from HAdV-infected cells 155. Thus, VRCs have been confirmed as the bona 
fide sites of viral genome replication.

Adenovirus VRCs are also believed to be the sites of viral genome transcription and RNA 

processing, and may even act as sites of viral particle assembly and packaging 106,151. 

Investigations into the structure of VRCs and the localization of cellular and viral factors to 

these virus-induced domains suggest that VRCs may facilitate the spatial organization of 

viral DNA replication, as well as the aforementioned viral processes. Electron microscopy 

(EM) and immunofluorescence microscopy studies utilizing nucleoside-analogue labelling 

and FISH identified the accumulation of viral ssDNA replication intermediates within 

compact fibrillar structures termed single-stranded DNA accumulation sites (ssDAS) 101–103 

(Figure 4A–B). Labelling and visualization of replicating DNA using tritiated thymidine 

identified ongoing viral genome replication within ssDAS in only a limited number of 

VRCs, suggesting that replication is intermittent within the ssDAS 101. In contrast, the same 

study found that viral genome replication was consistently detected in the surrounding 

fibrillo-granular areas of the nucleoplasm, termed the peripheral replicative zone (PRZ) 

(Figure 4A–B). Consistent with viral genome replication at the PRZ, Ad Pol and pTP 

predominantly label these sites, as does FISH of viral dsDNA 102,148. Similarly, detection of 

viral RNA by FISH and the labelling of nascent RNA using tritiated uridine suggest that the 

PRZ is the major site of viral transcription 156. However, another report suggest that DNA 

replicated at the PRZ subsequently moves out to the surrounding nucleoplasm, where both 

viral RNA and cellular RNA processing factors localize, suggesting that transcription of 

viral genomes and viral RNA biogenesis occurs in proximity to the PRZ 103. These 

somewhat conflicting interpretations may represent spatial differences in the sites of 

transcription vs. RNA processing. However, in light of more recent findings that HAdV 

VRCs undergo morphological changes during the late phase of infection 136,157,158, the 

possibility that reported differences may represent changes in spatial organization of viral 

processes at different stages in the viral replication cycle must also be considered. Indeed, 

the fate and function of viral genomes that are displaced from VRCs remains an interesting 

question, given that the viral processes of DNA replication, transcription, and perhaps even 

packaging are thought to be closely associated spatially with VRCs.

Charman et al. Page 8

FEBS Lett. Author manuscript; available in PMC 2020 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Viral genome replication and late gene expression:

Replication of HAdV genomes is a pre-requisite for expression of viral late genes. This 

dependency on genome replication for late gene expression has been demonstrated in 

multiple studies that prevented viral DNA replication using inhibitors of DNA replication, 

inhibitors of protein synthesis, or mutant viruses incapable of DNA replication upon shifting 

to a non-permissive temperature 80,159–161. Continuous replication does not appear to be 

essential for late gene expression, as ongoing late gene expression can be detected following 

inhibition of DNA replication provided that some viral genome replication has taken place 

prior to inhibition 80. Studies in which cells were superinfected with adenovirus 

demonstrated that progression of the initial infection into the late phase prior to 

superinfection was not sufficient to support late gene expression of superinfecting virus if 

replication of this virus was inhibited 159,162. This suggests that expression of late genes 

from the MLP may require genome replication in cis. Interestingly, inhibition of viral 

genome replication also results in an increase in expression of viral early genes 
28,72,73,163–167. It is therefore likely that a modification of the viral genome or an interaction 

with a trans-acting factor that is dependent on replication in cis is required to switch from 

early to late transcriptional programs. It has been suggested that cellular chromatin 

organizing protein CTCF may play a role in this switch, since CTCF interacts with viral 

genomes in a replication-dependent manner, and knockdown of CTCF attenuates DNA 

replication and late gene expression, but not early gene expression 168. The authors of this 

study proposed that CTCF could promote HAdV genome replication and late gene 

expression by regulating viral chromatin, since CTCF is known to regulate cellular 

chromatin architecture and chromatin conformation of Kaposi’s sarcoma-associated 

Herpesvirus (KSHV) and Epstein-Barr virus (EBV) genomes 169–171. Others have suggested 

that viral core proteins or cellular histones associated with viral genomes during early stages 

of infection may need to be removed in a replication-dependent manner before late gene 

expression can proceed 135. This hypothesis is particularly attractive given recently reported 

findings that CTCF can displace nucleosomes from DNA 172. Ultimately, more work is 

required to understand mechanisms underlying the replication-dependent switch from early 

to late viral gene expression, which represents an essential feature of the adenovirus 

replication cycle.

Changes in spatial organization of viral replication compartments during 

late stages of infection:

VRCs form with the onset of viral DNA replication, following the early phase of infection. 

Although decades of work have contributed to our understanding of spatial organization of 

adenovirus genome replication at VRCs, it has only recently become apparent that changes 

in VRC morphology and nuclear organization during a final phase of infection may 

represent biologically significant diversions from the traditional view of VRCs organization 
136,157,158. During the late phase of infection, DBP-marked VRCs transition from the more 

commonly described spherical and crescent shaped morphologies, into structure that first 

appear more diffuse and broken up before forming ring-like assemblies of smaller globular 

regions marked by DBP. This suggests that early VRCs transition from an early to late 
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morphology as infection progresses (Figure 4C). These morphological changes coincide 

with the formation of structures recently referred to as virus-induced post-replicative (ViPR) 

bodies. These structures co-stain with DAPI, suggesting that they are enriched for DNA. In 

addition, ViPR bodies stained positive for viral core protein VII and packaging protein IVa2, 

but not capsid proteins pVI and IX 136,157,158. Visualization of viral genomes by EdU pulse-

chase or an ANCHOR3/Par3 in vivo DNA-tagging system revealed that, although viral 

genome replication occurs at VRCs throughout the course of infection, viral genomes 

produced late in infection accumulate at ViPR bodies 136,157 (see also the review by H. 
Wodrich in this issue). This led to the suggestion that ViPR bodies may function as sites of 

DNA accumulation, playing a role in packaging of viral genomes into virions. The nucleolar 

proteins Mybbp1A, nucleophosmin (NPM1), UBTF, and nucleolin also localized to ViPR 

bodies 136,157,158. Depletion of NPM1 delayed ViPR body formation, increased resistance of 

viral genomes to nuclease digestion, and reduced production of infectious virions. Thus, the 

authors suggest that ViPR bodies contain viral genomes that have been remodelled in 

preparation for packaging into capsids, and that this remodelling is required for ViPR body 

formation 158. However, it is uncertain to what extent these phenotypes may also be 

influenced by the proposed role of nucleophosmin during viral genome replication 173. It is 

also noteworthy that although prevailing dogma suggests HAdV packages its genomes into 

pre-formed capsids as described by a sequential model of packaging 37, there is also 

evidence to support an alternate packaging model. A recent study that included 

immunofluorescence and electron microscopy identified viral DNA, the 52-55K packaging 

protein, and formed particles, as well as putative assembly intermediates, within the PRZ, 

leading to the suggestion that the PRZ is not only the site of viral DNA replication, but also 

the site of assembly and packaging 151. The model proposed by the authors suggests that 

packaging proteins interact with nascent viral genomes and facilitate concurrent assembly 

and packaging as the viral genome is replicated. Rationalizing these different findings will 

likely require future work to elucidate in detail the fate of viral genomes, and the spatial and 

temporal regulation of key interactions between viral genomes and cellular and viral proteins 

that are indicative of viral processes such as packaging.

Recruitment of cellular proteins to replicating viral genomes:

Although HAdV DNA replication can be recapitulated in vitro with minimal components, it 

is becoming increasingly clear that viral DNA replication within the infected host-cell 

nucleus is more complex. In addition to NF1 and Oct-1, which play a key role in replication 

initiation, many other cellular proteins can interact with replicating viral DNA. These 

include proteins that interact with viral DNA as part of cellular antiviral or homeostatic 

pathways, proteins that are recruited to viral genomes to facilitate replication, and proteins 

that are recruited to viral genomes to facilitate other viral processes. It is also evident that 

viral genomes exist within the nucleus not just as naked viral DNA bound by replication or 

transcription complexes, but as viral chromatin associated with viral core proteins and/or 

cellular histones. In this section we highlight recent advances in identification of cellular 

proteins associated with replicating HAdV DNA and review roles of recruited cellular 

proteins in viral processes.
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Identification of factors recruited to or excluded from replicating viral 

genomes:

Recent advances allow for identification of proteins on nascent DNA (iPOND) by 

incorporating EdU into replicating DNA, covalently linking EdU to biotin in a click 

reaction, and purifying the labelled DNA in association with interacting proteins174–177. 

This approach has been used in conjunction with mass spectrometry by us and others to 

identify cellular proteins associated with replicating viral DNA during infection with DNA 

viruses 150,154. iPOND of HAdV identified cellular proteins involved in DNA replication, 

DNA repair, and chromatin remodelling, as well as proteins involved in transcription, RNA 

processing and nucleolar proteins. Identified cellular proteins representative of these 

processes were confirmed to localize to VRCs, validating their recruitment to the sites of 

viral genome replication 150. It is interesting to note that cellular proteins recruited to 

replicating HAdV DNA include not only proteins involved in DNA replication, but also 

those that interact with nascent genomes to influence subsequent genome functions. The 

identification of cellular proteins involved in transcription and RNA processing supports this 

notion and is consistent with the close spatial relationship between these processes (see 
earlier section: Viral replication compartments as the sites of viral genome replication). In 

addition, many viral proteins were found to be associated with replicating viral DNA. These 

included the viral replication machinery (pTP, Ad Pol and DBP), as well as viral proteins 

involved in RNA splicing, packaging, and even capsid proteins 150. This suggests that 

replication and transcription of viral genomes are intimately linked both spatially and 

temporally.

In addition to identification of cellular proteins recruited to replicating viral genomes, 

analysis of cellular proteins that were under-represented on replicating HAdV DNA 

compared to replicating host DNA also provided insight into host factors that may be 

actively excluded from viral genomes during replication. Amongst under-represented 

proteins were the components of the MRN complex - MRE11, RAD50, and NBS1 - 

consistent with known antagonism of the MRN complex by viral early proteins 11,178–183. 

Interestingly, Claspin was the most underrepresented protein on replicating HAdV DNA 

compared to host DNA and was excluded from VRCs 150. During replication stress and 

DNA damage, Claspin associates with the Chk1 kinase to facilitate Chk1-mediated 

signalling, slowing or stalling DNA replication as a result 184–186. It therefore seems likely 

that exclusion of Claspin from replicating viral genomes is the result of a viral strategy to 

antagonize the otherwise inhibitory effects of the DDR. Another such under-represented 

protein, TFII-I decreased in abundance during WT HAdV infection, and was re-localized to 

foci distinct from VRCs. In contrast, TFII-I localized to VRCs during infection with an E4-

deleted virus lacking key antagonistic functions provided by E4orf3 and E4orf6, and was not 

reduced in abundance 150. TFII-I functions as a transcriptional repressor in many cellular 

processes 187, raising the possibility that TFII-I is prevented from interacting with 

replicating viral genomes to antagonize repression of viral gene expression. Interestingly, 

although many DDR proteins were excluded from replicating HAdV DNA, the structure-

specific endonuclease subunit SLX4 was enriched 150. SLX4 promotes DNA repair as part 

of multiple DDR pathways, functioning as a SUMO E3 ligase and coordinating structure-
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specific endonucleases 188–193. Depletion of SLX4 demonstrated that SLX4 promotes viral 

genome accumulation and protein production, suggesting SLX4 is recruited to replicating 

viral genomes where it functions to promote viral processes 150. Thus, DDR proteins are not 

only antagonized by HAdV, but also exploited. In summary, comparing proteomes 

associated with replicating DNA in HAdV infected cells to uninfected cells presents an 

excellent tool to identify cellular factors that facilitate viral processes, as well as factors that 

are excluded from VRCs to prevent their interaction with replicating viral genomes.

Viral chromatin and the recruitment of nucleolar proteins:

Within the HAdV capsid, the viral genome exists as viral chromatin. Specifically, viral DNA 

in association with highly basic core proteins V, VII and Mu (μ) 17,37,194,195. During 

uncoating, μ and V dissociate from viral genomes, while VII and viral genomes are imported 

into the nucleus as a VII-DNA complex 16,17,135. As infection progresses, VII is lost from 

viral genomes, which become increasingly associated with cellular histones, in particular 

histone H3.3 135,196–198. The extent to which VII is lost, and cellular histones are added 

during the early phase of infection is still a matter of debate, but it is likely that a balance of 

both VII and cellular histones may be required for efficient viral early gene expression 
135,196. However, the extent to which viral chromatin must be modified to promote 

replication during infection is less clear. In vitro replication assays in which viral genomes in 

association with viral core proteins are used as a template indicate that compacted core-

associated genomes undergo only limited replication, suggesting that modification of viral 

chromatin may be required for efficient DNA replication. The cellular histone-chaperone 

proteins SET (TAF-Iβ) and nucleosome assembly protein 1 (Nap-1 aka TFA-II) have been 

shown to enhance replication in vitro when viral chromatin is used as template 173,199,200. 

The ability of these template-activating factors to promote replication is thought to be due to 

remodelling of viral chromatin, as has been suggested for SET 201–203.

It is also interesting to note that V, VII, and μ have been implicated in disruption of the 

nucleolus during HAdV infection, and redistribution of nucleolar proteins including 

nucleolin, nucleophosmin, nucleolar and coiled-body phosphoprotein 1 (NOLC1), and 

upstream-binding factor 1 (UBTF) 134,204–208. Similarly to SET and Nap-1, nucleophosmin 

has been shown to promote replication of viral chromatin in vitro, raising the possibility that 

nucleophosmin is also able to modify the structure of viral chromatin to facilitate replication 
173. Furthermore, UBTF also appears to promote viral genome replication 208. It is therefore 

interesting that nucleolar proteins - including NOLC1, treacle protein (aka TCOF1), and 

components of the RNA polymerase I (POL I) complex and the small subunit (SSU) 

processome - were identified by iPOND to associate with replicating HAdV DNA, and 

localized to VRCs 150. NOLC1 and TCOF1 regulate ribosomal RNA biogenesis and 

processing via recruitment of POL I and SSU processome components 209–212. Depletion of 

TCOF1 resulted in failure of NOLC1, POL I, and SSU processome components to localize 

to VRCs in HAdV infected cells, and reduced viral protein production and genome copy 

number 150. This suggests that TCOF1 and TCOF1-mediated recruitment of POL I and SSU 

processome components promotes viral processes. Together, these findings suggest that 

redistribution of nucleolar proteins and their recruitment to VRCs represents a viral strategy 

to harness key nucleolar processes. Given the link between nucleolar proteins, viral core 
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proteins, and genome replication, investigating how these nucleolar proteins function to 

promote viral processes may also shed more light on how the nature of viral chromatin 

influences replication of viral genomes.

While it is likely that the modification of viral chromatin influences viral DNA replication, 

how the presence of cellular histones on viral DNA may influence this process is unknown. 

Although cellular histones may be present on both incoming and de novo viral genomes 
133,135,213, it is unclear whether these histones are removed by the process of replication, or 

indeed whether they must be removed or temporarily displaced for replication to take place. 

What is clear is that encapsidated viral genomes are devoid of cellular histones 37,135. This 

suggests either that cellular histones must be removed from viral genomes for encapsidation 

to occur, or that a proportion of viral genomes must avoid the addition of cellular histones 

altogether. Factor responsible for removal of cellular histones from viral genomes have not 

been identified. Thus, how adenovirus deals with the addition of cellular histones on its 

DNA to transcribe, replicate, and package genomes remains a fascinating question.

Conclusions and future perspectives:

Although many decades of research have contributed to a detailed model of HAdV DNA 

replication and to the characterization of viral replication machinery, we have only just 

begun to understand the complexity of HAdV genome replication in the context of the host-

cell nucleus. Important questions regarding the formation and biophysical properties of 

VRCs remain. Furthermore, recent advances suggest that genome replication, transcription, 

and possibly even packaging are closely linked, both spatially and temporally. Thus, it will 

be interesting to determine how the vast repertoire of host proteins that interact with 

replicating viral DNA may impact not only viral genome replication, but also subsequent 

genome functions. Identification of morphological changes in VRCs raises further questions 

as to how viral late processes are organized spatially as infection progresses, and we can 

only begin to speculate as to how these late viral processes are coordinated in space and time 

to maintain concurrent DNA replication, transcription and packaging. Ultimately, future 

work aiming to elucidate in greater detail HAdV DNA replication in the context of the 

nuclear environment will be highly pertinent to our understanding of DNA viruses and 

nuclear processes.
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Abbreviations

Ad Pol adenovirus DNA polymerase

Ad2 adenovirus serotype 2

Ad5 adenovirus serotype 5
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BrdU 5-bromo-2’-deoxyuridine

DBP DNA-binding protein

DDR DNA damage response

EBV Epstein-Barr virus

EdC 5-ethynyl-2’-deoxycytidine

EdU 5-ethynyl-2´-deoxyuridine

EM electron microscopy

FISH fluorescent in-situ hybridization

HAdV human adenovirus

IDR intrinsically disordered region

iPOND identification of proteins on nascent DNA

iTP intermediate terminal protein

ITR inverted terminal repeats

KSHV Kaposi’s sarcoma-associated Herpesvirus

LLC liquid-liquid condensate

LLPS liquid-liquid phase separation

MLP major late promoter

MLTU major late transcriptional unit

NB nuclear bodies

NF1 nuclear Factor 1

NOLC1 nucleolar and coiled-body phosphoprotein 1

PML promyelocytic leukemia

POL I RNA polymerase I

PRZ peripheral replicative zone

pTP pre-terminal protein

ssDAS single-stranded DNA accumulation sites

SSU small subunit

SUMO small ubiquitin-like modifier

TP terminal protein
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TPR1 terminal protein region 1

TPR2 terminal protein region 1

UBTF upstream-binding factor 1

ViPR virus-induced post-replicative

VRC viral replication compartment

WT wild-type

ψ packaging sequence
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Figure 1. Overview of HAdV replication cycle.
Virus entry and import of viral genomes into the nucleus leads to a program of early gene 

expression that includes the viral replication machinery. The onset of viral DNA replication 

marks progression from the early to the late phase of infection, and is a pre-requisite for both 

late gene expression and virion assembly.
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Figure 2. Schematic representation of the Ad5 genome.
The organization of genes within the central coding region is shown, as are inverted terminal 

repeats (ITR) and packaging domain (ψ). The zoom-in provides further details of the 

terminal end that contains the packaging domain, including the core region, auxiliary (Aux.) 

region, and binding site for pre-terminal protein and the viral polymerase (pTP/Pol).
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Figure 3. Replication of the HAdV genome by strand displacement.
Following replication initiation, the viral polymerase (Pol) elongates the nascent strand 

displacing the existing strand and generating a new dsDNA template. This process is aided 

by the viral DNA-binding protein (DBP), which oligomerizes along displaced ssDNA. Both 

the newly generated dsDNA genome and displaced ssDNA intermediate can be used as 

templates for further replication.
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Figure 4. Viral replication compartments are reorganized during the late stage of infection.
A. Schematic representation of an early viral replication compartment (VRC), showing the 

single-stranded DNA accumulation site (ssDAS) in which ssDNA replication intermediates 

bound by the viral DNA-binding protein (DBP) are present (green), and the peripheral 

replicative zone (PRZ) where viral DNA replication takes place (blue). Viral dsDNA 

genomes move away from VRCs where transcription and RNA processing take place. B. 
Schematic representation of a late VRC including virus-induced post-replicative (ViPR) 

body. C. Human bronchial epithelial cells infected with Ad5 showing VRC morphology at 

16, 22, 28 or 34 hours post-infection (h). Nuclei were visualized by confocal microscopy 

with DBP immuno-labelled (green), and DNA labelled with DAPI (grey). Dashed lines 

outline nuclei. Scale bar = 10 μm. Note, at 34 h VRCs can be observed as a ring surrounding 

a single large ViPR body.
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