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Notch signalling is critically involved in vascular morphogenesis and function. Four Notch
isoforms (Notch1–4) regulating diverse cellular processes have been identified. Of these,
Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it
is critically involved in vascular development and differentiation. Under pathological condi-
tions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes.
Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of
several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because
of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the
pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current liter-
ature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary
artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH.

Introduction
Notch proteins are cell membrane receptors that mediate signalling between cells and hence play an im-
portant role in cell-to-cell communication [1]. Four Notch receptors and at least five ligands have been
identified in mammals [2,3] and while all Notch receptors have the same primary structure, they mediate
diverse cellular effects. Notch isoforms are ubiquitous and expressed in a cell-specific manner, with Notch3
being present almost exclusively in vascular smooth muscle cells (VSMCs), where it controls maintenance
of cell phenotype and growth [4]. Notch signalling induces transcription of target genes that influence
cell differentiation, maturation, proliferation and apoptosis and is critically involved in the regulation of
VSMC phenotypic switching (contractile-to-proliferative) [5]. In the vascular system the Notch pathway
is involved in vascular development, angiogenesis and arteriovenous specification [6]. Given the impor-
tance of Notch3 in the regulation of VSMC function, it is not surprising that abnormal Notch3 signalling
has been implicated in cardiovascular diseases associated with excessive VSMCs proliferation and vascular
remodelling, including pulmonary arterial hypertension (PAH).

The hallmark of PAH is vascular dysfunction and structural remodelling of small pulmonary arter-
ies, leading to thickening of the vascular media and luminal occlusion due to uncontrolled proliferation,
cytoskeletal disorganisation and dedifferentiation of VSMCS [7]. This vasculopathy of small pulmonary
arteries leads to increased pulmonary artery pressure and right ventricular failure, often leading to death
[8]. Multiple processes contribute to the pulmonary artery phenotype in PAH including genetic factors,
DNA damage, microRNAs (miRs), sex hormones, oxidative stress and altered cell metabolism [9,10]. In
addition, Notch3 has been implicated as a potential crucial mediator of VSMC dedifferentiation and pro-
liferation in pulmonary arteries in PAH [11]. This review discusses Notch in the regulation of VSMCs
function with a focus on Notch3 in pulmonary VSMCs and highlights recent advances on the role of
Notch3 in pulmonary artery remodelling in PAH.
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Notch signalling in the vasculature
The Notch family
The Notch signalling pathway is a highly conserved system that regulates cell fate determination and differentiation
[1]. Four NOTCH gene family paralogs have been described in mammals encoding Notch receptors 1, 2, 3 and 4. Ma-
ture Notch receptors share the same structural features consisting of a Notch extracellular domain (NECD) associated
non-covalently with a Notch intracellular domain (NICD) [2], creating a single-pass heterodimeric transmembrane
receptor. Multiple ligands bind to Notch including members of the Jagged protein (Jag 1, 2) and Delta-like protein
(Dll 1, 3, 4) families [3]. Ligand binding triggers the NICD to detach and translocate into the nucleus to interact with
downstream targets. Accordingly, Notch proteins act both as transmembrane receptors as well as nuclear transcrip-
tion factors transmitting signals from the plasma membrane to the nucleus without involvement of second messengers
[12].

Canonical and non-canonical signalling through Notch
Notch signal transduction is relayed via cell–cell interaction, where cell-bound Jagged or Delta-like ligands interact
with EGF-like repeats in the NECD of Notch on an adjacent cell (Figure 1). This mechanism therefore only occurs
between cells physically close to each other, limiting the range of signalling. The core canonical Notch signal pathway
following ligand binding is dependent on a series of proteolytic processes [3]. The most functionally important are
cleavage events occurring at site 2 (S2) and site 3 (S3) of Notch. S2 cleavage occurs upon ligand binding when an
ADAM (A Disintegrin And Metalloproteinase) protease mediates shedding of the NECD from the remainder of the
receptor. ADAM10 is generally described as the main sheddase involved in S2 cleavage. However a related sheddase,
ADAM17/TNFα-converting enzyme (TACE), can also cleave Notch [13,14] with partial redundancy between these
two enzymes [15]. S3 cleavage by the γ-secretase enzyme then releases the NICD from the membrane into the cy-
toplasm of the cell receiving the signal [16]. Cleaved NICD translocates to the nucleus to form a complex with the
nuclear RBP-Jκ (Recombination Signal Binding Protein For Immunoglobulin κ J Region) repressor protein (known
as Su(H) in flies and as LAG-1 in worms).

In the absence of NICD, transcription of Notch effector genes is repressed by RBP-Jκ but when the NICD and
co-activators such as the Mastermind-like protein bind this complex [17], it becomes a transcriptional activator of
the two major Notch target gene families: HES and HEY [3]. The seven HES members and three HEY members
encode basic helix–loop–helix (bHLH) transcription factors that act as repressors of transcription, thereby influ-
encing expression of numerous downstream gene targets. Additionally, while Hairy and enhancer of split (Hes) and
Hairy/enhancer-of-split related with YRPW motif (Hey) are the major transcriptional targets induced through Notch
activation, Notch signalling induces expression of other genes such as c-Myc [18], cyclins [19,20] and platelet-derived
growth factor receptor β [21]. Notch signalling is highly versatile depending on the ligand–receptor interaction and
cell-specific expression of particular Notch isoforms [22,23].

Non-canonical Notch signalling has also been described where signalling occurs independent of lig-
and/transcription. Examples include interaction of the NICD with proteins in the cytoplasm [24,25], with non-Notch
targets in the nucleus [26], and also where downstream Notch-associated signalling is induced independently of Notch
receptor activation [27,28], or independently of RBP-Jκ activation [29]. However, non-canonical Notch signalling is
not well characterised, particularly in the vasculature.

Differential Notch dynamics and functions
Another factor adding to the diversity of Notch-mediated signalling is differential dynamics of Notch ligands, re-
ceptors and effectors. For example, within certain tissues ligands Dll1 and Dll4 can have interchangeable functions
[30] while in others the two effectors have opposing actions [31]. This may partly be explained by ligand affinities to
Notch. The extracellular domain of Dll4 has over ten-fold the affinity for Notch1 than Dll1 [32], which could lead to
differences in their signalling effects. Dll1 and 4 also signall through Notch1 with different dynamics; Dll1-stimulated
activation is pulsatile while Dll4-stimulated is sustained [31], which can differentially influence downstream effects.
Notch activation also exhibits ligand preference-associated lineage discrimination. In embryonic stem cells Jag1 stim-
ulation favours commitment to differentiation into neural cells, while Dll4 favours differentiation into mesoderm
[33].

Similarly, there are differences in the way transcription of Hes and Hey Notch effectors are induced. Expression
of Hes1 and 5 [34,35], Hes7 [36], and all three Hey genes [37,38] are directly induced by activation of the classical
Notch pathway. However, Hes2, Hes3 [35] and Hes6 [38,39] are induced independent of signalling through Notch. In
certain tissues ligands acting through the same receptor can activate different downstream gene targets. Co-culture
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Figure 1. The canonical Notch signalling pathway

In the canonical Notch pathway, a ligand physically interacts with and binds to the NECD on an adjacent cell. This induces cleavage

events by two sheddases, ADAM10 and γ-secretase, allowing cleaved NICD to translocate to the nucleus. In the nucleus, the NICD

binds to recombining binding protein suppressor of hairless (RBP-Jκ) and recruits co-activators including Mastermind-like (MAML),

which stabilises the interaction between the NICD and RBP-Jκ. This complex promotes transcription of Notch target HES and HEY

genes. These transcription factors then affect expression of many more genes involved in processes such as cell cycle progression,

survival, and cellular phenotype. Non-canonical Notch signalling pathways are also indicated.

of Dll4-expressing cells with C2C12 cells overexpressing Notch1 produced approximately three- to five-fold greater
expression of Hey1 and HeyL than Dll1-expressing cells could [31]. Also, duration and dynamics of Notch activation
can potentially influence distinct Hes/Hey expression patterns. Hes1 appears to respond even to short pulsatile Notch
dynamics, while Hey1 and HeyL require sustained Notch activation in order for their expression to be induced [31].
Finally, the NICD may also show preference for transcription of certain Notch effector gene, for example Notch3 ICD
(NICD3) contains a transactivation domain for interaction with the HES5 promoter [40].

Notch in vascular development
Notch signalling is key for normal angiogenesis and vasculogenesis in the developing mammal embryo. However,
each receptor appears to contribute differently. While knockout of Notch1 [41] or targeted mutagenesis of Notch2
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Figure 2. Notch receptors and ligands in the pulmonary vasculature

All four Notch receptor isoforms are expressed in the pulmonary circulation. Notch ligands are predominantly expressed in en-

dothelial cells, with weak expression elsewhere. Notch3 expression is focussed in the medial layer during development and in the

adult, its expression is more abundant in smaller diameter arteries and arterioles where it appear to have the most influence on

remodelling processes.

[42] and Notch1/Notch4 [43] produce an embryonic lethal phenotype in mice, knockout of Notch3 does not affect
embryo viability [44] but does affect vascular structure.

All four Notch receptors are expressed in the developing mouse lung, but there is differential expression of each
receptor type in different vascular cells (Figure 2). Notch1 transcripts are expressed in both vascular epithelial struc-
tures, including the endothelium and non-vascular epithelial structures [45], and also in pulmonary artery smooth
muscle cells (PASMCs) [21]. Notch2 is expressed in the mesenchyme, where it is abundant in the adventitia of pul-
monary arteries [46], while Notch3 is expressed in PASMCs [46] and pericytes. Notch4 has been suggested as an
endothelial-specific Notch in the pulmonary vasculature [47], as is suggested to be the case in other vascular beds
[47,48]. In adult human pulmonary vessels Notch3 expression seems limited to mural cells (VSMCs and pericytes)
and fibroblasts, and expression is concentrated in distal pulmonary arteries [11].

Little is known about Notch ligand expression specific to the pulmonary vasculature. Both Dll1 [49] and Dll4
[50] are expressed during embryogenesis in endothelial cells of mouse lung. Jag1 is expressed in the endothelium of
pulmonary vessels during development and after birth [45] and is also present in PASMCs [46]. There is also a lack
of expression profiling of Notch effectors Hes and Hey in pulmonary arteries. In silico studies of human vascular
expression profiles of downstream Notch effectors report ubiquitous expression of HES1, HEY1 and HEY2 genes in
endothelial cells [38]. Expression of all HEY family members is reported in embryonic arteries with strong HEYL
expression in the developing pulmonary artery [51]. Hey2 protein has also been proposed as a cell type-specific
primary target of Notch that can be up-regulated by ligand interaction in VSMC but not in other contractile cells
[52].

Notch and regulation of the VSMC phenotype
VSMC phenotype is tightly regulated by Notch3. In Notch3−/− mice, cerebral and tail arteries exhibit a thinner vascu-
lar medial layer with altered morphology of VSMCs. In these mice from birth to postnatal day 28, normal maturation
processes are significantly impaired, and arteries follow a maturation pattern more closely resembling veins rather
than arteries [6]. These alterations are more noticeable in smaller resistance arteries than in elastic arteries in line with
the greater abundance of Notch3 in small vessels compared with large vessels. Moreover, expression and localisation
of smoothelin, a marker of mature VSMCs, is reduced in Notch3−/− arteries [6] suggesting impairment of VSMC
differentiation and maturation.
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Similar findings were observed in the pulmonary vasculature, using a conditional Notch3 knockout mouse modell.
In the early postnatal period, arteries were misshapen, non-cohesive and had a reduction in expression and organi-
sation of α-smooth muscle actin (SMA) in the medial layer [46]. These morphological changes were associated with
reduced expression of several smooth muscle-related genes, including α- and γ-SMA, smooth muscle protein 22-α
(SM22α), smoothelin, calponin and smooth muscle myosin heavy chain (SM-MyHC) in Notch3−/− lung, in the em-
bryo and adulthood [46]. Findings from these studies indicate Notch3 is not only involved in arterial development
but also in the vascular maturation process especially post-natally.

Maintenance of the VSMC phenotype requires ligand-induced Notch signalling, where VSMC Notch is activated
by cell–cell contact with Notch ligands expressed by neighbouring endothelial cells. Co-culture of human coro-
nary VSMCs and endothelial cells, which express Notch ligand Jag1, increase expression of HEYL and HES1 in
VSMCs [53]. These conditions also induce α-SMA, SM22α and calponin gene expression, which are reduced by
down-regulation of Jag1 in endothelial cells [53,54]. Co-culture of VSMCs with endothelial cells also increases ex-
pression of Notch3, an effect that is inhibited by Jag1-deficient endothelial cells indicating auto-regulation of Notch
in vascular cells [53].

Notch3 in VSMC dedifferentiation from a contractile to a synthetic
phenotype
While VSMCs are characteristically contractile cells, they undergo phenotypic changes, especially in pathological
conditions [55]. They are highly plastic and capable of phenotypic switching promoting proliferation, migration and
growth, important processes that underlie vascular remodelling. This dedifferentiation process in which the VSMC
phenotype becomes more synthetic is also crucial for vascular healing. Because of this synthetic phenotypic switching
is often associated with vascular pathologies in which there is an element of vascular injury, such as atherosclerosis,
neoinitimal formation and restenosis [56], systemic hypertension [57], and PH [58].

Jag1 stimulation of Notch signalling in 10T1/2 fibroblasts, a model of myofibroblast/smooth muscle cell differ-
entiation, leads to repression of myocardin-induced expression of SMα-actin, SM-MyHC, and SM22α, most likely
through Hey1 transcription, and hence represses the contractile phenotype [59]. Similarly, overexpression of NICD3
in 10T1/2 cells inhibits expression of smooth muscle-actin, SM22, and calponin in the presence of TGF-1, an inducer
of fibroblast differentiation towards a smooth muscle cell fate [60].

Overexpression of constitutively active NICD1 and NICD3 and activation of Notch3 signalling in human VSMCs
down-regulates expression of smooth muscle markers includingα-actin, calponin, myosin, and smoothelin [61]. This
evidence, together with findings from knockout models, suggests that Notch3 plays an important role in regulating
contractile and synthetic genes in vascular cells, ultimately impacting cell phenotype and fate. Many molecular pro-
cesses underlie Notch3-mediated phenotypic switching including modulation of Krüppel-like factors (KLF), a family
of transcription factors that also contributes to vascular cell homoeostasis. Under physiological conditions expression
of KLF4 and KLf5 is low, but in the context of vascular injury expression is markedly increased [62,63]. KLF4 has a
negative effect on cell cycle progression and can also induce expression of smooth muscle cell genes promoting a con-
tractile VSMC phenotype [64]. Notch3 down-regulates expression and activity of KLF4 in the gastrointestinal tract
[65,66] and promotes cell proliferation [66]. Notch signalling can also regulate expression of KLF5 which, unlike
KLF4, causes VSMC proliferation and a synthetic phenotype, important in vascular remodelling in PAH, particu-
larly in hypoxia [67,68]. Hence Notch and KLFs are closely linked, but mechanisms of interaction in VSMCs remain
unclear.

Dysregulated Notch3 signalling promotes VSMC growth [69]. Constitutive NICD3 expression induced by viral
transfection produces a significant increase in VSMC number [70]. Adenoviral NICD3 overexpression in rat PASMCs
induces a significant increase in proliferation accompanied by up-regulation of Hes1 transcription factor expression
and down-regulation of p27Kip1 cyclin inhibitor protein. The reduction in p27Kip1 is inhibited by Hes1 siRNA [71].
This is also observed in human PASMCs where cell number and growth curves are increased in hPASMCs overex-
pressing NICD3 [11]. A concomitant increase in downstream Notch effector Hes5 was also reported. The role of
Hes5 was confirmed by siRNA-mediated knockdown of Hes5 in NICD3 overexpressing PASMCs, which limits the
proliferation rate to levels comparable with control [11]. Hes transcription factors may be important transcriptional
targets of Notch3 signalling in PASMCs.

Notch3 activation also mediates vascular hypertrophy by decreasing VSMC apoptosis. Constitutive NICD3 overex-
pression in rat VSMCs confers resistance to apoptosis induced by Fas ligand [72] in response to serum deprivation [70]
and to UV-B irradiation [73]. Evidence from these studies suggest that Notch3 decreases the activity of the apopto-
sis promoter caspase-3, [70,73] and promotes MAPK-mediated cell survival by increasing expression of pro-survival
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genes for Bcl2, survivin and c-FLIP [73] in line with evidence from Notch3 knockout mice. Conversely, aortic VSMCs
from Notch3−/− mice exhibit reduced expression of mRNA for pro-survival genes, combined with an increased cleav-
age and activity of caspase-3 in response to serum challenge. In UV-treated aortic VSMCs overexpressing NICD3,
siRNA down-regulation of Notch3 mirrors the effects of genetic deletion of Notch3 in knockout mice [73].

While Notch3 is typically associated with VSMC growth, it also plays a role in regulating vascular contraction.
This is supported by studies in patients with Notch3 mutations [Cerebral Autosomal Dominant Arteriopathy with
Subcortical Infarcts and Leukoencephalopathy (CADASIL)] and transgenic mice with Nox3 deficiency, where cere-
bral and peripheral arteries exhibit not only structural remodelling but also functional changes including endothelial
dysfunction and impaired myogenic tone [74]. Pharmacological inhibition of Notch cleavage decreases pulmonary
arterial pressure in isolated mouse lungs, further indicating a role for Notch3 in the regulation of vascular contraction
[75].

Notch3 signalling in pathological vascular
remodelling-implication in PAH
Since Notch3 signalling is a key regulator of vascular function and because it has a VSMC-specific expression pattern,
it is not surprising that it has been considered as a candidate target in conditions involving pathological remodelling
of blood vessels, including PAH.

Pulmonary hypertension (PH) comprises a group of rare and progressive conditions that affect the small arteries of
the pulmonary vasculature leading to right ventricular failure. Clinically PAH is described as a persistently elevated
pulmonary arterial pressure of ≥25 mmHg and symptoms including fatigue, exercise-induced dyspnea, shortness of
breath and oedema [76]. However, a combination of non-specific symptoms and the requirement of invasive methods
to confirm a diagnosis means that PAH is often diagnosed at a late stage and subsequently has a poor prognosis. In
addition, the current lack of understanding of the underlying molecular mechanisms involved in PAH pathogenesis
means that no cure is available, and treatments are often suboptimal, making PAH a fatal disease with an estimated
transplant-free survival rate at 3 years after diagnosis of only ∼71% [8].

PAH is characterised by vasoconstriction, pathological maladaptive vascular remodelling, and subsequent right
heart hypertrophy due to increased resistance in the pulmonary circulation (Figure 3). PAH affects the smaller dis-
tal arteries of the pulmonary circulation and is heritable, due to a genetic mutation, or idiopathic where the un-
derlying cause is unknown. Vascular cells, in particular PASMCs in the medial layer of pulmonary arteries, display
a pro-proliferative and anti-apoptotic/pro-survival phenotype, which underlies the extensive remodelling in severe
PAH [7]. Numerous systems have been implicated in these changes, including growth factors, cytokines, metabolic
factors, sex hormones and BMP signalling among others. More recently, activation of Notch3 has been suggested as
an important mediator of vascular remodelling and dysfunction in PAH [11].

Notch3 and PH in experimental models
Li et al. [11] were among the first to explore the role of Notch3 in PAH by studying the development of
hypoxia-induced PAH in Notch3−/− mice. Compared with wild-type and Notch3+/− mice, Notch3 knockout mice did
not develop PH in response to 6 weeks of chronic hypoxia [11]. Histologically, Notch3−/− mice failed to show muscu-
larisation of the small pulmonary arteries and arterioles with no hypertrophic remodelling and VSMC proliferation
compared with wild-type and heterozygous mice [11]. Reduced muscularisation and remodelling in Notch3−/− mice
resulted in maintenance of diffuse vascular blush in the distal pulmonary tree in knockout animals, while significant
vascular pruning was observed in lungs from hypoxic control mice [11].

Notch3 expression in PAH
Expression of Notch1, Notch3, Jagged1 and Herp2 (Hey1) are increased in lungs from mice with hypoxia-induced
PAH compared with normoxic animals [77]. Significantly elevated Notch3 mRNA and protein levels have also been
confirmed in lungs from monocrotaline (MCT)-treated rats compared with control rats [11,77,78]. In addition, ex-
pression of Notch3 (gene and protein) is increased in the Sugen-hypoxic rat [79], which recapitulates the human
condition.

These findings in experimental models of PAH have also been observed in patients with PAH. Increased expression
of Notch3 signalling pathway components has been demonstrated in pulmonary VSMCs from patients with PAH and
the severity of PAH correlated with the amount of Notch3 protein in the lung in humans and rodents [11]. In partic-
ular, significantly higher levels of Notch3 mRNA and NICD3 protein are present in hPASMCs from idiopathic PAH
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Figure 3. Pulmonary vascular remodelling in PAH

Diagram shows a small pulmonary artery in cross-section. Vascular cells in all three layers of the vessel, the intima, media and

adventitia, contribute to vessel remodelling in PAH. The result of the pulmonary vascular remodelling is narrowing or complete

obstruction of the vessel lumen, further raising blood pressure in the generally low-pressure pulmonary circulation and increasing

the load on the right ventricle.

patients compared with the low levels in control lungs [11]. This coincides with a concurrent decrease in smoothe-
lin and MHC smooth muscle marker expression, and a significantly faster growth rate in PAH cells compared with
non-PAH cells [11]. These findings suggest an association between NICD3 overexpression, PASMC dedifferentiation
and increased PASMC proliferation in PAH.

Notch3 mutations in PAH
While there is little evidence that Notch3 mutations cause PAH, Chida et al. [80] identified two novel missense muta-
tions (G840E and T900P) of the NOTCH3 gene in two cases of childhood idiopathic PAH. Both mutations affected
residues in the highly conserved EGF-like repeats of the Notch3 receptor, the region in which the vast majority of
CADASIL mutations also occur and ligand binding occurs. In vitro studies using cells expressing these mutant Notch3
receptors, revealed increased cell viability and proliferation suggesting that these mutations have a gain-of-function
action on Notch3 signalling [80]. More recently, another group also identified a synonymous single nucleotide poly-
morphism (SNP) in NOTCH3 (A2146A) as significantly associated with persistant PH of the newborn in a Chinese
cohort, with detection in three patients [81].

A role for the Hes family in PAH
It is likely some of the heterogeneity in Notch signalling effects is due to differential and potentially cell type-specific
effects of Notch ligands and effectors in different tissues. In terms of downstream Notch effectors driving the effects
of Notch3 in PAH, Hes family members seem to be most important in the pulmonary vasculature. In PASMCs from
MCT-treated rats increased NICD3 expression was associated with up-regulation of Hes1 and a concurrent decrease
in p27Kip1 expression, thereby reducing slowing of the cell cycle [11]. Hes5 has also been implicated in Notch3-induced
PASMC proliferation in PAH. This is particularly significant, given the reported ‘preference’ of Notch3 for inducing
Hes5 [40]. As with Notch3, Hes5 expression has been seen specifically localised to the PASMCs from small pulmonary
arteries in both human and rat lung [11]. Following Hes5 knockdown with siRNA, PASMCs from patients with and
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Figure 4. An overview of proposed mechanisms whereby Notch3 signalling influences PASMC function, in the context of

normal and overactive Notch3 signalling

Under normal conditions, Notch3 is an important regulator of the contractile phenotype in VSMCs. Under conditions of increased

Notch3/Notch3 activity, VSMCs undergo changes promoting a synthetic, proliferative and pro-survival phenotype in PASMCs.

without PAH demonstrated a reduction in cell proliferation, an effect that was more significant in PAH VSMCs [11].
Hes5 siRNA treatment also increased expression of genes for myosin heavy chain 11 and smoothelin, suggesting that
inactivation of Hes5-mediated signalling in PAH cells promotes phenotypic switching from a synthetic to a more
contractile phenotype [11]. Notch3-Hes5 mRNA expression is also increased in MCT-induced PH in rats, and found
to positively correlate with mean pulmonary arterial pressure [82].

Notch3 and hypoxia in PASMCs
Hypoxia, a major factor in vascular remodeling in PAH, is an important regulator of Notch3-mediated differentiation
of VSMCs (Figure 4). Hypoxia inhibits differentiation of the C2C12 immortalised mouse myogenic cell line, and this
effect was abrogated when cells were treated with hypoxia in the presence of γ-secretase inhibitor (GSI) L-685,458,
which prevents Notch cleavage [83]. In the lungs, hypoxia is especially relevant, both in utero where hypoxic vaso-
constriction of pulmonary arteries allows the fetal circulation to bypass the lungs, and as a means of preserving venti-
lation/perfusion matching after birth. In vitro, human PASMCs from healthy individuals exposed to hypoxic air (3%
O2) proliferate at a higher rate compared with normoxic cells [84]. In vivo, chronic hypoxia is a well-characterised
promoter of PH as it induces pulmonary vascular remodeling by inducing expression of hypoxia inducible factor
1 (HIF-1α), a master regulator of cellular response to hypoxia. Notch3 has been identified as a downstream target
of hypoxia, which is up-regulated through HIF-1α. Hypoxia significantly increases the number of PCNA-positive
PASMCs in lungs from Notch3+/+ mice, but this effect is less apparent in PASMCs from Notch3−/− mice lungs [11].
This suggests hypoxia is a mediator of proliferation in PASMCs via up-regulation of Notch3 signalling, a mechanism
absent from Notch3-deficient mice.

Exposure of neonatal mouse pups to chronic hypoxia (13% O2) to induce PH significantly increases pulmonary
expression of Notch3 and Notch-related genes including Hes5, Jag1 and ADAM17, as well as up-regulating expression
of anti-apoptotic BCL2L1 (Bcl-xL), and cell cycle promoter CCND1 (Cyclin D) [85]. A similar up-regulation of Notch
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signalling was observed in chronically hypoxic adult mice, with an increase in lung NICD3 protein that positively
correlated with the number of weeks spent in hypoxia and HIF-1α [84]. This further suggests that Notch3 signalling
is activated in chronic hypoxic conditions through HIF-1α with potential to contribute to remodelling in the distal
pulmonary circulation.

The cancer theory of PAH and Notch3
PAH cells share many characteristics with cancer cells, namely a propensity for survival and proliferation under un-
favourable, hypoxic conditions, and the involvement of many of the same signalling pathways such as mammalian
target of rapamycin (mTOR), HIPPO and growth factor signalling [86]. Additionally, Notch3 up-regulation and over-
activation have been demonstrated in various cancers, particularly ovarian [87–89] and non-small cell lung cancers
[90–92].

An important feature of cancer is an increase in DNA damage. This is also seen in human PAH cells and distal
PAs from PAH rodent models and suggested as a response to inflammation and oxidative stress [93] and increased
sensitivity to mutagens [94]. In established PAH this is associated with maladaptive sustained increase in DNA repair
machinery in PAH cells as they cope with DNA damage [93] promoting a pro-survival, pro-proliferative response
in the pulmonary vascular cells leading to pulmonary artery occlusion and increased pulmonary pressure [95]. An
increase in proteins which sense DNA damage and/or promote repair, is seen in PAH patient cells and models, and
may contribute to a cancer cell-like phenotype.

Among these are translationally controlled tumour protein (TCTP) that senses and repairs DNA damage to main-
tain genomic integrity. This includes poly (ADP-ribose) polymerase 1 (PARP-1), a key first responder in the sensing
and reparation of DNA strand breaks, and mTOR. All are up-regulated in established PAH. TCTP is implicated as a
novel mediator of endothelial survival in hPAH [96], and potential PAH biomarker [97]. Additionally, PARP-1 inhibi-
tion in vivo can reverse PAH in two models [93] and PARP-1 inhibitor Olaparib is now being explored in clinical trials
as a potential PAH therapy following success in cancer trials (ClinicalTrials.gov identifier NCT03251872). mTOR reg-
ulates cell survival/death through modulation of cell growth and autophagy, and mTOR complex 1 (mTORC1) is a
major pathway employed by cells to deal with stresses and DNA damage [98]. Increased mTORC1 and mTORC2
expression [99], and mTOR phosphorylation [100,101] have been observed in PAH patient lung vascular tissue and
cells. mTORC1 inhibitor rapamycin prevents hypoxia and HIF-1α induced increase in PASMC proliferation in vitro
[99] and in vivo [99,102]. Knockout of mTOR or mTORC1 regulatory protein Raptor in smooth muscle also atten-
uates HPH development in mice [103]. mTORC2 also promotes PASMC survival; siRNA for mTORC2 component
Rictor decreased proliferation and induced apoptosis in IPAH PASMCs [99], suggesting involvement of mTORC2 in
the cancer-like PAH phenotype. Additionally, the substrate of mTORC2, Akt, can then activate mTORC1 [104].

The pro-proliferative and pro-survival mTOR pathway has also been shown to interact with Notch3 in the context
of PAH. mTOR has previously been identified as a positive regulator of Notch3 [105]. Following chronic hypoxia
both mTOR and Notch3 signalling are up-regulated in the lung, and increased Notch3 cleavage was prevented by
treatment with mTOR inhibitors rapamycin [84] and temsirolimus [85], suggesting that Notch3 signalling is down-
stream of mTOR. NICD interacts with mTOR-Rictor in a non-canonical manner, independent of RBP-Jκ binding,
to block apoptosis through an NIC-mTORC2-Akt pro-survival signalling cascade [106]. Functionally, when PARP-1
is activated by DNA damage, phosphoinositide 3-kinase is activated by hypoxia, or there is increased mTORC2 ac-
tivation, these all result in activation of Akt which can activate mTORC1 [107]. Increased mTORC1 activity is then
associated with suppression of autophagy to promote cell survival [98], alongside increased Notch3 signalling which
is also pro-proliferative and pro-survival as evidenced in this review.

HIPPO signalling is a tumour suppressor pathway inactivated in many types of cancer, with reduced HIPPO sig-
nalling promoting tumour growth and survival [108]. Large tumour suppressor 1 (LATS1) is central to the HIPPO
signalling pathway and is important in reducing the abundance of yes-associated protein (YAP), which promotes
increased proliferation and reduced apoptosis [109]. LATS1 and therefore HIPPO signalling were found to be inac-
tivated in small remodelled pulmonary arteries and distal PASMCs from iPAH patients [110]. This was associated
with up-regulation of pro-oncogenic YAP and accumulation of NICD3 [110]. NICD and downstream HIPPO effec-
tor YAP have previously been shown to physically and functionally interact [111], suggesting integration of these two
pro-proliferative pathways.

This convergence of cancer-related pathways with the Notch pathway provides additional mechanism whereby
Notch3 can contribute to the proliferation and survival of pulmonary vascular cells in PAH.
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Notch3 and calcium in PASMCs
An increase in cytosolic Ca2+ in PASMCs is a major trigger of vasoconstriction and acts as an important stimu-
lus for PASMC proliferation and migration [112]. Increased pulmonary vascular resistance and PASMC prolifera-
tion/migration are key processes in pulmonary vascular remodelling. Store-operated Ca2+ channels (SOCs) such as
transient receptor potential channels (TRPCs), STIM1/2 and Orai1, mediate Ca2+ influx to redress cytosolic Ca2+

store levels through store-operated calcium entry (SOCE) [113]. Expression of SOCs is increased in hypoxic PH and
is associated with increased SOCE and proliferation, [54,114]. Jag1 stimulation of human PASMC significantly in-
creases the SOCE amplitude over a 15–30-min period, which corresponds with the time course of Jag-1-mediated
increase in NICD protein level, an effect that was reduced with inhibition of Notch cleavage [115]. Hypoxia also in-
creases SOCE in hPASMCs through a Notch-dependent mechanism which specifically affects TRP6 [75]. Treatment
of chronically hypoxic mice with 2-APB, a TRP inhibitor, reduced right ventricular systolic pressure (RVSP), as did
genetic deletion of Trp6 [75].

Potential role of non-canonical Notch3 signalling in the pulmonary
vasculature
While there is growing evidence that the classical Notch3 signalling pathway plays a role in regulating pulmonary ves-
sel function, little is known about non-canonical Notch signalling in this vascular bed. A key potential non-canonical
pathway we will focus on is the emerging idea of cross-talk between the female sex hormones (oestrogens) and Notch.
This is of relevance in PAH given it occurs more frequently in female patients.

Although there is currently no evidence of interplay between Notch3 and oestrogen signalling in PAH, previous
studies have shown non-canonical signalling between Notch3 and oestrogens in other diseases including cancer. This
is a particularly interesting area for exploration in PAH, given the sex disparity seen in PAH towards females [116] and
the evidence suggesting a potentially pathological role for endogenous oestrogens in the development of the disease
[117–120]. As previously highlighted several key processes involved in PAH are also driving forces in cancers [121].

It has been demonstrated that overexpression of NICD3 can transactivate oestrogen receptor (ER) α (ERα) in
breast cancer cells through binding at RBP-Jκ responsive binding elements in the ERα promoter [122] and Notch1
can induce ERα-dependent transcription via IKKα-dependent recruitment of Notch transcriptional complexes [26].
There is also evidence of cross-talk in the opposite direction, in which oestrogens can activate Notch signalling in
cancer cells. Oestrogen stimulation induces proliferation in both ER-positive and ER-negative endometrial cancer;
however, oestrogen only activated Notch signalling and increased Notch1 expression in ER-positive cells [123]. This
effect was inhibited through siRNA-mediated knockdown of GPR30, the ER thought to facilitate non-genomic oe-
strogen signalling, and was partially inhibited by Notch inhibition, suggesting a GPR30-Notch1 signalling axis in
proliferation in these cells [123].

17β-estradiol (E2) stimulation has also been demonstrated as a modulator of Notch signalling. E2 can induce
Jag1 and Notch1 expression in breast cancer MCF7 cells; increased Jag1 is abrogated by ER antagonist treatment,
suggesting an ER-dependent mechanism corroborated by the discovery of imperfect oestrogen-responsive elements
in the 5′ region of Notch1 and Jagged1 genes [124]. Treatment with E2 is also associated with activation of Notch
signalling in Notch1 reporter gene and co-culture assays [124]. In human umbilical vein endothelial cells (HUVECs)
E2 induces Notch1 signalling and under conditions where Notch is activated by Dll4 following VEGF-A treatment, E2
further increases the active form of Notch1 with increased expression of Hey2 mRNA [125]. This effect was abrogated
with ER antagonism, suggesting E2 modulation of Notch1 occurs through ER signalling [125].

More recently, a role for ERβ and Notch has been proposed in the endothelium. Fortini et al. [126] described that
E2 counteracts TNFα-induced apoptosis in endothelial cells via a Notch-dependent mechanism, and that this effect
of oestrogen is mediated by ERβ and not ERα. Given the importance of apoptosis resistance in PAH, this signalling
cross-talk could be functional in pulmonary vascular endothelium and potentially contribute to the sex-specific ef-
fects of the disease.

Investigation of an oestrogen/Notch signalling axis in the pulmonary vasculature could be interesting in the context
of the remodelling seen in PAH and should be studied as a potential mechanism for the increased prevalence of
women with the disease. While there is evidence of Notch1 interaction with oestrogens, a role for Notch3, shown to
be expressed specifically in VSMC and with a role in PAH, and oestrogens remains to be explored.
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Notch3 and the right ventricle
While research relating to Notch3 and PAH has focussed primarily on the pulmonary circulation, there is some
evidence that Notch3 in the myocardial vascular bed also plays an important role in pressure adaptation, an important
process in the development of PAH.

Gene and protein expression of Notch3 is increased in the RV in mice after treatment with MCT, a known inducer
of PAH and right heart failure [127]. Recent data suggest that Notch3 signalling may play a role in adaptive responses
to pressure overload. Notch3−/− mice exhibit higher mortality in response to angiotensin II-induced systemic hy-
pertension and this is reported to be due to an increase in heart failure [74]. When challenged with angiotensin II
Notch3−/− mice exhibit oedema and dilated hearts [74], and exhibit early onset acute decompensated heart failure
[128]. This proposes the adaptive capability of the heart to respond to increased pressure is affected by loss of Notch3.
Additionally, the same effects were seen in a smooth muscle-specific RBP-Jκ knockout animal [128]. These find-
ings suggest that absence of canonical Notch3 signalling in normal VSMCs promotes development of heart failure in
response to pressure overload, and pressure overload is an important feature in later stage PAH.

Notch3 inhibition as a potential therapeutic target in
pulmonary vascular remodelling
Understanding the role of Notch3 in pulmonary vascular remodelling will provide valuable insight into potential new
treatments for PAH, a disease that is suboptimally treated. With the evidence produced to date on Notch3 in PAH,
inhibition of Notch3 signalling may provide a useful therapeutic target. The viability and fertility of Notch3-deficient
mice suggests Notch3-selective inhibitors should be well tolerated.

γ secretase inhibitor molecules in PAH
Cleavage of the NICD by γ-secretase provides an obvious target for pharmacological blockade of Notch signalling in
PAH. Research using GSIs in PAH models has focussed on N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine
t-butyl ester (DAPT), a repurposed Alzheimer’s drug previously shown to inhibit Notch cleavage in vivo [129]. DAPT
reduces pathological processes in various models of experimental PH.

In chronically hypoxic (10% O2) mice, DAPT treatment prevented development of hypoxia-induced [11].
DAPT-treated hypoxic mice also showed an intact distal pulmonary tree with normal morphology compared with the
vascular pruning seen in untreated hypoxic mice [11]. These processes in DAPT-treated mice were associated with
decreased Notch3 activity, and reduced PCNA expression and VSMC proliferation [11]. The same beneficial effects
were seen with in vivo prophylactic DAPT administration to chronically hypoxic neonatal rats and adult mice; pre-
vention of PH and associated pulmonary vascular remodelling [73,74]. Effects of DAPT have also been investigated in
the MCT rat model of PH. As in the hypoxic mouse, DAPT administration significantly reduced the muscularisation
of pulmonary arteries and prevented development of PH [78].

Propylthiouracil (PTU), another GSI, has also been studied in vivo in the MCT rat model of PAH with similar
results. Daily treatment with PTU significantly reduced pulmonary artery medial thickening in MCT-treated rats
and reduced expression of Notch3 in pulmonary arteries [130]. Immunocytochemistry highlighted reduced nuclear
NICD3 in MCT-rat cell treated with PTU, indicating reduced nuclear translocation of the NICD after PTU treatment.
[130]. Inhibition of Notch3 by PTU was found to occur through suppression of the regulatory presenilin enhancer 2
subunit within γ-secretase [130].

The success of GSIs in PAH models suggests potential for these drugs as a new therapeutic approach in human
PAH. This class of drugs is already under investigation in human trials for the treatment of certain cancers where
Notch signalling is unregulated [131].

Inhibition of Notch3 with endogenous molecules
Some endogenous molecules have been described as inhibitors of Notch3 signalling, and these may offer advan-
tages over exogenous drugs. Notch3 receptors can be stimulated by multivalent or monovalent ligands. Previous
studies suggested that monovalent soluble Jagged1 (sJag1) inhibits Notch signalling [132], while others showed that
endogenous cell-bound ligands increase Notch signalling. Endogenous miRs have also been shown to interact with
and inhibit the activity of Notch3. miR-206 was identified originally as a tumour-suppressor molecule. Overexpres-
sion of miR-206 reduces tumour cell proliferation in hepatocellular carcinoma [133] and colorectal cancer [134] cell
lines. With the similarities in cell behaviour seen in both cancers and PAH, interest in miRs in PAH has grown.
The effects of miR-206 on Notch3 signalling in cancer cells translates to pulmonary vascular cells. In PASMCs from
chronically hypoxic mice miR-206 is down-regulated, and this was inversely correlated with a significant increase
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in Notch3 and cardiac indices of PH [135]. Transfection of human pulmonary microvascular endothelial cells (hM-
PECs) with miR-206 mimic [136], and transfection of hPASMCs and mPASMCs from chronically hypoxic mice [135]
with miR-206 plasmid to induce overexpression, promotes apoptosis. In hMPECs this effect is abrogated by overex-
pression of Notch3 [136]. Overexpression of miR-206 in hPASMCs also increased expression of vascular smooth
muscle differentiation markers calponin and α-SMA, while reducing Notch3 expression, migration and proliferation
[135]. These results suggest down-regulation of miR-206 in PAH may contribute to Notch3 up-regulation and the
pro-proliferative/anti-apoptotic phenotype observed in patients. Therapeutic use of other miRs, such as anti-miRNAs,
is already being investigated in PH models [137,138]. In vivo use of molecules such as miR-206 in models could soon
follow.

Monoclonal antibody targeting of Notch3
While Notch inhibition by GSIs and ligands may be beneficial in PAH models, these drugs are not specific to any
one Notch receptor subtype, and pan-inhibition of all Notches can have many off-target side effects that may hamper
their use in patients. One solution has been the introduction of therapeutic monoclonal antibodies specific to Notch3,
providing a strategy to down-regulate activity of Notch3. Monoclonal Notch3 antibody treatment has already been
tested in experimental models of CADASIL, where treatment was shown to improve cerebrovascular function in the
TgN3R169C CADASIL mouse model [139], which has a gain of function of Notch3 [140]. Studies are now exploring
potential therapeutic use of monoclonal antibodies for PAH. Gower et al. [141] developed a humanised monoclonal
Notch3 antibody that binds to the Jag1-binding site on the murine and human receptors, blocking ligand binding and
hence reducing cleavage and downstream signalling. In vivo, this antibody has shown promising results by reduc-
ing parameters of established PAH in both chronic-hypoxic mouse and Sugen-hypoxic rat models, with concurrent
reduction in levels of cleaved Notch3 in treated animals, suggesting antibody therapy had a direct effect on Notch3
downstream signalling [141].

Conclusions
The evidence highlighted in this review demonstrates a clear involvement of VSMC Notch3 in pulmonary vascu-
lar remodelling in PAH. However, many of the specific signalling pathways and molecular mechanisms are still
unknown. It will be important to examine the role of Notch dynamics to determine whether specific effectors in-
volved in Notch3 signalling in pulmonary cells have distinct functional effects in the pulmonary vasculature. Fur-
thermore, while non-canonical Notch signalling has been investigated in other conditions, there is a paucity of in-
formation regarding its potential role in PAH and vascular remodelling and this area could hold major answers to
Notch3-mediated mechanisms involved in PAH progression. We have also described several Notch3-specific avenues
of intervention currently being explored. However, further preclinical and clinical investigations are needed to de-
velop these approaches, pinpoint more useful therapeutic targets, and translate these into potential new treatments
for PAH.
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