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Abstract: Magnetic field sensors are successfully used in numerous application contexts such
as position sensing, speed detection, current detection, contactless switches, vehicle detection,
and electronic compasses. In this paper, an inkjet printed magnetic sensor, based on the
magneto-mechanical sensing principle, is presented together with a physical model describing
its physical behavior and experimental results. The main novelties of the proposed solution consist
of its low cost, rapid prototyping (printing and drying time), disposability, and in the use of a
commercial low-cost printer. A measurement survey has been carried out by investigating magnetic
fields belonging to the range 0–27 mT and for different values of the excitation current forced in
the actuation coil. Experimental results demonstrate the suitability of both the proposed sensing
strategy and model developed. In particular, in the case of an excitation current of 100 mA, the device
responsivity and resolution are 3700 µε/T and 0.458 mT, respectively.

Keywords: magnetic field sensor; printed sensor; magneto-mechanical interaction

1. Introduction

Inkjet printing technology allows to develop low-cost sensors and electronics into flexible
substrates [1–5], both for mass production and rapid prototyping [6–8]. Main advantages of this
technology reside in the maskless approach and the direct printing technique that allow to reduce the
waste of ink and time to production [9].

The printing processing needs three main ingredients to be fixed: the kind of inkjet printer,
conductive or functional inks, and the substrate.

In case the printing task is not really demanding in terms of resolution and variety of inks,
customized inks can be printed by common office printers. Otherwise, in case high resolution and
specific inks are required, really sophisticated printers are currently available on the market [10–15].

Typical conductive inks include metallic nanoparticles (NPs) and nanowires, and carbon-based
materials, such as carbon nanotubes and graphene. Several alternative conductive inks can be found on
the market, including organometallic and conductive polymeric inks. The choice of the most suitable
material depends on the specific application requirements. NP inks usually consist of a suspension
of gold or silver particles, in water or in an organic solvent, and are characterized by high chemical
stability and high electrical conductivity [10]. The presence of water in the suspension requires the
addition of an ionic surfactant to disperse the conductive materials and a heat treatment, known as
sintering, to be carried out after the printing process. Water-based inks are safer and easier to handle
than solvent-based inks, which can be corrosive and potentially harmful, but have faster drying times
than water-based inks. Organometallic inks are solutions of metal compounds dissolved in organic
solvents. The risk of clogging the printer head nozzles is strongly reduced because they are in the
form of solutions rather than particle suspension. Furthermore, higher conductivity values can be
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achieved and lower sintering temperatures are required compared to NP inks. Although silver-based
organometallic inks are commonly used, there is a growing interest in graphene-based inks [10–12].
Among polymeric inks, PEDOT: PSS and Polianilina (PANI) [13] are commonly used being compatible
with inkjet printing systems. The combination of conductive and functional inks has been proposed as
a cost-effective solution for producing sensors by means of inkjet printing technology [10].

Metallic inks in combination with low-cost printers have been used successfully for rapid
prototyping of sensors [6,15]. Depending on the used printing equipment, inkjet printing can be used
on rigid substrates (plastic, glass, ceramics, and silicon) or flexible (polyether imide, polycarbonate,
polyacrylate, polyamide, polyethylene, terephthalate, and even paper) [10,16,17].

In the following, the development of an inkjet magnetic field sensor carried out at the SensorLab
of the University on Catania, Italy, based on the magneto-mechanic principle, is presented.

2. The Inkjet Printed (IJP) B-Field Sensor

Magnetic field sensors are used in numerous application contexts such as position sensing, speed
detection, current detection, contactless switches, vehicle detection, and electronic compasses, just to
cite a few [18–23].

In case of environments classifiable as hostile due to aggressive or contaminating agents, it is
important to have low-cost and intrinsically disposable sensors. Various sensing strategies for
the measurement of magnetic field are reported in the literature, such as the magneto-mechanical
transduction, the magnetic induction, the Hall effect, the magneto-resistive effect, and also the
superconducting quantum interference devices, also known as SQUID [24].

The magneto-mechanical transduction, which consists in converting the action of a magnetic field
into a mechanical deformation subsequently converted into an electric signal variation, represents one
of the most economical and simplest solutions. For this reason, this method has been widely used, as
an example, in different sensory solutions realized in MEMS technology or in realizing many types
of relay.

As an example, in [25] is presented a MEMS resonant magnetic sensor whose resonant vibration
is excited by the Lorentz force. The sensor, meant to be integrable in an inertial measurement unit
(IMU), has been fully designed, simulated, and realized. Results show that, with a current of 5 mA, the
sensitivity of the sensor is 43 aF/mT.

Sonmezoglu et al. [26] have developed a dual-resonator MEMS magnetic sensor using the Lorentz
force. The sensor readout strategy is based on frequency measurements, where the magnetic field
strength is computed by monitoring the change in oscillation frequency. Being a differential structure,
the two oscillators provide built-in temperature compensation. Measurement results demonstrated
that by using a 1 mA bias current, the device has a sensitivity of 2180 Hz/T.

Another interesting work is the one presented in [27]. The authors describe a magnetic sensor,
always based on the detection of Lorentz force on a micromechanical oscillator, whose operation
is demonstrated using an amplitude modulation (AM) and a frequency modulation (FM) readout
of the magnetic signal. The sensitivity of the sensor is 500 Hz/T with a noise floor of 500 nT/Hz1/2.
Results show that the FM readout strategy performs better than the AM one since it allows a much
greater bandwidth.

In [28] a MEMS magnetic field sensor with a capacitive readout strategy is presented. The sensor
only detects the magnetic field in the orthogonal direction to the resonance structure surface. It consists
of a set of fixed stators and a shuttle suspended with two thin beams that form two differential
parallel-plate sensing capacitors, C1 and C2. A Lorentz force, generated on the two thin beams, is in the
orthogonal direction to the plane of both magnetic field and ac current, causing a displacement of the
beams and parallel plates. This displacement is detected through the differential capacitance variation
between the parallel plates and fixed stators. The sensor sensitivity, measured as the differential
capacitance shift per variation of magnetic field, is 150 µV/µT at 250 µA of peak driving current with a
resolution of 520 nT/mA·Hz1/2.
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A magnetic sensor’s readout strategy is based on the piezoresistors resistance variation is given
in [29]. This sensor is made up by a rectangular loop of silicon beams, an aluminum loop, and a
Wheatstone bridge. The sensor structure has a deflection and strain generated by the Lorentz force,
causing a change of the initial resistance of two p-type piezoresistors. It has a resonant frequency of
22.99 kHz, a sensitivity of 1.94 V/T with a resolution close to 43 nT for a frequency difference of 1 Hz.

The possibility of combining the aforementioned sensing principle with a technology compliant
with flexible substrates, which undergoes bending under the action of the target magnetic field, is a
very interesting solution for the rapid prototyping of low-cost sensors.

In this paper, an inkjet printed magnetic field sensor, based on the magneto-mechanical sensing
principle, is presented along with the developed mathematical model describing its physical behavior.

A preliminary investigation on this type of sensor is given in [30,31] where both the electrical and
physical characteristics have been determined. Nevertheless, main novelties compared to the cited
work are described in the following: (1) Description of the sensor mathematical model; (2) Computation
of the sensor responsivity; (3) Model results compensation for the effect of tolerances in the device
geometry and technology.

Main advantages of the proposed solution consist of its low cost, its rapid realization (printing
and drying time), and disposability.

The sensing principle of the device developed, schematized in Figure 1, is based on the well-known
Lorentz force. The interaction between the unknown magnetic field and an alternating driving current
flowing on a coil printed on the polyethylene terephthalate (PET) substrate produces a beam deflection,
∆x, which can be converted into an electrical output by means of a resistive sensing strategy,
implemented by means of a IJP strain gauge, and a dedicated conditioning electronics.
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Figure 1. Schematization of the sensing principle.

2.1. The Physical Model

In order to correctly design the printed elements of the sensor, based both on the measurement
specifications and constraints given by the specific applications, a mathematical model, describing the
relationship between the unknown magnetic field and the generated strain, is proposed.

The developed model is introduced below while, a legend introducing terms used for the equations,
is given in Table 1.
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Table 1. Physical and electrical quantities employed for the model description.

Physical Quantity Value Description

N Number of coils turns
Wcoil Coil width

Tc 200 nm Coil thickness (technology dependent)
S 300 µm The lowest possible spatial resolution (technology dependent)

Din 2.0 mm Internal coil Diameter (technology dependent)
Dout External coil Diameter (application dependent)

Dguard 2.0 mm External safety ring (technology dependent)
Li Turn side

Ltot Total turn sides
P Total coil length (taken considering the external coil diameter)

Wbeam Beam width (application dependent)
µ0 4π·10−7 H/m Magnetic permeability in vacuum
I Current flowing in the beam

Imax 130 mA The highest current supported by the beam (application and
technology dependent)

Dcurrent Maximum current density
→

B External magnetic field
E 3.1·109 N/m2 PET Young’s modulus

Lbeam Beam length
Tbeam Beam thickness

Fm Lorentz force

As first, it is necessary to fix constraints coming from the specific application and the technology.
In particular, these are represented by the size of the beam (Wbeam) and the technology dependent
parameters (Din, Dguard, S), respectively. In particular, Din is considered a technology depended
parameter since it is the dimension required by the pith used to close the loop. The model descriptions
is aimed at the estimation of the optimal geometry of the inkjet printed actuation coil.

With reference to Figure 2, which shows a squared quoted coil, the following relationships can
be determined:

Dout = Wbeam − 2DGuard (1)

Dout = Din + 2Wcoil + 2(Wcoil + S)(N − 1) (2)

Equation (2) can be used to determine the coil external diameter. Equation (2) allows us to estimate
the number of nominal turns, Nnom:

Nnom =
Dout −Din − 2Wcoil

2Wcoil + 2S
+ 1 (3)

Since, for the sake of device realization (Figure 1), only integer values of N can be considered, the
coils number is rounded to the closest integer number:

N = int
(

Dout −Din − 2Wcoil
2Wcoil + 2S

+ 1
)

(4)
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This procedure allows us to find the eligible couples (N, Wcoil) for a specific beam geometry.

Since the working principle is based on the interaction between the target magnetic field
→

B and
the current flowing on the coil I, the highest current density supported by the beam for a given couple
(N, Wcoil) must be addressed.

The current density is limited by the maximum thermal power dispersible by the beam substrate,
in order to avoid a permanent deformation of the beam material.

This value has been experimentally determined by using a coil sample printed on a PET beam, with
Wcoil equal to 2.0 mm and Tc equal to 200 nm (constrained by the printing technology). The shape of
the beam has been observed for increasing values of the current forced into the coil. Several repetitions
of this experiment have been accomplished, leading to the estimation of a maximum current, which
does not produce any kind of deformation of the beam, equal to 130 mA. Exceeding this value will
cause the permanent deformation of the beam substrate.

Hence, the maximum current density, Dcurrent, can be computed as follow:

Dcurrent =
130 mA

200 nm·2 mm
(5)

Finally, a generalized relation can be determined for the maximum current supported by the
coil/beam:

Imax = Wcoil·Tc·Dcurrent (6)

Since, as it will be discussed in Section 2.2, the realized sensor shares the same geometrical
parameters of the sample used for the current density determination, its maximum current value is
also 130 mA. Keeping this into account, a safety margin around 20% has been chosen, which leads to a
maximum current value of 100 mA to be used during the experiments.

Results for the above equations, in the case of Wcoil belonging to the range of 0.9–7 mm, changing
with a step of 0.1 mm, and Wbeam equal to 2 cm, are shown in Figure 3.
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As it will be discussed in the next paragraphs, achieved results must be matched with the predicted

behavior of the beam strain (ε) as a function of the target magnetic field (
→

B).
The beam strain due to an external magnetic field is given by [32,33]:

ε =
6·Fm·LBeam

E·Wbeam·T2
Beam

(7)
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where Fm is the Lorentz force between the target magnetic field (
→

B) and the current flowing on the coil.
Assuming the orthogonality between the target magnetic field and the current I, the following

relationship can be assumed:

Fm = I·P·
→

B (8)

where P is the coil perimeter.
The dependence on the conductor orientation has been omitted since we assume its effect is

negligible at this modeling phase for the overall sensor model. This choice comes from previous
results [30] where it has been demonstrated that the maximum beam deflection, and hence the
maximum angle variation between current and target magnetic field, does not affect “very much” the
model output (compared with the experimental measures). This point will be clarified in Section 3.

The side of a single loop turn, Li, with reference to Figure 2, can be obtained by the
following relationships:

L1 = L2 = 2Wcoil + Din (9)

L3 = L2 + S + Wcoil (10)

By reiterating the process for the subsequent turns, we obtain:

Li = Li−2 + (S + Wcoil) for i = 4, 5, . . . , Ltot (11)

Starting from above relationships, P can be estimated as:

P =

Ltot∑
i=1

Li (12)

Assuming values for the device parameters given in Table 2, Equations (7)–(12) produce the results
shown from Figures 4–7.

Table 2. Device parameters adopted to simulate the system behavior.

Physical Quantity Value

Wbeam 2 cm
Tc 200 nm
S 300 µm

Din 2 mm
Dout 2 cm

B 1–46 mT with 5 mT step
Wcoil 0.9–7 mm with 0.1 mm step
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2.2. Device Realization and Experimental Setup

Following the parameters estimated in the previous section, a real device, whose schematization
and a real view are shown in Figure 8, has been realized.
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magnetic field strength. The strength of the target magnetic field as a function of the distance has 
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sinusoidal excitation current, whose frequency matches with the beam mechanical resonance 
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Figure 8. Schematization and a real view of the sensor. The device has a dimension of 70 mm by 19
mm, with a total thickness of 200 µm.

Specifically, the sensor consists of a PET beam fixed at one end, working also as the substrate for
the realization of the actuation planar coil and the resistive readout strategy (strain gauge). A brief
explanation of the working principle has already been given in Section 2 (for more details: [31]).
Electrical characteristics of the printed devices are described in Table 3 [31].

The adopted printer is a commercial Deskjet, while, the silver-based conductive ink, is the
Metalon® JS-015 provided by NovacentrixTM.

Table 3. Electrical characteristics of the device.

Physical Quantity Value

Coil resistance 25.6 Ω
Coil inductance 84.6 nH

Strain gauge resistance 123.5 Ω
Gauge factor 1.9

Resonant frequency 9.1 Hz

3. Results

In order to assess the real behavior of the sensor the dedicated experimental setup, shown in
Figure 9, has been used.
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Figure 9. Experimental setup.

The target magnetic field is generated by a permanent magnet positioned at different distances
from the IJP sensor.

The setup aim is two-fold: to find the relationship between the permanent magnet distance and
the magnetic field measured at the sensor location; measuring the device strain as a function of the
magnetic field strength. The strength of the target magnetic field as a function of the distance has
been characterized by means of a Hall effect sensor (SS496A1 by Honeywell). The target magnetic
field, applied orthogonally with respect to the printed coil current plane (Figure 10), interact with a
sinusoidal excitation current, whose frequency matches with the beam mechanical resonance frequency
(9.1 Hz). This last choice allows us to maximize the device sensitivity. Having in mind the magnetic
fluxes produced by a permanent magnet, just a part of it is useful to the sensor functionality: the ones
parallel to the coil current plane. Although the magnetic stray field of the permanent magnet tends to
quickly decay during the sensor oscillations, considering the small deflection of the sensor compared
to the steady-state [30], its effect has not been fully investigated and hence, has been neglected in this
modeling phase.
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In order to clarify the experimental conditions, some additional considerations must be done. The
first deals with the magnet position as respect to the printed coil. In order to have a positive net force
applied to the beam, the magnetic flux must interact only with half of the coil (the part positioned
on the tip of the sensor) and not in its entirety (as shown in Figure 10). This constraint is mandatory
for the sensor to oscillate since the current flowing in the opposite coil direction will not produce any
unwanted force. A second deals with the coil design. The coil layout has been optimized in such a way
to enhance the effect of the Lorentz force in one direction: as it can be noticed in Figure 10, from right
to left, the coil has an uneven number of coil segments along the beam width. The coil segments close
to the tip are 3 while, in the other direction, 2 (the additional segment is a contact point which is used
to place the conductive ribbon).
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Figure 10. A detail of the magnet position compared to the coil and excitation current plane.

The measurement survey has been carried out by investigating magnetic fields belonging to the
range 0–27 mT, by forcing the following excitation currents: 0.02 A, 0.04 A, 0.06 A, 0.08 A, and 0.1 A.

Results arising from the measurement surveys are shown in Figure 11. As it can be observed, in
case of low excitation currents, the device shows a very poor responsivity, especially in the lower part
of the working range. This is due to the need of overcoming the beam inertia. For this reason, the
results coming from that combination have been removed both from the mathematical analysis and
from the model fitting.
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Figure 11. Sensor’s behavior as a function of the target magnetic field and the excitation current.

In order to compensate the model prediction, with respect to the real behavior, for the effect of
tolerances in the device geometry and technology, the following relationship has been used:

εobs = K1·ε+ K2 (13)

where the coefficients K1 and K2 are excitation current dependent. Their values can be found in Table 4.
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Table 4. Fitting constant for the strain computation.

Constant 0.04 A 0.06 A 0.08 A 0.1 A Mean Value STD

K1 0.910 0.883 0.818 0.730 0.835 0.079
K2 −0.117 × 10−4

−0.164 × 10−4
−0.196 × 10−4

−0.196 × 10−4
−0.169 × 10−4 3.73 × 10−6

The coefficient current dependency can be explained considering the simplifications adopted
during the model development. In particular, the ones concerning the perfect orthogonality between
the current and the target magnetic field. In reality, this angle depends on the coil excitation current
(a greater excitation current produces an increased beam deflection). This variation, being a function of
the current, produces compensation values dependent on the current itself.

Nevertheless, the small variation of K1 and K2 over the current intensity, further confirm the
assumption that the deviation from the orthogonality is negligible.

The expected behavior predicted by Equation (13) superimposed with the experimental data is
shown in Figure 12.
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Estimated values of the device responsivity, accuracy, and resolution are shown in Table 5. For the
sake of completeness, the responsivity is defined as the slope of the output characteristic curve (∆y/∆x)
shown in Figure 12, the accuracy as the standard deviation of the strain measurements as respect the
model value while, the resolution, as the ratio between the strain’s standard deviation and responsivity.

Table 5. Responsivity, accuracy, and resolution of the sensor as a function of the excitation current.

Quantity 0.04 A 0.06 A 0.08 A 0.1 A

Responsivity (µε/T) 1800 2500 3100 3700
Resolution (mT) 0.864 0.644 0.486 0.458
Accuracy (µε) ±3.45 ±2.82 ±1.90 ±1.50

As expected, by increasing the excitation current, a general improvement in the sensor
performances can be observed.

These results confirm the validity of the developed model that can represent a powerful tool for
the design of the inkjet printed magnetic field sensor.

4. Conclusions

In this paper, an inkjet printed magnetic sensor, based on the magneto-mechanical sensing
principle, is presented. In particular, the device, fully inkjet printed with a commercial and low-cost
printer, exploits the Lorenz force to actuate a flexible beam where a resistive readout strategy has been
integrated. The main novelties of the proposed solution consist of its low cost, its fast prototyping, and
disposability. These advantages make this specific kind of sensors suitable for applications requiring a
disposable device, as well as for educational purpose and the realization of fast lab-scale prototype.
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Moreover, the use of a flexible substrate allows the device to be compliant with real scenario requiring
flexible and shapeable sensors.

A mathematical model of the sensor has been proposed where both technology and application
dependent parameters have been completely integrated. Two major advantages can be highlighted
from the model: the possibility to predict the sensor’s behavior during design phases and to find the
optimal physical parameters maximizing the sensor responsivity for the production phase.

A measurement survey has been carried out by investigating magnetic fields belonging to the range
0–27 mT and for the following excitation currents: 0.02 A, 0.04 A, 0.06 A, 0.08 A, and 0.1 A. Experimental
results demonstrate the suitability of the proposed sensing strategy and the model developed.

Although the sensor responsivity has been limited by application constraints, there are quite a
few options that can be adopted to increase it any further:

Geometry dependent:

• Increase the beam width Wbeam (this is strictly correlated to the application constraints).
• Increase the coil thickness Tc (this is a matter of technology).
• Increase the beam length Lbeam (this is strictly correlated to the application constraints).

Electric quantity:

• Maximizing the coil excitation current, by taking into account the sensor geometry (this increase
must always be compliant with the maximum current density “Dcurrent” compatible with the coil
track geometry).

Although this paper addresses the device behavior in the case of the beam not pre-bended, future
efforts will be dedicated to investigating such cases.

Author Contributions: Inkjet printing technology, sensing methodology, and device behavior modeling: B.A. and
S.B.; Experimental set-up, measurement surveys, device characterization, and signal processing: R.C. and V.M.
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