Skip to main content
. 2019 Nov 20;19(23):5076. doi: 10.3390/s19235076
Algorithm 1: PAST–HOSVD time-delay estimation.
  1. Initialization.
    • U^s(1)(0)=I2×L, U^s(3)(0)=IMs×L; U^s(4)(0)=ILs×L
    • C^yy(1)(0)=C^yy(3)(0)=C^yy(4)(0)=IL
  2. Section: Tensor-based PAST [21].
    • fort=0,1,do:
      • % – Tracking the signal subspace related to the dimension K.
      • Y(1)(t+1)=U^s(1)H(t)ZFBA+ESPS(r)(1)(t+1)
      • Cyy(1)(t+1)=βCyy(1)(t)+Y(1)(t+1)Y(1)H(t+1)
      • G(1)(t+1)=Cyy(1)1(t+1)Y(1)(t+1)
      • E(1)(t+1)=ZFBA+ESPS(r)(1)(t+1)U^s(1)(t)Y(1)(t+1)
      • U^s(1)(t+1)=U^s(1)(t)+E(1)(t+1)G(1)H(t+1)  
      • % – Tracking the signal subspace related to the dimension Ms.
      • Y(3)(t+1)=U^s(3)H(t)ZFBA+ESPS(r)(3)(t+1)
      • Cyy(3)(t+1)=βCyy(3)(t)+Y(3)(t+1)Y(3)H(t+1)
      • G(3)(t+1)=Cyy(3)1(t+1)Y(3)(t+1)
      • E(3)(t+1)=ZFBA+ESPS(r)(3)(t+1)U^s(3)(t)Y(3)(t+1)
      • U^s(3)(t+1)=U^s(3)(t)+E(3)(t+1)G(3)H(t+1)  
      • % – Tracking the signal subspace related to the dimension Ls.
      • Y(4)(t+1)=U^s(4)H(t)ZFBA+ESPS(r)(4)(t+1)
      • Cyy(4)(t+1)=βCyy(4)(t)+Y(4)(t+1)Y(4)H(t+1)
      • G(4)(t+1)=Cyy(4)1(t+1)Y(4)(t+1)
      • E(4)(t+1)=ZFBA+ESPS(r)(4)(t+1)U^s(4)(t)Y(4)(t+1)
      • U^s(4)(t+1)=U^s(4)(t)+E(4)(t+1)G(4)H(t+1)
  3. Eigenfiltering section [10].
    •  Select the dominant singular vectors of each U^s(t+1) previously estimated. Then apply the filtering process detailed in (10).
    • qFBA+ESPS(r)=ZFBA+ESPS(r)×1(u^(1))H×3(u^(3))H×4(u^(4))HΣVHCQ×1
    • end