Skip to main content
. 2019 Nov 26;19(23):5170. doi: 10.3390/s19235170

Table 6.

Placement and trajectory issues in ML-enhanced UAV networks.

Reference Placement and Trajectory Target ML Solution
Liu  et al. [109] Throughput Q-learning
Ladosz  et al. [110] Throughput GP and NMPC based
Bayerlein et al. [111] Sum-rate Q-learning
Ladosz  et al. [112] Communication quality NN
Liu et al. [113] MOS and QoE Q-learning
Peng et al. [115] Mobility prediction and object profiling Unsupervised learning
Esrafilian et al. [116] Throughput and path planning Map compression based
Colonnese et al. [118] QoE Q-learning
Dai  et al. [119] Sum-rate Distributed learning
Jailton  et al. [120] Throughput ANN
Klaine  et al. [121] Radio coverage Q-learning
Ghanavi  et al. [122] QoS Q-learning
Mozaffari  et al. [101] Latency Kernel density estimation
Wu  et al. [123] Spectral efficiency DQN
Hu  et al. [124] Coordination of multiple UAVs Q-learning
Liu  et al. [126] Radio coverage Decentralized DRL
Liu  et al. [128] QoS Double Q-learning
Huang et al. [129] Radio Coverage DRL
Lu  et al. [130] Energy efficiency SMGD