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Background.  HIV-infected individuals undergoing effective antiretroviral therapy (ART) present an increased risk of athero-
sclerotic cardiovascular disease. We identified serum metabolites associated with carotid intima-media thickness (c-IMT) and its 
evolution.

Methods.  One hundred forty-three hydrophilic serum metabolites were measured by ultraperformance liquid chromatography 
coupled with high-resolution mass spectrometry in 49 HIV+ ART+, 48 HIV+ ART-naïve and 50 HIV-negative, age-matched, never-
smoking male triads. Metabolites differentially altered between groups (“features”) were defined as having a Benjamini-Hochberg-
adjusted P value <.05 from a t test and >0.25 log2 absolute mean fold change in metabolite levels. c-IMT was measured across 12 sites 
at inclusion in all individuals and at the carotid artery (cca) after a median of 5.1 years in 32 HIV+ ART+ individuals. The difference 
in c-IMT (cross-sectional analysis) and slope of cca-IMT regression/progression per year (longitudinal analysis) for each log10 (area) 
increase in metabolite level were estimated with linear regression.

Results.  Compared with HIV-, metabolite features of HIV+ ART+ were increased N6,N6,N6-trimethyl-L-lysine and decreased 
ferulate and 5-hydroxy-L-tryptophan, whereas features of HIV+ ART-naïve were increased malate, kynurenine, 2-oxoglutarate, and 
indole-3-acetate and decreased succinate and 5-hydroxy-L-tryptophan. In HIV+ ART+ individuals, quinolinate and/or indole-3-
acetate were positively associated with c-IMT (P < .03), cca-IMT (P < .03), and cca-IMT progression (P < .008). These associations 
were not observed in HIV+ ART-naïve or HIV-negative individuals. In HIV+ ART+ individuals, the metabolites xanthosine and 
uridine, from nucleotide metabolism, and g-butyrobetaine, from lysine/dietary choline degradation, were also positively or nega-
tively associated with c-IMT and/or cca-IMT (all P < .01), but not its evolution.

Conclusions.  In these highly selected HIV-positive ART-controlled males, 2 novel metabolites derived from tryptophan catab-
olism, indole-3-acetate and quinolinate, were associated with c-IMT and its progression.

Keywords.   antiretroviral; cardiovascular disease; carotid intima-media thickness; HIV; metabolomics; tryptophan metabolism.

Cardiovascular disease (CVD) has become a major concern in 
HIV-positive individuals, even for those with well-controlled 
HIV replication during antiretroviral therapy (ART) [1, 2]. 

Increases in atherosclerotic cardiovascular risk have been re-
ported for HIV-positive individuals, whether based on cardio-
vascular outcomes or carotid intima-medial thickness (c-IMT), 
a validated surrogate marker of atherosclerotic vascular disease 
[3]. Prior studies have linked host factors, such as smoking and 
illicit drug use, and HIV-related factors, such as known infec-
tion duration [4], immune activation [5], and treatment with 
protease inhibitors [6, 7], to this increased risk. Nevertheless, 
the precise pathophysiological mechanisms remain uncertain 
to date.

Metabolomics, able to identify numerous circulating metab-
olites, could provide important information on the processes 
involved in atherosclerotic cardiovascular risk. Such analyses 
have been used in past research, in which metabolite levels were 
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associated with HIV serostatus, severity of HIV infection, low-
grade inflammation in HIV-positive individuals with virological 
suppression, and long-term non-AIDS-related events [8]. Most 
previous research has focused on the tryptophan (Trp) catabolic 
pathway and kynurenine/tryptophan ratio (KTR), resulting 
from indoleamine-pyrrole 2,3-dioxygenase (IDO) activation 
[9–12], and trimethylamine (TMA) and trimethylamineoxide 
(TMAO) of the lysine/dietary choline degradation pathway [13, 
14].

Notwithstanding the insights gained from these previous 
studies, their major limitation is that only specific metabolites 
of distinct pathways were analyzed. To understand the broader 
scope of potentially involved metabolites, we analyzed 143 hy-
drophilic metabolites, including all amino acids and metabolic 
derivatives, and their association with HIV infection and c-IMT. 
Using data from a previous study in closely matched, never-
smoking male adults who were HIV-positive ART-controlled, 
HIV-positive ART-naïve, or HIV-negative, we took advantage 
of the minimal confounding bias offered from these triads to 
evaluate the effect of HIV infection and treatment on metab-
olite levels. We then focused on HIV-positive ART-treated pa-
tients to establish the relationship between metabolite levels 
and c-IMT. Their correlation with markers of inflammation and 
HIV infection severity was also assessed.

METHODS

Study Participants and Samples

Participants were selected from the Collaboration on HIV, 
Inflammation and Cardiovascular disease (ANRS-CHIC) study 
[4]. Briefly, 150 never-smoker men were enrolled in 3 groups: 
50 HIV-1-infected patients >35  years old, taking ART for 
≥4 years, and with HIV-1 RNA <400 copies/mL (HIV+ ART+); 
50 individually age-matched (±5 years) patients, HIV-positive 
for ≥2  years, who were naïve to ART (HIV+ ART-); and 50 
HIV-negative patients individually age-matched (±5  years) to 
the index HIV-positive, treated patient (HIV-). Noninclusion 
criteria were current/former smokers; history of coronary heart 
disease, stroke, angina, or myocardial infarction; active/chronic 
viral hepatitis infection; undergoing systemic chemotherapy 
or steroids. All participants gave their written informed con-
sent, and the protocol was approved by the Hotel-Dieu Ethics 
Committee.

For this study, we included participants with available 
serum samples. Individuals with severe renal dysfunction 
(estimated creatinine clearance <30 mL/min) were excluded 
due to the strong effect of kidney function on metabolite con-
centrations [15].

Carotid Intima-Media Thickness Measurements

c-IMT was calculated as a composite measure (12-site mean) 
of the maximal common carotid artery (cca)–IMT, bifurca-
tion IMT, and internal carotid artery IMT bilaterally, outside of 

plaque, and are reported in mm [4]. c-IMT measurements were 
performed offline with quality IMT automatic measurement 
software. A subgroup of patients in the HIV+ ART+ group also 
had a second measurement of cca-IMT a median (interquartile 
range) of 5.1 (4.8–5.3) years from participating in the cross-sec-
tional study.

Laboratory Measurements

Individuals had been fasting (12 hours) before their visit. Blood 
samples were retrieved and processed at a single center and 
stored at –80°C until use. Interleukin (IL)-6, IL-10 (Bender 
Medsystems, Burlingame, CA, USA), resistin, and soluble(s)
CD14 (R&D Systems, Minneapolis, MN, USA) levels were ana-
lyzed using an enzyme-linked immunosorbent assay. Serum 
ultrasensitive C-reactive protein (us-CRP) was measured by 
immononephelometry on an IMMAGE analyzer (Beckman-
Coulter, Miami, FL, USA). Plasma D-dimer was measured 
by enzyme-linked fluorescent assay on a VIDAS analyzer 
(Biomérieux, Marcy-l’Etoile, France). Inducible protein (IP)–
10, fractalkine, Monokine induced by gamma interferon (MIG), 
monocyte chemoattractant protein (MCP)–1, E-selectin, and 
tumor necrosis factor (TNF)–α were quantified from plasma 
using the BD Cytometric Bead Array system (BD, Franklin 
Lakes, NJ, USA).

Immunological Function

Cell samples were available on a randomly selected subset of 30 
HIV+ ART+ patients [16]. Activated CD8+ and CD4+ memory 
T cells (CCR7-CD27-CD45RA+/-, defined by expression of 
the CD38 and Ki67 markers) and immunosenescence (defined 
by expression of CD57 on memory T cells) were analyzed on 
a LSR2 flow cytometer (Becton Dickinson, Franklin Lakes, NJ, 
USA) with appropriate isotype controls and color compensation.

Ultraperformance Liquid Chromatography Coupled With High-Resolution 
Mass Spectrometry Metabolomics

Reference compounds and a 13C and 15N stable isotope-labeled 
mix of amino acids were purchased from Sigma-Aldrich (Saint 
Quentin Fallavier, France), along with liquid chromatography–
mass spectrometry (LC-MS)–grade solvents, acetonitrile, and 
formic acid. Deionized water was obtained from a Milli-Q Elix 
system fitted with a LC-PaK and a MilliPak filter at 0.22  μm 
(Merck Millipore, Guyancourt, France).

Sample preparation and liquid chromatography coupled with 
high-resolution mass spectrometer experiments were carried 
out as reported [17, 18]. Briefly, 8 volumes of frozen acetonitrile 
(–20°C) containing internal standard (labeled mixture of amino 
acids at 12.5 µg/mL) were added to 100 µL of serum samples 
and vortexed. The resulting samples were then sonicated and 
incubated at 4°C during 1 hour for slow protein precipitation. 
Samples were centrifuged for 20 minutes at 20.000×g at 4°C. 
Supernatants were transferred to another series of tubes and 
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then dried and stored at –80°C before LC-MS analyses. Samples 
were reconstituted in a 3-fold dilution of H2O/ACN (95/05).

Ultraperformance liquid chromatography coupled with high-
resolution mass spectrometry experiments were performed 
using a chromatographic column Discovery HS F5-PFPP, 5 µm, 
2.1×150 mm (Sigma, Saint Quentin Fallavier, France) at 35°C 
in a UPLC Waters Acquity (Waters Corp, Saint-Quentin-en-
Yvelines, France) and Q-Exactive mass spectrometer (Thermo 
Fisher Scientific, Illkirch, France).

Statistical Analysis

To perform our analysis, we used pathways of the major mapped 
metabolites from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [19] that have been involved in previous studies on 
HIV/ART or c-IMT. These metabolic pathways were purine and 
pyrimidine metabolism, lysine and dietary choline catabolism, 
tryptophan catabolism, and citrate cycle. All metabolite levels 
are reported in log10-transformed area values (log10 (area)).

In an initial analysis, we examined metabolite differences be-
tween HIV/ART groups. First, we compared the overall varia-
tion of metabolite levels, within the 4 selected pathways, across 
groups using an F-statistic from Wilks’ lambda in a multivariate 
analysis of variance (MANOVA). Second, we identified me-
tabolite features that were differentially altered between HIV/
ART groups. Mean metabolite levels were compared between 
(i) HIV+ ART+ vs HIV-, (ii) HIV+ ART- vs HIV-, and (iii) 
HIV+ ART+ vs HIV+ ART- using an unpaired t test. P values 
were adjusted using the Benjamini-Hochberg procedure. The 
log2 mean fold change of the log10 (area) levels between groups 
was also calculated for each metabolite. We defined metabolite 
features as those with an adjusted P value <.05 and a >.25 or 
<–.25 log2 mean fold change in log10 (area). This analysis was 
carried out using the R package “omu.”

In a subsequent analysis, we focused on HIV+ ART+ parti-
cipants and studied the relationship between metabolite levels 
and c-IMT. We first used univariable analyses to identify can-
didate metabolites, which were tested in subsequent analyses. 
First, change in c-IMT for each log10 (area) increase in metab-
olite level was estimated with linear regression in univariable 
analysis. A  multivariable analysis model was constructed in 
which an a priori selection of covariables based on prior re-
search [4, 15] (age, prior hypertension, diabetes, and creatinine 
clearance) and metabolites with P < .1 in univariable analysis 
were included, whereas metabolites with P > .1 were removed 
in backwards-stepwise fashion. Second, the same metabolites 
associated with c-IMT in univariable analysis were used to 
model (1) change in cca-IMT for each log10 (area) increase in 
metabolite level and (2) change in slope of cca-IMT regression/
progression per year for each log10 (area) increase in metabo-
lite concentration among those with 2 cca-IMT measurements. 
Univariable and multivariable models were constructed as 
above. Significance for these analyses was determined by a P 

value <.05, and no P value adjustments were made in order to 
avoid adverse reduction in type II error [20].

Other analyses were conducted to determine the corre-
lation (Spearman rank) between metabolites of the same 
pathway, as illustrated with correlation networks using 
Cytoscape, version 3.6.1 [21], and to determine the correla-
tion between metabolites and markers of inflammation/im-
munity or HIV severity, as illustrated with heatmaps using 
the R package “gplots.” Significance for these analyses was de-
termined by a P value <.05.

Statistical analysis was performed using STATA (ver-
sion 12.1; College Station, TX, USA) and R (version 3.2.0; 
Vienna, Austria).

RESULTS

Characteristics of the Study Population

Of the 150 included males, 2 without an available serum sample 
and 1 with severe renal dysfunction in the HIV+ group were 
not included.

Demographic, HIV-related, and cardiovascular-related char-
acteristics are described in Supplementary Table 1.  The large 
majority had a BMI <30  kg/m2 (97%), and only 6% had ≥1 
comorbidity (diabetes, prior hypertension, or moderate renal 
dysfunction). Any use of cannabis, cocaine, and/or methamphet-
amine within <12 months was most common in HIV+ ART+ 
participants (28.6%), followed by HIV+ ART- (12.5%) and 
HIV- (2.0%) participants (P < .001). In the HIV+ ART+ group, 
HIV-infection was mostly controlled, with a median ART dura-
tion >4 years and 94% under viral suppression (<50 copies/mL).

Differences in Metabolites Between HIV/ART Groups

Using MANOVA, significant variations in metabolite levels 
were observed in the tryptophan metabolism (P < .001) and 
citrate cycle (P < .001) pathways, but not purine/pyrimidine 
metabolism (P = .08) or lysine and dietary choline catabolism 
(P = .14). Metabolite features were as follows: HIV+ ART+ 
vs HIV-: increased relative levels of N6,N6,N6-trimethyl-L-
lysine and decreased ferulate and 5-hydroxy-L-tryptophan 
(Figure 1A); HIV+ ART- vs HIV-: increased malate, kynurenine, 
2-oxoglutarate, and indole-3-acetate and decreased succinate 
and 5-hydroxy-L-tryptophan (Figure 1B); and HIV+ ART+ vs 
HIV+ ART-: decreased succinate (Figure 1C).

Correlation Between Metabolites of the Same Pathway According to HIV/
ART Groups

In the purine/pyrimidine metabolism pathway (Figure 2A), a 
strong correlation was observed between inosine and guano-
sine in HIV+ ART+ individuals (rho = .836; P < .001), which 
remained in HIV- individuals (Supplementary Figure 1A). In 
the lysine and dietary choline catabolism pathway (Figure 2B), 
strong correlations were observed between pipecolate and 
carnitine (rho = .408; P = .004), N6,N6,N6-trimethyl-L-lysine 
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Figure 2.  Correlation networks between metabolites in HIV-positive patients treated with antiretroviral therapy. Correlation networks between metabolites of the purine/
pyrimidine metabolism (A), lysine degradation (B), tryptophan metabolism (C), and citrate cycle (D) pathways. Positive and negative correlations are depicted in blue and red, 
respectively. Stronger correlations have thicker lines and colored shading. Metabolites are arranged in an edge-weighted, spring-embedded layout.
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and lysine (rho = .322; P = .02), and N6,N6,N6-trimethyl-
L-lysine and 2-aminoadipate (rho = .391; P = .005) in 
HIV+ ART+ individuals, whereas these correlations were 
not apparent in HIV- individuals (Supplementary Figure 
1B). In the tryptophan metabolism pathway (Figure  2C), 
fairly weak correlations were observed between metabolites 
in HIV+ ART+ individuals, with the exception of indole-3-
acetaldehyde and serotonin (rho = .989; P < .001), and while 
this correlation held in HIV- individuals (Supplementary 
Figure 1C), other correlations emerged. In the citrate cycle 
pathway (Figure 2D), only citrate and isocitrate were signif-
icantly correlated (rho = .439; P = .002), whereas this cor-
relation and 1 between malate and isocitrate emerged in 
HIV- individuals (Supplementary Figure 1D).

Metabolites Associated With IMT and its Progression

Focusing on HIV+ ART+ individuals, we identified 4 me-
tabolites associated with higher c-IMT levels (xanthosine, 
uridine, indole-3-acetate, and quinolinate) and 2 with lower 
c-IMT (pipecolate and g-butyrobetaine) in univariable 
analysis (Table  1). All except pipecolate remained signifi-
cant in multivariable analysis, with additional adjustment 
for age, prior hypertension, diabetes, and creatinine clear-
ance. Metabolites that were not associated with c-IMT in 
univariable analysis are presented in Supplementary Table 2.

We used the metabolites associated with c-IMT in univariable 
analysis as candidates for 2 subsequent multivariable analyses. 
First, cca-IMT was used as an end point and was found to be 

significantly associated with only g-butyrobetaine and indole-
3-acetate (Table 1). Second, when examining the evolution of 
cca-IMT in the subset of participants with 2 measures, signif-
icantly faster progression of IMT was observed with higher 
baseline indole-3-acetate and quinolinate levels.

Of note, these associations were not observed in HIV+ ART-
naïve (data not shown) or HIV-negative participants 
(Supplementary Table 3).

Metabolites Associated With Immune and Inflammatory Markers

Of the metabolites associated with c-IMT levels, most were not 
associated with profiles of high inflammation levels (Figure 3). 
However, uridine of the purine/pyrimidine metabolism 
pathway was strongly correlated with several markers of inflam-
mation and cytokines (Figure 3A), and there was a significant 
correlation between quinolinate of the tryptophan metabolism 
pathway and TNF-α levels (rho = .334; P = .02) (Figure 3C). Of 
all the candidate metabolites, g-butyrobetaine was significantly 
correlated with percentage of naïve CD4+CD27+CD45RA+ 
(rho = .409; P = .03), memory CD4+ (rho  =  –.469; P = .009), 
naïve CD8+CD27+CD45RA+ (rho = .469; P = .009), and 
memory CD8+CD57+ senescent cells (rho = .422; P = .02) 
(Supplementary Figure 2). Pipecolate was also significantly 
correlated with percentage of CD4+CD57+ cells (rho = .378; 
P = .04).

Of note, 4 of the 5 metabolites involved in the citrate cycle 
were significantly associated with TNF-α and/or D-dimer 
(Figure 3D).
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Metabolites Associated With Markers of HIV Infection Severity

As shown in Table 2, none of the metabolites associated with 
c-IMT in univariable analysis were significantly correlated 
with CD4+ T-cell count, nadir CD4+, or CD4:CD8 ratio in 
HIV+ ART+ participants. Nevertheless, higher levels of xan-
thine were significantly correlated with lower CD4+ nadir, and 
higher orotate and L-carnitine levels with higher CD4+ nadir 
(Table 2). Higher indolelactate levels were significantly correl-
ated with a lower CD4:CD8 ratio and kynurenate with lower 
CD4+ T-cell count. All other correlations are provided in 
Supplementary Table 4.

DISCUSSION

We report that in ART-controlled HIV-positive males but not 
HIV-positive ART-naïve or HIV-negative controls, c-IMT and 
its progression were positively associated with metabolites de-
rived from the Trp catabolism pathway, indole-3-acetate and 
quinolinate. Xanthosine and uridine metabolites derived from 
purine/pyrimidine metabolism were positively associated with 
c-IMT, whereas the derivative g-butyrobetaine from the ly-
sine and dietary choline degradation was inversely associated 
with c-IMT.

Of all the pathways studied, metabolites of Trp catabolism were 
the only ones consistently associated with c-IMT/cca-IMT at the 
cross-sectional visit, as well as cca-IMT progression. Kynurenine 
and, to a lesser extent, kynurenic acid (KA) have already been 
identified as correlates with c-IMT and CVD, but these asso-
ciations were observed mostly in patients with end-stage renal 
disease [15]. Few studies have evaluated the association between 
these metabolites and CVD outcomes in HIV-positive individuals. 
For instance, a study in 105 ART-naïve HIV-positive individuals 
from Uganda demonstrated that lower absolute values of KTR 

6 months after ART initiation, specifically among those achieving 
an undetectable HIV viral load, were associated with lower c-IMT 
levels when measured 7 years after treatment initiation [22]. In 
other cohorts, HIV-positive individuals, compared with HIV-
negative, were found to have lower levels of Trp but comparable 
levels of KA, whereas higher levels of Trp and lower KA or KA/Trp 
ratio were associated with a decreased risk of carotid artery plaque 
formation after a median of 7 years of follow-up [23]. Although 
this study importantly stresses the role of Trp catabolites in in-
creased CVD risk among HIV-positive patients, the relationship 
with c-IMT was not provided, and other classical Trp catabolites, 
such as kynurenine, were not measured. Furthermore, this pre-
vious observation stemmed from study populations with a high 
prevalence of comorbidities and smokers, thereby increasing the 
risk of residual confounding bias.

In our study, we observed that Trp and KA were never iden-
tified as metabolite features between HIV/ART groups, yet 
5-hydroxy-L-tryptophan was a feature with lower levels in HIV-
positive individuals, regardless of ART status. We also confirmed 
the higher levels of kynurenine in HIV+ ART- individuals com-
pared with HIV-negative individuals [10, 11, 24]. None of these 
metabolites, however, were associated with c-IMT in our study, 
and instead only indoleacetate and quinolinate were positively 
associated with c-IMT after adjusting for age, hypertension, di-
abetes, and creatinine clearance. Importantly, this association 
was not apparent in HIV+ ART-naïve and HIV-negative con-
trols, implying that the underlying role of these metabolites in 
CVD is specific to ART-controlled HIV infection. It should be 
mentioned that indole-3-acetate and quinolinate have been as-
sociated with CVD and/or c-IMT in patients with end-stage 
renal disease [25, 26]. As all but 2 patients in our cohort had 
normal creatinine clearance levels, any impact of renal function 
on our results was likely minimal.

Table 2.  Association Between Metabolites and Immunological Parameters in HIV-Positive Patients Treated With Antiretroviral Therapy

Correlation

CD4+ T Cell CD4+ Nadir CD4:CD8 Ratio

Purine/pyrimidine metabolism    

  Xanthine –0.0486 –0.2876 –0.0912

  Xanthosine 0.1053 0.1359 0.2084

  Orotate 0.0398 0.2889 –0.0345

  Uridine 0.1494 0.1091 0.2433

Lysine degradation    

  Pipecolate 0.0510 0.0304 –0.0441

  g-butyrobetaine 0.0844 0.0541 –0.0733

  Carnitine 0.0848 0.2886 0.2886

Tryptophan metabolism    

  Indole-3-acetate 0.0310 0.0310 0.0310

  Kynurenate –0.2970 –0.0900 –0.0647

  Indolelactate –0.1000 –0.0814 –0.3054

  Quinolinate 0.0992 –0.0200 0.0825

Only metabolites with significant Spearman’s correlations (as well as metabolites identified in the c-IMT cross-sectional analysis of Table 1) are provided; those with nonsignificant correl-
ations are provided in Supplementary Table 4. Significant correlations are in bold.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofz516#supplementary-data
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How these metabolite imbalances could consequently im-
pact CVD remains debatable. In a previous study, the KTR 
largely explained the dysbiosis in gut microbiota observed in 
HIV+ ART+ vs HIV-negative individuals [27], whereas an-
other study found a close link between Trp or KA levels and 
several taxa of gut microbiota in HIV-positive individuals [28]. 
Meanwhile, the KTR has been associated with both altered gut 
microbiota and endothelial dysfunction in the HIV-positive 
population [29], suggesting some indirect mechanism associ-
ated with intestinal flora. We did observe a strong correlation 
between KTR and kyurenine levels with sCD14, a marker of 
active microbial translocation but also innate immune activa-
tion [30]. However, their levels were not associated with c-IMT. 
Systemic inflammation from metabolite imbalances could be 
another reason for increases in c-IMT, as reported mainly in 
ART-naïve patients [10]. In our study, kynurenine and KA were 
strongly associated with D-dimer, whereas quinolinate was only 
correlated with TNF-α and no other markers of inflammation. 
Furthermore, there was no correlation between quinolinate or 
indole-3-acetate and activated or senescent CD4+/CD8+ cells, 
which could promote systemic inflammatory responses [31]. 
These observations overall do not support the influence of low-
grade inflammation as an explanation for these findings.

Among metabolites of the lysine, carnitine, and dietary 
choline catabolic pathways, TMAO was not identified as a 
metabolite feature of HIV+ ART+ compared with HIV- indi-
viduals and was not associated with c-IMT [20]. This result is 
in line with previous findings on coronary artery plaque level 
[32]. Nevertheless, TMAO might not be an adequate pre-
dictor of cardiovascular disease in HIV-positive individuals 
[20]. We did identify another metabolite from this pathway, 
g-butyrobetaine, which was negatively associated with c-IMT 
and cca-IMT. Others have shown the proatherogenic proper-
ties of g-butyrobetaine [33], and its levels have already been 
associated with both carotid artery atherosclerosis and cardio-
vascular mortality in patients with carotid artery stenosis [13]. 
However, levels of this metabolite could be reflective of lacking 
synthesis to carnitine, which leads to TMAO production and 
further vascular damage [34] or imbalances in gut microbiota 
[33]. G-butyrobetaine was significantly and positively correl-
ated with naïve T cells, but also senescent CD8+ cells, sugges-
tive of highly active adaptive immune responses in individuals 
with higher g-butyrobetaine levels. However, the indirect rela-
tionship of these metabolites to immunity is unclear. The mech-
anisms driving the association between g-butyrobetaine and 
c-IMT require further study in HIV+ ART+ individuals.

Of the metabolites derived from the purine/pyrimidine me-
tabolism pathway, higher xanthosine and uridine levels were 
associated with higher c-IMT in the present study. Such an as-
sociation has not been reported previously. Nonetheless, altered 
levels of metabolites in these pathways, particularly xanthosine 
and pseudouridine, have been reported in older individuals, 

with high expression of genes linked to inflammasome and in 
turn associated with increased risk of all-cause mortality [35]. 
A recent study has reported that glutamine levels were increased 
in matched HIV-positive individuals with vs without coro-
nary artery disease [36], but it only evaluated 15 amino acids. 
Glutamine levels were decreased in HIV+ ART+ vs HIV+ ART- 
in our study, yet they were not associated with c-IMT.

Considering the significant differences in metabolite levels 
between HIV/ART groups observed in our study population 
and others [8, 24, 37, 38], it is possible that some metabolites 
are related to the severity of HIV infection [8, 37]. Accordingly, 
we observed that carnitine from lysine and dietary choline ca-
tabolism and xanthine and orotate from the purine/pyrimidine 
pathway were correlated with nadir CD4+ T-cell count. Higher 
levels of metabolites from the Trp catabolism pathway were 
more strongly correlated with lower CD4+ T-cell counts and 
CD4:CD8 ratio.

HIV infection has been previously associated with mitochon-
drial dysfunction [8, 37, 38], whereby mitochondrial content 
within cells increases and results in higher KTR and levels of 
metabolites from the TCA cycle [38]. Indeed, most metabolites 
derived from the TCA cycle were identified as metabolite fea-
tures with higher levels in HIV+ ART- participants, and some 
were strongly correlated with several inflammatory markers in 
HIV+ ART+ participants, arguing for mitochondrial dysfunc-
tion in the presence of low-grade inflammation during effective 
ART. Nonetheless, this seemed unrelated to c-IMT.

There are certain limitations of our study. First, the analysis 
was limited to 48–50 participants in each HIV/ART group. The 
small sample sizes precluded any in-depth analysis of other fac-
tors, such as specific classes of antiretroviral agents. Second, 
aside from the reduced confounding bias of important factors, 
namely smoking and gender, due to the exposure-matched 
design, our results might not be generalizable to other popu-
lations. Third, the strict selection of this population likely re-
duced the variability of metabolite levels, explaining why the 
criteria for metabolite features included a 0.25-fold log2 mean 
change compared with the more commonly used 2-fold change. 
Nevertheless, the 2-fold cutoff has been criticized as arbitrary 
and not entirely applicable to metabolomics data [39]. Fourth, 
there was a significantly higher proportion of HIV+ ART+ in-
dividuals with illicit drug use, higher HDL, and lower triglyc-
eride levels than HIV- individuals. These differences could have 
confounded our findings, yet it is unclear how drug use or lipid 
parameters influence metabolite concentrations. Finally, ana-
lyses of cellular markers of immunity and cca-IMT progression 
were conducted in a subset of the original study population.

In conclusion, our data suggest that disturbances in the Trp, 
nucleoside, and Lys-dietary choline catabolic pathways could 
be involved in HIV-related atherosclerosis. Given that the Trp 
catabolites TMAO and butyrobetaine are also products of the 
gut microbiota, an attractive explanation would be that altered 
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gut microbiota observed in HIV-infected individuals, occurring 
during ART-induced viral suppression, could contribute to in-
creased risk of atherosclerosis via alterations in the Trp catab-
olism and lysine and dietary choline degradation pathways. 
Further research would be needed to confirm this hypothesis.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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