Skip to main content
. 2019 Dec 24;20(Suppl 25):684. doi: 10.1186/s12859-019-3258-7

Table 2.

MCC and ACC of adaptive LSTM and other three methods

Dataset Metrics ProbKnot Cylofold CentroidFold Adaptive Filter
TMR MCC 0.105 −0.043 0.106 0.434 0.581
ACC 0.531 0.485 0.561 0.630 0.786
SPR MCC 0.591 * 0.668 0.786 0.751
ACC 0.796 * 0.834 0.891 0.870
SRP MCC 0.262 −0.184 0.177 0.421 0.475
ACC 0.613 0.396 0.584 0.708 0.690
RFA MCC 0.398 0.256 0.299 0.451 0.699
ACC 0.677 0.624 0.650 0.661 0.834
ASE MCC 0.238 0.043 0.286 0.323 0.484
ACC 0.611 0.523 0.642 0.556 0.720
Average MCC 0.319 0.014 0.307 0.483 0.592
ACC 0.646 0.406 0.654 0.689 0.780

Boldface represents the highest MCC or ACC in comparison with the other three methods

*indicates Cylofold does not generate results on SPR dataset, since Cylofold can not accept the sequence with missing bases in SPR dataset