Table 2.
Dataset | Metrics | ProbKnot | Cylofold | CentroidFold | Adaptive | Filter |
---|---|---|---|---|---|---|
TMR | MCC | 0.105 | −0.043 | 0.106 | 0.434 | 0.581 |
ACC | 0.531 | 0.485 | 0.561 | 0.630 | 0.786 | |
SPR | MCC | 0.591 | * | 0.668 | 0.786 | 0.751 |
ACC | 0.796 | * | 0.834 | 0.891 | 0.870 | |
SRP | MCC | 0.262 | −0.184 | 0.177 | 0.421 | 0.475 |
ACC | 0.613 | 0.396 | 0.584 | 0.708 | 0.690 | |
RFA | MCC | 0.398 | 0.256 | 0.299 | 0.451 | 0.699 |
ACC | 0.677 | 0.624 | 0.650 | 0.661 | 0.834 | |
ASE | MCC | 0.238 | 0.043 | 0.286 | 0.323 | 0.484 |
ACC | 0.611 | 0.523 | 0.642 | 0.556 | 0.720 | |
Average | MCC | 0.319 | 0.014 | 0.307 | 0.483 | 0.592 |
ACC | 0.646 | 0.406 | 0.654 | 0.689 | 0.780 |
Boldface represents the highest MCC or ACC in comparison with the other three methods
*indicates Cylofold does not generate results on SPR dataset, since Cylofold can not accept the sequence with missing bases in SPR dataset