Skip to main content
. 2019 Dec 24;20(Suppl 19):703. doi: 10.1186/s12859-019-3282-7

Table 3.

Performance (five-fold cross validation) of the predictive models for each serotype when using PCC for feature selection. SVM: Support Vector Machine; Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient

Serotype Feature selection Classifiers Bin size Number of features Sn Sp Acc MCC
I a PCC Random Forest 9 35 100.0% 96.1% 97.3% 0.939
SVM 9 28 100.0% 99.6% 99.8% 0.994
I b Random Forest 3 38 100.0% 93.3% 95.3% 0.899
SVM 3 30 100.0% 99.3% 99.5% 0.988
III Random Forest 6 7 91.0% 90.2% 90.5% 0.795
SVM 6 7 91.0% 89.7% 90.2% 0.789
V Random Forest 9 46 100.0% 92.3% 94.6% 0.885
SVM 9 43 100.0% 99.6% 99.8% 0.994
VI Random Forest 6 31 97.3% 91.6% 93.7% 0.872
SVM 7 18 94.6% 93.2% 93.7% 0.868