Skip to main content
. 2019 Dec 24;20(Suppl 19):661. doi: 10.1186/s12859-019-3214-6

Table 2.

Performances of DDI-PULearn and the benchmark methods evaluated by 20 runs of 3-fold cross-validation and 5-fold cross-validation

Evaluation Method Precision Recall F1-score
3-fold CV Vilar’s substructure-based method 0.145 0.535 0.229
Vilar’s interaction-fingerprint-based method 0.377 0.553 0.447
Zhang’s weighted average ensemble method 0.782 0.703 0.740
Zhang’s L1 classifier ensemble method 0.788 0.717 0.751
Zhang’s L2 classifier ensemble method 0.784 0.712 0.746
DDI-PULearn 0.902 0.822 0.860
5-fold CV Vilar’s substructure-based method 0.145 0.535 0.229
Vilar’s interaction-fingerprint-based method 0.377 0.553 0.447
Zhang’s weighted average ensemble method 0.775 0.659 0.712
Zhang’s L1 classifier ensemble method 0.785 0.670 0.723
Zhang’s L2 classifier ensemble method 0.783 0.665 0.719
DDI-PULearn 0.904 0.824 0.862