Table 2.
The performance results of DR-IBRW and comparing methods on Gottlieb’s dataset [11] and Luo’s dataset [12]
AUROC | AUPR | Micro-F1 | Macro-F1 | Precision | Recall | |
---|---|---|---|---|---|---|
Gottlieb’s dataset | ||||||
DR-IBRW | 0.955±0.000 | 0.499±0.174 | 0.613±0.006 | 0.513±0.005 | 0.332±0.002 | 0.880 ±0.000 |
MBiRW | 0.933 ±0.000 | 0.213 ±0.028 | 0.294 ±0.004 | 0.244 ±0.003 | 0.256 ±0.001 | 0.906±0.000 |
BLM | 0.865 ±0.000 | 0.298 ±0.003 | 0.583 ±0.001 | 0.479 ±0.001 | 0.315 ±0.000 | 0.891 ±0.000 |
JI | 0.845 ±0.001 | 0.247 ±0.043 | 0.385 ±0.003 | 0.462 ±0.004 | 0.250 ±0.001 | 0.894 ±0.181 |
HGBI | 0.811 ±0.000 | 0.016 ±0.000 | 0.187 ±0.001 | 0.157 ±0.001 | 0.101 ±0.000 | 0.367 ±0.007 |
NBI | 0.503 ±0.000 | 0.000 ±0.000 | 0.022 ±0.000 | 0.018 ±0.000 | 0.012 ±0.000 | 0.039 ±0.001 |
Luo’s dataset | ||||||
DR-IBRW | 0.964±0.000 | 0.529±0.167 | 0.537±0.006 | 0.452 ±0.004 | 0.294±0.002 | 0.895±0.002 |
MBiRW | 0.945 ±0.000 | 0.285 ±0.042 | 0.431 ±0.004 | 0.363 ±0.003 | 0.236 ±0.001 | 0.835 ±0.013 |
BLM | 0.892 ±0.000 | 0.424 ±0.017 | 0.527 ±0.003 | 0.463±0.004 | 0.278 ±0.001 | 0.843 ±0.000 |
JI | 0.865 ±0.000 | 0.287 ±0.041 | 0.537 ±0.004 | 0.447 ±0.003 | 0.294 ±0.001 | 0.783 ±0.000 |
HGBI | 0.848 ±0.000 | 0.037 ±0.001 | 0.170 ±0.001 | 0.141 ±0.001 | 0.093 ±0.000 | 0.318 ±0.005 |
NBI | 0.479 ±0.000 | 0.000 ±0.000 | 0.020 ±0.000 | 0.016 ±0.000 | 0.011 ±0.000 | 0.032 ±0.000 |
The entry in boldface represent the method perform best in this evaluation metric