Luo BMC Bioinformatics 2019, 20(Suppl 25):692

https://doi.org/10.1186/512859-019-3266-7 B M C Bl o) | nfo rm atl cS

RESEARCH Open Access

A systematic evaluation of copy number ®
alterations detection methods on real SNP
array and deep sequencing data

Fei Luo

Check for
updates

From 2018 International Conference on Intelligent Computing (ICIC 2018) and Intelligent Computing and Biomedical Inform-
atics (ICBI) 2018 conference
Wuhan and Shanghai, China. 15-18 August 2018, 3-4 November 2018

Abstract

Background: The Copy Number Alterations (CNAs) are discovered to be tightly associated with cancers, so
accurately detecting them is one of the most important tasks in the cancer genomics. A series of CNAs
detection methods have been proposed and new ones are still being developed. Due to the complexity of
CNAs in cancers, no CNAs detection method has been accepted as the gold standard caller. Several
evaluation works have made attempts to reveal typical CNAs detection methods' performance. Limited by the
scale of evaluation data, these different comparison works don't reach a consensus and the researchers are
still confused on how to choose one proper CNAs caller for their analysis. Therefore, it needs a more
comprehensive evaluation of typical CNAs detection methods’ performance.

Results: In this work, we use a large-scale real dataset from CAGEKID consortium to evaluate total 12 typical
CNAs detection methods. These methods are most widely used in cancer researches and always used as
benchmark for the newly proposed CNAs detection methods. This large-scale dataset comprises of SNP array
data on 94 samples and the whole genome sequencing data on 10 samples. Evaluations are comprehensively
implemented in current scenarios of CNAs detection, which include that detect CNAs on SNP array data, on
sequencing data with tumor and normal matched samples and on sequencing data with single tumor
sample. Three SNP based methods are firstly ranked. Subsequently, the best SNP based method's results are
used as benchmark to compare six matched samples based methods and three single tumor sample based
methods in terms of the preprocessing, recall rate, Jaccard index and segmentation characteristics.

Conclusions: Our survey thoroughly reveals 12 typical methods' superiority and inferiority. We explain why
methods show specific characteristics from a methodological standpoint. Finally, we present the guiding
principle for choosing one proper CNAs detection method under specific conditions. Some unsolved
problems and expectations are also addressed for upcoming CNAs detection methods.
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Introduction

Copy Number Variations (abbreviate it to CNVs) is
one kind of genomic structural variation defined as a
gain or loss region in size over 1kb. Recently, CNVs
have been found to be linked to complex traits in
humans and have tight relationship [1] with the
transcriptome [2] and gene expression [3]. Through
being present in the functional genomic regions,
CNVs could affect gene dosage, gene disruption and
gene fusion. Different from other molecules’ associ-
ation with cancers [4-6], copy number change
involves in the initiation and development of cancers
in a way that copy numbers are different in an indi-
vidual’'s germline DNA and in the DNA of a clonal
sub-population of cells. Such copy number change is
specially called as somatic CNAs (copy number alter-
ations) [7, 8]. The difference between CNAs and
CNVs is that copy number alterations are changes in
copy number that have arisen in somatic tissue and
copy number variations originate from changes in
copy number in germline cells. Many oncogenes and
tumor suppressors are associated with the CNAs [9-
11]. In non-small-cell lung cancer, heavy smoking pa-
tients have significantly copy number gains in 8q and
12q [12]. Copy number gain of gene EGFR is associ-
ated with the HER2-positive breast cancer [13]. Be-
sides disease-driven genes, CNAs also harbor tumor
related miRNAs [14, 15]. Two international research
organizations TCGA (the cancer genome atlas) [16]
and ICGC (international cancer genome consortium)
[17] are dedicating to collecting and deeply interro-
gating the variants of typical cancers’ genomics. In
the both of them, the CNAs is a hotspot to under-
stand the cancer etiology.

Over decades, the SNP array (single nucleotide
polymorphism array) and the aCGH array (array com-
parative genomic hybridization array) have been
widely applied to detect CNAs [18, 19]. Due to
probes’ low-resolution, these two micro-array plat-
forms are suitable for CNAs research in a population.
Deep sequencing offers an alternative way to discover
CNAs in any size [20]. Nowadays, deep sequencing
has four possible strategies to translate the mapping
configuration of short reads to the CNAs findings.
The first one makes use of the read depth informa-
tion. The number of reads mapped to certain position
of the genome is proportional to the DNA copy num-
ber. Any copy number deviation from the normal
state will be reflected as increment (gain) or decre-
ment (loss) of the read count. The second one is
based on the paired-end reads. One DNA fragment is
sequenced from both ends, which are called as paired
end reads. If no variant occurs in the region marked
by this pair of reads, their mapping positions should
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satisfy with the restrictions of the distance, strand
and direction. The third one is based on the read
split. Through examining whether one read is split
into two discontinuous parts, the breakpoints of a
variant could be identified. Due to the limitation of
read length, paired-end and read split are only suit-
able for discovering the Indel variants. The final strat-
egy is the de novo assembly. In theory, the de novo
assembly could detect any structural variant, but the
inherent computational insufficiency is the obstacle
for its widely application.

Notable, the CNVs and CNAs are two completely
different biological concepts. The CNVs and CNAs
detection procedures for SNP based methods are usu-
ally different. However, sequencing based methods
seldom consider genotype information, partly because
of no enough sequencing depth and accuracy to de-
tect aneuploidy and LOH (Loss of Heterozygosity).
When only using the read depth information, the
CNVs and CNAs detection procedures for sequencing
based method are quite similar.

A series of CNAs detection methods have been pro-
posed and several attempts have been made to com-
pare the existing methods. Mosén [21] compared six
CNAs detection methods (ASCAT, GAP, GenoCNA,
GPHMM, MixHMM and OncoSNP) based on SNP
array data. Magi [22] discussed six read counts based
CNAs detection methods (RDXplorer, ReadDepth,
CNAseg, CNV-seq, JointSLM and CNVnator). Duan
[23] did the similar work on the methods CNV-seq,
FREEC, SegSeq, ReadDepth, CNVnator and RDXp
lorer. Alkodsi [24] compared 12 methods (BICseq,
HMMcopy, CNAnorm, SegSeq, COPS, CNAseg and
rSW-seq for WGS data, ExomeCNV, VarScan2,
ADTEx for WES data, and ControlFreeC for WGS
WES). However, there are some limitations in these
comparison works. Firstly, most evaluations are imple-
mented on the synthetic datasets or small-scale real
datasets. The reliability of conclusions greatly relies
on how well the hypothesis to generate the synthetic
dataset approximates to the real scenarios. Even
though on real data, the comparisons just focus on
several chromosomes of one sample, rather than at
samples level. Secondly, using inappropriate way to
compare those methods that need different data. For
example, CNVseq needs normal sample as reference
to call somatic CNAs, whereas ReadDepth, CNVnator,
and RDXplorer only depend on tumor sample to call
both germline and somatic variants by the GC-
content correction. The matched samples and the
GC-content correction for only tumor sample couldn’t
place on equal footing, because using tumor-normal
pair could not only eliminate the GC-content bias but
also the mappability and systematic errors. Magi and



Luo BMC Bioinformatics 2019, 20(Suppl 25):692

Duan both generate synthetic normal samples for
those methods that need matched samples. Finally,
some methods phased out. For instant, the alignable
coordinates file of SegSeq [25] only updates to hgl8.
CNAseg [26] has some errors in source code.

Although new CNAs detection methods are being
proposed, they still use above methods to prove their
own performance [27, 28]. Furthermore, the practical
genomic structural variation analysis projects are
incline to use typical CNAs methods to ensure the
conclusion’s comparability and authority [29, 30].
Therefore, in this work we exclude the outdated
methods and focus on those typical methods. All
methods will be evaluated on the renal clear cell car-
cinoma dataset, which contain the tumor and
matched normal samples detected not only by the
SNP array but also by the deep sequencing. It guaran-
tees the evaluation’s fairness and objectivity.

Methods

Typical methods selected to compare

According to mosén’s comparison conclusion, GAP
and GPHMM work best and are respectively recom-
mended to the professional and general users. The
OncoSNP could simultaneously use the tumor and
normal samples information. We take the GAP,
GPHMM and OncoSNP as the representatives of the
SNP based methods. The ReadDepth, CNVnator,
RDXplorer and CNVseq are mentioned in both works
[22, 23]. These four methods are also included in our

Table 1 The key features of 12 methods
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work. JointSLM is discarded for it’s special for CNAs
detection on a group of samples. Referring to the list
given by Xi [31] and Alkodsi [24], another five
methods are added into our work.

The Table 1 illustrates all 12 methods’ key features,
which are BICseq [32], CNVnorm [33], FREEC [34],
CNV_seq [35], rSWseq [36], Varscan [37], CNVnator
[38], ReadDepth [39], RDXplorer [40], GPHMM [41],
GAP [42], OncoSNP [43]. First six methods are sequen-
cing based methods that need tumor-normal pair samples.
CNVnator, ReadDepth and RDXplorer are also sequen-
cing based methods that only need tumor sample. Last
three ones are methods working on SNP array.

Dataset

Renal Cell Carcinoma (RCC) data from CAGEKID
(the CAncer GEnomic of the KIDney) consortium
[44] are used to compare the total 12 methods.
CAGEKID is a part of International Cancer Genome
Consortium (ICGC). Renal cell carcinoma accounts
for approximate 3% of the adult malignancies in the
worldwide [45]. RCC has four subtypes, including
clear cell, papillary, chromophobe and collecting duct
renal cell carcinoma. The clear cell carcinoma takes
up about 80% of RCC. RCC is one of the tumor types
for which there are currently no biological markers in
the routine clinical use and there are few treatment
options due to its inherent resistance to chemother-
apy and radiotherapy. So far, the renal cell carcinoma
of clear-cell type (ccRCC) has been reported

Method Window size Normalization Segmentation Contamination Ploidy
BICseq Manual Ratio centralization (built-in) Bayesian information No No
criterion
CNVnorm Manual GC, smoothing, Ratio centralization Circular binary Yes Yes
(built-in) segmentation
FREEC CV and Poisson distribution GC, mappability, Ratio centralization LASSO and dynamic Yes No
(built-in) programming
CNV_seq Gaussian Ratio and Geary-Hinkley Ratio centralization (manual) Consecutive Overlapping No No
transformation windows
rSWseq No need Ratio centralization (manual) Smith-Waterman No No
Varscan Fixed length broke by the gap Ratio centralization (manual) Circular binary No No
and significant change segmentation
CNVnator Manual GC Mean shift algorithm No No
ReadDepth Negative binomial GC, mappability Circular binary No No
segmentation
RDXplorer Manual GC Event wise testing No No
GPHMM - - HMM Yes Yes?
GAP - - Circular binary Yes Yes
segmentation
OncoSNP - - HMM Yes Yes®

“They don't directly give the ploidy estimation in the output file, but through baseline shift and exact copy number results the ploidy is indirectly known
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significant 3p deletion and chromosome 5 and 7 amp-
lification and some sporadic CNAs on other chromo-
somes [46].

We collect SNP array data of 94 RCC patients’ sam-
ples. They are genotyped by Illumina 660 W quad
BeadChip, which has more than 657,000 genetic
probes. To evaluate a dataset whether has a good
quality, two standard deviation thresholds 0.27 and
0.13 for LRR (Log R Ratio) and BAF(B Allele Fre-
quency) are recommend [47]. Shown in the Fig. 1,
most of samples meet these thresholds. The standard
deviation of BAF is smaller than that of LRR, indicat-
ing that the CNAs’ genotype states are more difficult
to distinguish than the copy number states. The
standard deviations of 94 samples’ LRR and BAF vary
widely enough to ensure comprehensive comparison.
The patients’ samples in CAGEKID project are se-
quenced by Illumina HiSeq 2000. The mean length of
the read is 100bp. All 10 samples’ reads are aligned
to NCBI 37 reference genome by the BWA.

The 12 methods have different output descriptions
for the copy number. The SNP based methods,
CNVnorm, FREEC, RDXplorer and ReadDepth output
exact copy number value, while the other methods
output copy number gain or loss. In order to unify
their output format, all copy number results are
transformed into the copy number gain or loss ac-
cording to the following formula. Because of the an-
euploidy [48] and the SNP array experiment protocol
that the genome DNA amounts hybridized to the
array are the same for all samples, the ploidy value
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rather than the absolute copy number 2 should be
used as the threshold to separate the copy number
gain and loss for the tumor samples.

copy number value

ploidy value > 1, gain

copy number value

ploidy value < 1, loss

Rank SNP based methods
For the tumor genomes, the chromosomal aneuploidy,
stromal contamination, and intratumoral heterogeneity
are three major obstacles to accurately detect the
CNAs. Depending on the genotype information, the
SNP based methods are more reliable in estimating
large-scale CNAs than the sequencing based methods.
Thus GAP, GPHMM and OncoSNP are firstly com-
pared, and then the best caller will be used as the
gold standard to evaluate the sequencing based
methods.

In order to evaluate the SNP based methods’ perform-
ance, we propose two criteria to rank GAP, GPHMM
and OncoSNP.

1) correct estimation for the baseline shift,
2) correct estimation for large length CNAs.

The aneuploidy is a frequently appearing
phenomenon in tumor genomes. It always makes the
LRR baseline of SNP array result shift away from
zero. Criterion one emphasizes that the accuracy of
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symbol is the BAF standard deviation

Fig. 1 The standard deviations of LRR and BAF for 94 RCC patients’ samples. The circle symbol is the LRR standard deviation and the triangle
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Fig. 2 An example demonstrates the process of ranking three methods' results. GAP wrongly judges the ploidy, so it's graded as 3. OncoSNP
loses the 3p and chromosome 18 deletions but has correct ploidy estimation. Thus it's graded as 2. GPHMM has correct ploidy estimation and no
chromosome-scale CNAs error, so it gets score 1
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LRR baseline shift estimation is the prerequisite for
correctly assigning copy number gain or loss. The
number of probes in a SNP chip is insufficient to
discover short length CNAs, but large length CNAs
take up most fraction of total CNAs length in a sam-
ple. Meanwhile, large size CNAs could be validated
by visualization. Therefore, the second criterion can
reflect CNAs calling accuracy. According to these two
criteria, three grades are generated.

if satisfying both 1 and 2, grade 1
if satisfying 1 but not 2, grade 2
if not satisfying 1, grade 3

When visually examining how three SNP based
methods satisfy with the criteria, raw LRR, BAF and
the CNAs outputs from three methods are depicted
in one figure, as shown in Fig. 2. All results are
validated by the expert’s visual examination. The best
SNP based method’s results will be wused as
benchmark.

Evaluate sequencing based methods

Since results from the SNP based methods are suffi-
cient to cover large events and most fraction of total
CNAs in one sample, the consistency with the best
SNP based result could reflect one sequencing based
method’s performance. We use the recall rate and the
Jaccard index to evaluate the degree of consistency
between the SNP based benchmark and the sequen-
cing based method. The Jaccard index is a statistic
for comparing the similarity and diversity of two sets.
As shown in the Fig. 3, recall rate could measure
how much part of the SNP based benchmark is
covered by the sequencing based method. It reflects
the true positive rate of the sequencing based
method. In theory, the sequencing based method
could discover more short CNAs benefitting from its
higher resolution, but the size of total short CNAs
only takes up a small part. If the Jaccard index is too
low, it means that the sequencing based method has
a high false positive rate.

SNP SEQ

recall rate=B/ (A+B) Jaccard Index=B/ (A+B+C)

Fig. 3 The recall rate and the Jaccard index used to measure the
consistency of the SNP based benchmark and the sequencing
based method
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Results

Evaluation of SNP based methods

Grades

When affected by the tumor samples’ aneuploidy, the
LRR baseline representing average copy number
would shift away from zero. Precise LRR baseline shift
estimation is the basis of copy number alteration
judgment [49].

As shown in the Fig. 4, 94 samples’ average LRR
baseline shift given by GPHMM, GAP and OncoSNP
are —0.02, -0.03 and-0.11. OncoSNP’s prediction
shows over aneuploidy. GPHMM and GAP get similar
baseline output and their predicting samples’ ploidy
level is basically accordance with the pathological
report.

Figure 5a depicts three methods’ ranking results.
GPHMM gets most grade 1 on total 94 samples. We
further divide the samples into two groups by their
ploidy. Shown in the Fig. 5¢, for near diploid samples,
GPHMM gets quite low grade 3 rate. However,
shown in the Fig. 5d, all three methods don’t work
well on 14 over diploid samples. The grade 1 rate of
three methods doesn’t reach 25%. It indicates that the
SNP based methods has no enough power to discrim-
inate the tiny difference of the over diploid samples’
complex BAF and LRR patterns, especially under the
existence of noises. OncoSNP is a little more sensitive
to aneuploidy than the other two methods, but this
sensitivity is at the expense of low specificity, shown
in Fig. 5b. About 19% diploid samples are mistakenly
predicted as the aneuploidy and at least one

0.2

0.0

baseline shift

Fig. 4 The LRR baseline shift estimation of three SNP based
methods and ploidy estimation of GPHMM. Y1 is the baseline shift.
Triangle is OncoSNP, circle is GPHMM and blue cross is the GAP. Y2
is the ploidy estimation. Yellow cross in Y2 is the GPHMM
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Fig. 5 The SNP based methods ranking results. a Grades on total 94 samples. b Sensitivity and specificity based on the ranking results. ¢ Three
methods’ comparison on near diploid samples. d Three methods’ comparison on over diploid samples
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chromosome-scale region of over 60% samples is
given wrong copy number by OncoSNP. The aberrant
baseline shift prediction reflects OncoSNP’s over
sensitivity.

OncoSNP versus GPHMM

Both based on the HMM model, GPHMM performs
much better than OncoSNP. Comparing HMM hid-
den states in the two methods, OncoSNP has 21
tumor states and is able to detect up to 6n CNAs,
while GPHMM has only 12 tumor states and predicts
up to 5n CNAs. Although OncoSNP takes more 9
states into consideration, these states mainly
distinguish germline LOH with somatic LOH. On the
contrary, GPHMM designs one more state for the
occasional signal fluctuation, which could tolerate the
noise’s influence. The higher true positive rate and
specificity on all near diploid samples and being able
to process samples of large LRR standard deviation
prove that GPHMM applies the HMM model more

successfully. OncoSNP produces some obvious wrong
results. For example, it predicts a low LRR region
with a greater copy number than a high LRR region.

GAP versus GPHMM

GAP gets grade 1 on 75% of near diploid samples.
For most of normal cases, GAP and GPHMM per-
form similarly, which is validated by their similar
DNA index output shown in the Fig. 6. The DNA
index is originally used by flow cytometer to
characterize DNA content of tumor genome relative
to normal diploid. In silico, DNA indexes are calcu-
lated by averaging segmental copy numbers. GPHMM
and GAP predict similar DNA index on 76 of total
94 samples, with the difference less than 0.1.

With more comprehensive comparison, the grade 1
rate of GAP is still less than GPHMM by 16%. Mosén
thought GAP to be better than GPHMM, but the
GPHMM’s author declares that GPHMM has been
underestimated. Our results prove that GAP is indeed
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Fig. 6 DNA index estimation of three methods on 94 samples. Total
94 samples are sorted in an ascend order according to the GPHMM's
DNA index estimation. Circle symbol represents the GPHMM. Cross
symbol is GAP. Triangle symbol is the OncoSNP

inferior to GPHMM. In theory, GAP is a kind of pat-
tern recognition method. GAP uses a two-dimension
grid as the solution space to cover all possible CNAs
configurations. By the side projection of one sample’s
BAF and LRR signals, each CNA candidate is repre-
sented as a circle in the grid. GAP matches the pro-
file of circles to a template to determine sample’s
copy number. GAP’s pattern recognition approach has
some inherent weaknesses. Firstly, GAP is not robust
and flexible. In the Fig. 7a, samples 396 and
K2110073 have quite similar pattern but just a little
difference in the BAF and LRR position. It may be
caused by different purity. GAP assigns K2110073 as
tetraploid, while assigns 396 as diploid. Secondly,
GAP is vulnerable to contamination. High contamin-
ation makes all circles shrink to the center. In the
Fig. 7b, 357 and RS114674 have quite similar pattern.
When circles’ boundary distance of sample 357 is
large enough, GAP could perfectly identify its CNAs
pattern. But for RS114674, when the shrinkage is high
and normal state’s circles overlap with those of the
copy number gains, GAP fails to get correct result.
Thirdly, GAP is incapable of dealing with outliers. In
the Fig. 7c, samples LR371 and 395 have large BAF
and LRR standard deviation. Such patterns are not
the typical known ones for GAP, and thus GAP is
unable to recognize them. In contrast, GPHMM could
robustly give satisfactory results for the above cases.
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Based on above comparison, GPHMM works best
among three SNP based methods on near diploid
samples. However, no method shows overwhelming
advantage over the others on over diploid samples.
Ten samples’ corresponding best SNP based CNAs
results are chosen as benchmarks for the evaluation
of the sequencing based methods.

Evaluation of sequencing based methods

Parameters

The first configuration for most of the sequencing
based methods is to cut certain size window for
calculation of the read count. Only rSWseq needn’t
dividing the genome into small windows in advance.
BICseq adopts an aggregation way to segment the
genome. Hence it is insensitive to the initial window
size setting. CNVseq, FREEC and ReadDepth could
automatically discover the optimal window size
parameters. FREEC needs specifying the coefficient of
variation to determine window size. ReadDepth’s win-
dow size is controlled by the false-discovery rate. We
use the default setting for all methods except
CNVseq. For CNVseq, the p-value and the threshold
for the gain and loss work together to decide the ini-
tial window size. Its default values 107> and 0.6 are
too stringent for our large coverage data. So we set
p-value = 0.01 and threshold = 0.2 for CNVseq.

Table 2 lists these 10 samples’ coverage informa-
tion, the ploidy estimation, the SNP based method’s
CNAs result used as benchmark and the estimated
windows size of FREEC, CNVseq and ReadDepth.
Ten samples’ coverage varies from 47X to 86X. The
window sizes of CNVseq and FREEC are inverse pro-
portional to the coverage. But for ReadDepth there is
no obvious relationship. Although CNVseq has been
accepted as the CNAs caller by many important
works [50, 51]. There is a severe error about window
size never be reported. In CNVseq source code, the
estimated window size would be divided into a half to
create a new variable “step”, which is used to coord-
inate the windows along the genome. When the win-
dow size is an odd number, CNVseq will truncate the
float number result to an integer number. CNVseq
expects the numbers like x.5 always round to the
floor, but Perl doesn’t work as this expectation. For
example, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5 is
rounded to 0, 2, 2, 4, 4, 6, 6, 8, 8, 10 in Perl. There-
fore, when the step of the window ends with x 1.5, x
3.5, x5.5, x 7.5 or x9.5, CNVseq will have no output
in the field of “cnv”. Sample K2110056 belongs to this
situation. We revise this bug to make CNVseq work
on sample K2110056.

Besides the window size, another parameter is the total
read number imbalance adjustment for the matched
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Table 2 Basic sequencing information and windows size estimation on 10 samples

Sample Reads Coverage (fold) Ploidy Window size (bp)

Tumor Normal Tumor Normal (ref) CNVseq FREEC ReadDepth
357 1,891,204,418 1,947,625118 61 63 2 (GPHMM) 1225 618 500
620,380 2,318,387,458 2,600,245,982 75 86 2 (GPHMM) 940 493 600
K2110056 1,665,457,542 1,614,695,950 54 52 2 (GPHMM) 1423 695 600
K2150024 1,468,032,864 1,821,106,022 47 59 2 (GPHMM) 1456 780 600
K2310007 1,707,025,098 1,534,828,476 55 50 2 (GPHMM) 1453 670 600
K2310024 1,795,611,576 1,914,189,016 58 62 2 (GPHMM) 1261 637 600
K2310030 1,565,239,138 1,552,514,106 51 50 2 (GPHMM) 1493 730 600
RS114527 1,750,239,946 1,406,561,492 57 45 4 (OncoSNP) 1517 655 600
K2110097 1,561,020,588 1,821,446,462 50 59 3 (GPHMM) 1725 740 600
K2150051 1,584,801,578 1,523,937,258 51 49 4 (GAP) 1509 726 600
samples methods. BICseq, FREEC and CNVnorm In the Tables 3 and 4, CNVnorm achieves the best

integrate it as a built-in function. CNVseq needs to swift
off the parameter “chromosomal.normalization” for the
whole genome scale normalization. rSWseq and Vars-
can require users to specify the tumor and normal
samples’ total read number. When counting the total
read number, rSWseq does nothing about the read
quality filtering. Varscan only considers the bases
meeting phred base quality >20. In the Fig. 8, we
compare the impact of read’s quality filtering (phred
base quality >20) on the final tumor/normal total
reads ratio. K2110056 and K2110097 are two cases
that show different ratios between without and with
filtering. Thus, Varscan needs carefully setting the
parameter “recenter-up” or “recenter-down” to adjust
this imbalance.

The recall rate and Jaccard index

For most of samples, GPHMM outputs are used as
the benchmark. Only RS114527 and K2150051 take
OncoSNP and GAP respectively.

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

tumor/normal

357
620380
K2110056
K2110097
K2150024
K2150051
K2310007
K2310024
K2310030
AS114527

Fig. 8 Comparison of the read count ratio between without and
with quality filtering

recall rate on both near diploid samples and over dip-
loid samples, but it gets the lowest Jaccard Index.
CNVnorm predicts 10 samples’ ploidy as 2, 4, 2, 3, 1,
2, 2, 5, 2 and 2. Only 4 samples are accordant with
the SNP results. For total 10 samples, the average
copy number predicted by CNVnorm is 8. This state
overestimation leads to large amount of false positive
callings.

In the Fig. 9, total output CNAs size from
CNVnorm is the largest among all methods. Its low
Jaccard index implies that CNVnorm suffers from
high false positive rate. We deeply investigate
CNVnorm on one sample 357. In fact, 357 only has
chromosome 3p loss and chromosome 5 and 7 gain.
In Fig. 10, CNVnorm depicts three curves represent-
ing the raw read count ratio distributions on the
whole genome, chromosome 3 and 5. Its relevant ra-
tio values that assigned to each copy number are la-
belled on the black color curve. Peaks of the
chromosome 3 and 5 are close to the ratios of the es-
timated copy number 0 and 7(7 = 3.5*2) respectively.
The actual copy number gain should start from the
estimated copy number 7 in CNVnorm. Therefore,
the copy numbers (from 1.5*2 to 3*2) estimated by
CNVnorm are false positive predictions.

Putting CNVnorm aside, the other methods perform
better on the near diploid samples than on over dip-
loid samples, no matter in terms of the recall or the
Jaccard index. On 7 near diploid samples, the means
of the best recall rate and the Jaccard index reach
0.94 and 0.75. On 3 over diploid samples, they are
0.67 and 0.6. Like SNP methods, no sequencing based
method could work well both on diploid and over
diploid samples. BICseq gets the second best recall
rate and the Jaccard index on diploid samples, while
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Table 3 Recall rate of sequencing based methods on 10 samples
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Sample BICseq CNVnorm FREEC CNVseq rSWseg Varscan CNVnator RDXplorer ReadDepth
357 0.9 097 0.97 0.82 045 0.84 0.68 0 0.06
620380 097 0.99 0.99 0.92 0.16 0.94 0.15 0.01 0.26
K2110056 057 0.98 0.74 044 023 0.27 0.05 0 0.08
K2150024 091 0.93 0.17 0.74 0.02 09 0 0.01 0.05
K2310007 0.99 1 0.89 0.96 0 0.98 0.2 0.01 001
K2310024 0.99 1 0.88 0.96 052 097 0.36 0 02
K2310030 0.99 0.99 0.94 0.96 0.27 0.98 048 0.01 0.7
AVG 091 0.98 038 0.83 0.24 0.84 0.27 0.01 0.19
RS114527 0.17 0.23 0.74 0.18 0.01 0.17 0.01 0 0.08
K2110097 0.39 04 0.26 0.35 0 03 0.18 0 071
K2150051 0.57 0.94 0.55 052 0.01 0.46 0.04 0.01 0.04
AVG 038 0.52 052 035 0.01 031 0.08 0 028

FREEC performs best on over diploid samples. Vars-
can gets the best Jaccard index and the third best re-
call rate on the near diploid samples. Though
Varscan is the same with CNVnorm on using the
CBS for the segmentation, their performance is dra-
matically different. Unlike CNVnorm, Varscan doesn’t
utilize complex model or processing. Its simple strat-
egy of only focusing on quality control and empirical
determining gain and loss cutoff works stably for
most normal situations. rSWseg is the only one that
needn’t dividing the genome into short windows. Its
results are not ideal. In total 6 matched samples
methods, rSWseq and CNVnorm are two that per-
form poorly. They have a similarity of making more
assumption or introducing more transformation to ex-
plore CNAs. It implies that strong restriction and
additional operations may bring a negative effect. If

one method couldn’t be self-adaptive to different con-
ditions, it is not only unable to solve the complex
cases, but also often decreases the performance in
normal cases. About true positive rate, Magi con-
cluded that RDXplorer is better than ReadDepth,
CNVseq and CNVnator. Junbo ranked the methods in
a descending order as FREEC, RDXplorer, CNVseq
and ReadDepth. But our results are quite different
from theirs. Especially for RDXplorer, it gets the low-
est recall rate. On all 10 samples, RDXplorer calls the
fewest variants, which is shown in the Fig. 9. There is
one point not mentioned in the works of Magi and
Junbo. RDXplorer uses single chromosome rather
than the whole genome as a unit to detect an inter-
val’'s copy number state. Therefore, RDXplorer is not
capable of capture large-scale inter-chromosome
events.

Table 4 Jaccard index of sequencing based methods on 10 samples

Sample BICSeq CNVnorm FREEC CNVseq rSWseq Varscan CNVnator RDXplorer ReadDepth
357 0.78 0.22 0.79 0.59 0.35 0.64 0.57 0 0.05
620380 0.65 0.13 0.66 06 0.1 0.73 0.08 0.02 0.04
K2110056 045 06 0.68 032 0.19 0.27 0.07 0 0.08
K2150024 0.73 0.23 0.05 0.55 0.01 0.81 0.01 0.01 0.04
K2310007 0.6 0.05 0.12 0.53 0 0.7 0.19 0.02 0.01
K2310024 0.66 0.06 0.14 052 041 0.72 0.29 0.01 0.05
K2310030 0.73 0.19 049 0.64 0.14 0.85 0.64 0.01 043
AVG 0.66 0.21 042 0.54 0.17 0.67 0.26 0.01 0.1
RS114527 0.13 0.16 0.69 0.15 0.02 0.14 0.02 0 0.06
K2110097 0.38 0.32 0.26 0.35 0 03 0.22 0 0.63
K2150051 047 028 042 041 0 036 0.03 0.01 0.04
AVG 033 025 046 03 001 027 0.09 0 024
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Fig. 9 Total CNAs size called by 10 methods on 10 samples. For each group of bars, methods from the left to the right are one SNP based

At the whole genome level, the single tumor sample
based methods couldn’t be comparable with the
matched samples based methods. Their average recall
rates are much lower than the matched samples based
methods. Shown in the Fig. 9, they lose many long
and obvious events. If simply ranking the single
tumor sample based methods, CNAnator works better
on near diploid samples, while ReadDepth is better
on over diploid samples.

CNAs segmentation

Segmentation is another important issue in CNAs detec-
tion. There are two aspects to measure methods’ seg-
mentation performance. One is the breakpoint
accuracy and the other is the ability to detect differ-
ent size of CNAs. Magi and Junbo constructed syn-
thetic dataset to evaluate the breakpoint accuracy. But
the synthetic data couldn’t represent the real situ-
ation. In fact, segmentation evaluation could only
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consider the methods’ ability to detect different sizes
of CNAs. Because any bias of outputting a certain
size of CNAs must lose the breakpoint accuracy. We
get insight into 9 sequencing based methods whether
are inclined to output special size of CNAs. Each
method’s CNAs outputs are divided into five intervals:
less than 50Kb, 50-100Kb, 100-500Kb, 500Kb-1 M,
and greater than 1 M.

In the Fig. 11, FREEC, CNVseq and ReadDepth
have apparent bias. FREEC and ReadDepth trend to
call large size events. For FREEC on 10 samples, the
percentages for the over 1 Mb of CNAs taking up the
total CNAs size are 0.949, 0.927, 0.954, 0.990, 0.951,
0.988, 0.995, 0.995, 0.974 and 0.994. For ReadDepth,
they are 0.666, 0.857, 0.861, 0.759, 0.855, 0.821, 0.843,
0.736, 0.680 and 0.795. On the contrary, CNVseq is
inclined to output short CNAs. The percentages for
the less than 50Kb of CNAs are 0.887, 0.893, 0.859,

0.864, 0.679, 0.735, 0.518, 0.641, 0.922 and 0.713. The
distribution of CNAs size for the other methods is
relatively even. ReadDepth’s short events output bias
may have a problem of mosaic. When discover the
significant recurrent CNAs events in a group of sam-
ples, a region consisting of many short events may be
lost because these short events just overlap a little.
Mosaic effect seldom occurs in the methods biased to
large events, because they always merge short events
into a long one with lower read count ratio value.
But they sacrifice the short events of interest. Varscan
is relatively unbiased. BICseq is the only method
could manually control segmentation degree. We in-
vestigate the relationship between total CNAs size,
total CNAs number and size bias through tuning the
parameter A of BICseq on sample 357.

In the Fig. 12a, A is inverse proportional to the total
CNAs size and CNAs number. At beginning, the
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small A retains large number of short CNAs. The
total CNAs size is 1.5 times of GPHMM result. As A
is increasing, some short CNAs are merged by adja-
cent windows. The total CNAs size and number re-
duce quickly and the percentages of 50-100Kb and
100-500Kb intervals obviously increase, shown in the
Fig. 12b. When A is equal to 1.5, the total size is
closest to the reference GPHMM total size. After it,
total size and number gradually converge. The CNAs
size interval distribution keeps similar shape after 1 is
greater than 2.5.

Computation efficiency

BAM (Sequence Alignment/Map) is the default file
format to store the large nucleotide sequence align-
ments data. For one 40X human being sample, the
BAM size is greater than 100GB. Therefore, the
powerful computation and huge storing space are

necessary for the sequencing data analysis. Besides
the algorithm itself determines the spatial and tem-
poral efficiency, the selected programming language
and implementation skills also influence the practical
usage.

We evaluate 9 sequencing based methods’ running
time and storing space consummation. Shown in the
Fig. 13, among 9 sequencing based methods, FREEC
gets the best computation performance, no matter in
the aspect of running time or the RAM consump-
tion. C++ shows its advantage in the implementation
efficiency. In contrast, another popular programming
language Java based tool Varscan needs very long
time to calculate the read count ratio. Meanwhile,
Java needs more RAM. Strongly recommend to in-
crease the initial and maximum Java heap size before
starting Varscan. CNVseq is the second most time-
consuming tool. In the R implementation of CNVseq,
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Fig. 13 Running time and RAM consumption of nine sequencing based methods. a is the running time. b is the RAM consumption
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a loop statement that merges the windows with the
same ‘cnv’ number occupies a lot of time. ReadDepth
emphasizes that it could carry out in a parallel way
by allocating the tasks to multiple cores. It is really
quicker than CNAnator and RDXplorer on single
sample. But ReadDepth is the heaviest RAM de-
manding and the only one of 12 methods that isn’t
able to process multiple samples simultaneously.
ReadDepth fixes the working directory and users
have to put the data in the specified locations. Al-
though RXDplorer needs less RAM, it unzips the
BAM file and generates a huge temperate SAM file.
For a typical BAM file in size 150GB, the corre-
sponding unzipped format file SAM will take up
about 1 TB disk space.

Discussion and conclusion

In this work, we compare total 12 typical CNAs detection
methods. Our findings are established on the large-scale
real dataset at the whole genome level. This is the most
difference between our comparison and other comparison
works. According to our comparison findings, there’s no
method could work well in all scenarios. We recommend
the following principles to choose the optimal method for
the given situation. For SNP array based methods, we
could trust GPHMM for most near diploid samples.
OncoSNP could accompany with GPHMM and works for
over diploid samples. GAP is suitable for regular cases and
provides a good visualization output to facilitate the man-
ual inspection. All three methods couldn’t directly identify
somatic CNAs. GAP carefully annotates the SNP probes
and the centromeres position before calling CNAs. GAP
won’t mistakenly call centromeres as CNAs. But this situ-
ation exists in the GPHMM and OncoSNP. GPHMM and
OncoSNP need post-processions to filter out these call-
ings. With regards to the sequencing based methods,
CNVnorm and rSWseq aren’t recommended for their in-
herent weaknesses. BICseq is suitable for diploid samples
analysis and Varscan is an alternative option for its good
specificity and even segmentation. FREEC is recom-
mended for over diploid samples. Although FREEC has
strong bias to large size output, large events account for
the most parts of over diploid samples’ CNAs. If the se-
quencing experiments have enough high quality and in-
vestigators expect to discover short CNAs events,
CNAseq is qualified for this purpose. One point must be
emphasized that the single tumor sample based methods
with GC-content correction couldn’t rival the matched
samples based methods on the somatic CNAs detection.
The single tumor sample based methods are only applic-
able under specific conditions such as no matched normal
sample. CNAnator is suitable for near diploid samples and
ReadDepth is for over diploid samples. RDXplorer is only
able to detect the events on single chromosome.
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There are still a lot of aspects need the upcoming
sequencing based methods to improve. First, it should
be self-adaptive to deal with near diploid and over
diploid samples. Normally, investigators couldn’t know
whether their samples suffer from aneuploidy in ad-
vance. So methods should automatically estimate and
adjust their parameters for different ploidy conditions.
Second, it should be capable of estimating the exact
copy number, which could help intratumoral hetero-
geneity recognition. Although CNVnorm took a try, it
wasn’t successful. Third, it should improve the con-
tamination estimation. One specimen needs process-
ing by the library preparation, PCR duplication and
so on. They all input noise and increase the difficul-
ties of contamination detection.
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