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Abstract

useful complements to biological experiments.

prediction methods.

Background: Synthetic lethality has attracted a lot of attentions in cancer therapeutics due to its utility in identifying
new anticancer drug targets. Identifying synthetic lethal (SL) interactions is the key step towards the exploration of
synthetic lethality in cancer treatment. However, biological experiments are faced with many challenges when
identifying synthetic lethal interactions. Thus, it is necessary to develop computational methods which could serve as

Results: In this paper, we propose a novel graph regularized self-representative matrix factorization (GRSMF)
algorithm for synthetic lethal interaction prediction. GRSMF first learns the self-representations from the known SL
interactions and further integrates the functional similarities among genes derived from Gene Ontology (GO). It can
then effectively predict potential SL interactions by leveraging the information provided by known SL interactions and
functional annotations of genes. Extensive experiments on the synthetic lethal interaction data downloaded from
SynLethDB database demonstrate the superiority of our GRSMF in predicting potential synthetic lethal interactions,
compared with other competing methods. Moreover, case studies of novel interactions are conducted in this paper
for further evaluating the effectiveness of GRSMF in synthetic lethal interaction prediction.

Conclusions: In this paper, we demonstrate that by adaptively exploiting the self-representation of original SL
interaction data, and utilizing functional similarities among genes to enhance the learning of self-representation
matrix, our GRSMF could predict potential SL interactions more accurately than other state-of-the-art SL interaction
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Background

Cancers are complex diseases that caused by the defects of
multiple genes. Exploring the genetic interactions within
cancer cells is important for understanding the mecha-
nisms of cancers. Synthetic lethality, which is a kind of
genetic interaction, has attracted a lot of attentions in
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cancer therapeutics due to its utility in identifying new
anticancer drug targets [1, 2]. Synthetic lethality arises
between two genes if the combination of deficiencies
in the expression of these two genes causes cell death,
whereas a deficiency in only one of these two genes
will not affect the cell viability [3-6]. Thus, targeting a
nonessential gene that has a synthetic lethal (SL) inter-
action with a tumour-specific mutated gene would be an
effective cancer therapy [7], because only tumour cells
which harbour this mutation would be killed. In recent
years, high-throughput wet-lab screenings such as chem-
ical libraries [8], pooled RNA interference [9, 10] and
CRISPR-based genome editing technology [11, 12] have
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been conducted for searching SL interactions. However,
due to the limitations of wet-lab screenings such as high
cost, off-target effects and unclear mechanisms [2], effi-
cient computational methods are needed to serve as useful
complements for wet-lab screenings.

Recently, various computational algorithms have been
proposed to predict SL interactions [13]. According to the
principle of the model, existing methods can be roughly
classified into three categories: knowledge-based meth-
ods, supervised machine learning methods and matrix
factorization methods. Knowledge-based methods utilize
the knowledge or hypotheses about SL interactions to
predict potential SL interactions. For example, based on
the assumption that SL interactions tend to take place
between genes that are co-expressed, Jerby-Arnon et al.
[4] developed a method named DAISY to predict SL inter-
actions from short hairpin RNA (shRNA), somatic copy
number alternation (SCNA) and gene expression profiles.
Similarly, Sinha et al. [14] proposed a method named
Mining Synthetic Lethals (MiSL) to identify mutation-
specific SL interactions for specific cancers from pan-
cancer human tumour data. However, knowledge-based
methods rely heavily on the knowledge of other genomic
data, and do not exploit the underlying mechanisms of
known SL interactions [2]. Supervised machine learning
methods utilize existing SL interactions to build up clas-
sification models which could be used to predict novel SL
interactions. Based on available SL interactions of yeast,
various classification models such as maximum likeli-
hood estimation (MLE) [15], support vector machines
(SVM) [15] and ensemble classifiers [16], have been devel-
oped for predicting SL interactions. Traditional super-
vised machine learning methods require both positive and
negative training data being available for learning. How-
ever, for SL interaction prediction, there are only positive
data, and no negative data is available. Matrix factoriza-
tion methods have become popular for link prediction in
recent years due to their utilities in capturing the under-
lying mechanisms of observed links and incorporating
extra relevant information. For instance, Liu et al. [2] for-
mulated SL interaction prediction in human cancer as a
logistic matrix factorization problem and assigned higher
importance weights for validated SL interaction pairs than
unknown pairs. Furthermore, to promote the accuracy of
predicted results, they incorporated protein-protein inter-
action (PPI) similarity and Gene Ontology (GO) similarity
into their model. However, the performance of matrix
factorization methods depend on the choice of the dimen-
sionality of the latent space which is usually previously
unknown and hard to determine.

To address the above problems, in this paper, we intro-
duce a novel graph regularized self-representative matrix
factorization (GRSMF) model for SL interaction predic-
tion. Based on known SL interactions, our method focuses
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on learning a representation matrix from the original
input data, which could capture the similarities between
genes based on their SL interaction partners. Moreover,
GRSMF also draws support from the function similari-
ties among genes that derived from Gene Ontology (GO)
annotations to enhance the prediction accuracy. Exper-
iment results on SynLethDB dataset demonstrate that
compared with other competing interaction prediction
methods, our GRSMF model could achieve more accurate
prediction results. Furthermore, case studies of predicting
novel SL interactions also demonstrate the effectiveness of
GRSMF in predicting SL interactions in human cancer.

Results

In this section, we demonstrate the performance of
GRSMF on SynLethDB database [17]. We perform the
sensitivity analysis for parameters in GRSMF to show their
impact on prediction performance. Furthermore, we con-
duct case studies to show the top SL pairs identified by our
method.

Experimental data

We test the performance of GRSMF and compare it with
existing methods on SynLethDB database. We also use
the GO similarity matrix as graph regularization term in
GRSME

SynLethDB

Currently, SynLethDB is the most comprehensive
database for human SL pairs. It collects SL pairs of
human and other four model species from four differ-
ent sources: (1) biochemical experiments, (2) related
databases (Syn-lethality [18], Decipher https://decipher.
sanger.ac.uk/, GenomeRNAi http://www.genomernai.
org/[19], BioGRID https://thebiogrid.org/ [20]), (3) text
mining [17] and (4) computational predicted method
DAISY [4]. After removing the duplicate human SL pairs,
we obtained 19,667 human SL interaction pairs involving
6,375 genes.

GO similarity

As demonstrated in [2], functional similarity among genes
based on their GO annotations can promote the perfor-
mance for SL interaction prediction. Therefore, we also
utilize the GO similarities among genes for SL interaction
prediction in our GRSMF method. We obtain the GO sim-
ilarity matrix by using the same method presented in [21]
and similarly we only consider the biological process (BP)
terms in GO.

Experimental setting

In our experiments, we compare our proposed GRSMF
against two existing methods, namely SL>MF [2] and
BLM-NII [22]. We choose these two methods since they
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are the latest state-of-the-art SL interaction prediction
methods [2]. We also test the performance of GRSMF
without the graph regularization and we denote this vari-
ant as SMF. These 3 methods are summarized as follows.

e SL2MF predicts the SL pairs based on logistic matrix
factorization and it trains the model by assigning
higher importance weights for known SL pairs than
unknown pairs. The parameters ¢, A and o are set to
50, 0.01 and 1.0 respectively. In addition, the number
of nearest neighbors in GO similarity graph kj is set
to 150.

e BLM-NII was originally designed for drug-target
interaction prediction. It was applied for SL
prediction in [2] and thus we also implemented it for
comparison in this study. In BLM-NII, we set the
value of the linear combination weight in the range of
{0,0.1,02,...,1.0}.

e SMEF is a variant of GRSMF without the graph
regularization. The parameter A in SMF is set to 2.

For GRSME, it has two parameters A and 8 and we adopt
grid search to select the optimal values for them from the
range (278277, ...,2425 . In particular, A and B are set
to 277 and 27° respectively.

In addition, we adopt 5-fold cross-validation in our
experiments for performance evaluation and compari-
son. The known SL pairs are equally split into 5 non-
overlapping subsets. We iteratively use 1 subset for testing
and the remaining for training in 5-fold cross validation
and use the AUC score (i.e., area under the ROC curve) as
our evaluation metric.

Experimental results based on 5-fold cross validation
Figure 1 shows the performance of various methods on
SynLethDB. As shown in Fig. 1, GRSMF achieves an AUC
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of 0.923 and significantly outperforms BLM-NII (0.735),
SL’MF (0.847) and SMF (0.893). In particular, we can
also have the following two observations based on the
comparison in Fig. 1.

First, SMF (i.e., without graph regularization using GO
similarity matrix) outperforms SL>MF significantly, show-
ing that self-representative matrix factorization is very
effective for SL prediction. Unlike SL2MF that projects
genes into a latent space and predict the SL interac-
tion probability between two genes based on the inner
product of their latent vectors, SMF adaptively learns
the intra-similarities among genes from the observed SL
interactions, according to representation rule introduced
in Eq. (1). Thus, SMF has data-adaptiveness and avoids
the determination of some sensitive parameters such as
the dimension of latent space. Second, graph regulariza-
tion using GO similarity matrix can boost the prediction
performance by 3% from 0.893 (SMF) to 0.923 (GRSMEF),
demonstrating that functional information of genes is very
important for SL interaction prediction. This is also con-
sistent with the results reported in [2]. For these two
reasons, GRSMF achieves the highest performance and
shows its effectiveness and superiority for SL prediction.

We analyze the running time of various methods. All the
experiments are conducted on a laptop with 3.6 GHz CPU
and 32G memory. The results are shown in Table 1. We
can find from this table that our GRSMF takes the longest
running time. However, predicting potential SL interac-
tions based on computational methods is usually used as
an offline process, where producing an accurate and reli-
able prediction result is the primary goal. Therefore, our
method is still meaningful.

Effect of parameters
Recall that GRSMF has two parameters, namely, A and
B to control the influence of [, regularization and graph
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Fig. 1 AUC scores of various algorithms in SynLethDB dataset. Error bars denote confidence intervals
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Table 1 The running time of various methods
GRSMF
1361s

SL2MF
3835

BLM-NII

Time 1263s

regularization respectively. In this section, we study the
impact of these parameters on GRSMF’s prediction per-
formance.

In Fig. 2, we first fix 8 as 27> and set A to different values.
We can observe that the AUC scores of GRSMF under dif-
ferent A values are quite close, indicating that our GRSMF
model is not very sensitive to the parameter A.

In Fig. 3, we fix A as 277 and then investigate the impact
of graph regularization using GO similarity. As shown
in Fig. 3, large values of B usually lead to poor perfor-
mance while small values (e.g., 27° and 27°) result in
very good performance of GRSMF. Based on the results in
Fig. 3, our overall conclusion is that SMF in GRSMF plays
a critical role for SL interaction prediction, while graph
regularization can further help to improve the prediction
performance.

Case studies

We further take all the known SL pairs in SynLethDB as
training data and apply GRSMF to predict novel SL pairs.
In particular, we rank the unknown pairs in X in descend-
ing order based on their interaction scores predicted by
GRSME. Thus, the top-ranked pairs are more likely to be
potential SL pairs. In Table 2, we show the top-10 SL pairs
as well as their scores predicted by GRSMF. Here, the
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score of each SL pair is obtained from the predicted label
marix X, as described in Algorithm 1.

The gene XRCC2 is involved in the repair of DNA
double-strand breaks by homologous recombination.
The gene IGHMBP2 also has the functions including
DNA binding, DNA recombination, DNA repair and
DNA replication. XRCC2 and IGHMBP2 (i.e., 5/ pair)
have back-up functions like DNA repair [23] and thus
they have high likelihood to be a SL pair. In addi-
tion, MAPK12 is associated with breast cancer, while
XRCC2 is part of BCDX2 complex, which acts down-
stream of BRCA2 recruitment and upstream of RAD51
recruitment [24]. It also makes sense that XRCC2 and
MAPK12 (ie., 4% pair) is predicted as a potential
SL pair.

It is well-known that poly ADP-ribose polymerases
(PARPs) form SL interactions with the two breast cancer
genes BRCA1 and BRCA2 [25]. As shown in Table 2, there
are 5 predicted SL pairs involving PARP2. In particular,
the gene PMS2 interacts with both BRCA1 and BRCA2
[20], and GRSMEF predicts that PARP2 and PMS2 have SL
interactions (i.e., 67 pair in Table 2).

Discussion

Synthetic lethality is a new angle for cancer therapeu-
tics. Computational methods have been proposed to pre-
dict potential SL interactions, which can greatly reduce
the costs of biological experiments. In this paper, we
present a novel model, named graph regularized self-
representative matrix factorization (GRSMF) algorithm,
to identify potential SL interactions among genes. Our
model focuses on self-representative matrix factorization
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Fig. 2 Performance of GRSMF with different values of A while g is set to 27°
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and also integrates GO similarity matrix as graph
regularization. Compared with previous matrix factoriza-
tion models, we do not need to determine the dimension-
ality of the latent space and directly learn the similarities
among genes based on observed SL interactions. Exper-
iment results on SynLethDB database demonstrate that
our GRSMF achieves better performance than other com-
peting methods. Case studies on our predicted novel SL
pairs show that our model can effectively identify some
candidate SL pairs for further verification.

Conclusions

In conclusion, revealing the molecular mechanisms
underlying cancers is essential to the treatment of can-
cers and development of new anticancer drugs. Predicting

Table 2 The predicted top 10 novel SL gene pairs

Rank Gene 1 Gene 2 Predicted interaction scores
1 UNG IGFBP3 0.9242
2 POLD4 MAPK12 09129
3 IGHMBP2 CDK4 09118
4 XRCC2 MAPK12 0.8605
5 XRCC2 IGHMBP2 0.8603
6 PARP2 PMS2 0.8289
7 PARP2 NHP2 0.8235
8 PARP2 CDK2 0.8151
9 PARP2 IGFBP3 0.8123
10 PARP2 IGHMBP2 0.8049

potential SL interactions via computational approaches
not only helps to improve our understanding of the mech-
anisms underlying cancers, but also provides a effective
way to aided anticancer therapies. In this study, we pro-
vide an efficient model to predict potential SL interac-
tions. In contrast to most existing matrix factorization
models, our model avoids the determination of some
sensitive hyper-parameters, which makes it easy to imple-
ment. Our model provides a promising strategy to predict
potential SL interactions for further experimental verifi-
cation, and contributes to the treatment of cancers. In the
future, we plan to integrate biological knowledge such as
pathways, protein domains, TCGA data, etc., to further
improve our GRSMF model.

Methods

In this section, we first describe the notations and for-
mulate the problem, then we propose a novel graph regu-
larized self-representative matrix factorization model and
introduce a relaxed Majorization-Minimization algorithm
to solve the optimization problem.

Notations and problem statement

In this paper, a set of genes is denoted by G = {g}? |,
where 7 is the number of genes. A binary association
matrix X =[Xj;] € 0,1"*” is used to describe the SL inter-
actions among genes in G. If there exists a validated SL
interaction between genes g; and gj, X;; is set to 1; other-
wise, Xj; is set to 0. Here, gene pair (g;, gj) with X;; = 0is
referred to as “unknown pair’, since there is no clear evi-
dence to demonstrate whether there is an SL interaction
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between genes g; and g; or not. Note that gene pairs (g;, g)
and (gj, g;) are treated as the same pair, and we set X;; = 0
fori = 1,...,n. Therefore, X is a symmetric matrix with
Xij = Xji.

Given a set of observed SL interactions, the problem
of SL interaction prediction is to identify a set of gene
pairs that are most likely to have SL interaction from
the “unknown pairs” This task can be achieved by rank-
ing the candidate gene pairs according to the predicted
SL propensities in descending orders, and selecting the
top-ranked gene pairs as potential SL interactions. In this
study, we propose a regularized self-representative matrix
factorization model to identify the SL interactions among
genes in G. Furthermore, based on the functional similar-
ities between genes, we also incorporate a neighborhood
regularization in our model to enhance the accuracy of
prediction.

Self-representative matrix factorization model
The proposed model is developed based on self-
representative matrix factorization, which has been suc-
cessfully used in subspace clustering [26]. In traditional
self-representative matrix factorization models, the objec-
tive is to exploit the representation of the original data X
in which the data itself is treated as a dictionary, i.e., the
input data X is self-represented by a linear combination
of its columns as X &~ XU, where U € R™*" denotes the
coefficient matrix which is a meaningful representation of
the columns of X. In this study, since the input data X is a
symmetric matrix, the representations of its rows should
be same as the representations of its columns. Thus, we
propose a new model in which X is self-represented by lin-
ear combinations of its rows and columns as X ~ U7 XU.
For the i-th gene g;, Uj; can be used to denote the probabil-
ity of gene g; being represented by gene g;, which captures
the similarity between genes g; and g; based on their SL
interactions with other genes. To guarantee the probabil-
ity property of U.; (which denotes the i-th column of U),
we introduce constraints 0 < U; < land > ), U; =1
for i = 1,...,n To avoid the trivial solution that only
one element in U ; has value 1 while all the other elements
being zeros, we also impose a constraint on U.;. In partic-
ular, we choose the [, norm ||U.i||% =37 Ulzi due to its
simplicity and effectiveness.

Hence, by taking into account the above constraints, we
have the following regularized self-representative matrix
factorization model

min X — urxu| + alulz

n
st. 0<U<]1, ZUH =1, for
=1

Page 6 of 8

where |- || is the Frobenius norm and A is a tuning param-
eter which controls the influence of the /5 regularization.

Graph regularization

In the above objective function (1), the representation
matrix U is learned from the original data matrix X, which
makes it sensitive to the input data X. If the input data
only covers very few known SL interactions (which means
most of the elements in X are zeros), it may be hard
to learn a comprehensive representation matrix. There-
fore, we would like to incorporate some prior information
that can reflect the similarities among genes into our
model. In particular, based on the assumption that genes
with similar functions tend to have similar presentations,
we take into account the Gene Ontology (GO) seman-
tic similarities among genes to promote the determina-
tion of representation matrix and improve the prediction
performance. Let S € R"™" denote the GO similar-
ity matrix where S; describes the functional similarity
between genes g; and g;. The value of S is ranging from
0 to 1, where the larger the value of Sj;, the more simi-
lar the corresponding two genes. In this study, we adopt
the method presented in [21] to calculate the Gene Ontol-
ogy (GO) semantic similarities among genes. The graph
regularization based on § is defined as follows

1 n n
R=3 DO Uy — Ul*Sy = TruTLU). @)
I=1 ij=1

where Tr(-) denotes the trace of a matrix, D is a diagonal
matrix with D;; = Z;‘zl Sjand L =D —S.

Graph regularized self-representative matrix factorization
model

By incorporating the above graph regularization term (2)
into Eq. (1), the final objective optimization function of
our graph regularized self-representative matrix factor-
ization (GRSMF) model is formulated as follows.

min || X - utxu| + r|Uul? + gTed LU,
n

st. 0<U=<1, Y Uy=1, for i=1,...,n
=1

(3)

where the parameter 8 controls the effect of graph regu-
larization.

Optimization algorithm

In this study, we solve the objective function (3) based on
relaxed Majorization-Minimization [27] method. Particu-
larly, the objective function in Eq. (3) is denoted as J and
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vu denotes the gradient of our objective function with
respect to U.

vy =4XU) (uTXU> F2AU+28(DU) —4(XU)X —2BSLI.

(4)

Let vj; = 4XU)(UTXU) + 20U + 2B(DU) and v, =
4(XU)X + 2BSU denote the positive and negative parts of
vu respectively. Then we have vy = vz} -V

n
Due to the constraint > Uy = 1and 0 < Uj; < 1, we
=1
obtain the following updating rule for U;:
) di(va)ﬁ +1
ai(V i+ bi
where a; and b; can be obtained by Eqs. 6 and 7 respec-
tively.

U, = Uy (5)

n

P ©)

= (Vi

n
(Vi

bi=) Uy . 7
; ; (s ?7)
The details of the optimization algorithm are described
in Algorithm 1. U can be updated by Eq. (5). In this study,
we stop the iteration until the relative change of objective
HJ(tJrl)_j(t)”l “le—4
17Ol ’
where J® denotes the value of objective function at ¢-
th iteration. Finally, the predicted label matrix X can be
computed by X = UTXU when the algorithm arrives at

the convergence conditions.

function J is less than le — 4, i.e.,

Algorithm 1 Algorithm for the GRSMF model
¢ Inputs: Partial labelled matrix X, gene similarity
matrix S, tuning parameters A and S.
Output: Predicted matrix X.
e Main algorithm:

1 Initialize U;

2 While not converged do

3 Update U according to Eq. (5)
ﬂi(VZ{)ﬁ +1 .
ai(V i + bi’

4 Check the convergence conditions.

End while

6 Return X = UTXU.

U, = Uy

o2
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