
Nguyen et al. BMC Genomics 2019, 20(Suppl 9):951
https://doi.org/10.1186/s12864-019-6336-3

RESEARCH Open Access

iEnhancer-ECNN: identifying enhancers
and their strength using ensembles of
convolutional neural networks
Quang H. Nguyen1, Thanh-Hoang Nguyen-Vo2, Nguyen Quoc Khanh Le3, Trang T.T. Do4, Susanto
Rahardja5* and Binh P. Nguyen2*

From International Conference on Bioinformatics (InCoB 2019)
Jakarta, Indonesia. 10-12 September 2019

Abstract

Background: Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and
translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer
identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in
silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using
computational advances. Although recent studies have come up with improved performance, shortfalls in these
learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an
efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of
convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark
dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis
between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance.

Results: Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other
state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification
(layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies,
improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s
correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%,
46.5%, and 65.0%, respectively.

Conclusions: iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in
most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the
stability of our models.
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Background
‘Omics’ science, including studies on genomics, transcrip-
tomics, proteomics, and metabolomics, is a new research
field combining background of molecular genetics and
power of computer science to address biological prob-
lems. In transcriptomics, enhancers [1] refer to a group
of non-coding DNA fragments holding responsibility for
regulating gene expression in both transcription and
translation. Unlike a promoter which is the transcriptional
initializer of a particular gene [2] located at the upstream
region of the gene, an enhancer can be found at a region
of up to 20kb upstream/downstream with respect to the
gene or even at other chromosomes not carrying that
gene. Identification of new enhancers is therefore chal-
lenging due to their nature of locational variation. Besides,
since enhancers are sequences not encoding for any pro-
teins, they freely dispense into 98% of the total human
non-encoding genome carrying billions of base pairs [1].
While molecular mechanisms of protein-coding genes
can be relatively simply addressed, biological patterns of
enhancers have not been well generalized. Furthermore,
activities of enhancers vary depending on specific types of
cells, time, and intrinsic/extrinsic stimulations [1]. Previ-
ously, to identify and locate enhancers, scientists had no
choice but performing in vitro [3] or in vivo [4] exper-
iments. Recent findings have revealed there are a large
number of recognized enhancers shared by both human
and other species including eukaryotes and prokaryotes
[1, 5]. Moreover, genetic variation in enhancers has been
demonstrated linking to many human illnesses [6, 7] such
as various types of cancer [6, 8] and inflammatory bowel
disease [9].

As an essential transcriptional factor facilitating gene
expression, enhancer identification/classification is cur-
rently one of hot topics in biological research that are
appealing to both experimental and computational biolo-
gists [10–12]. In 2007, a comparative analysis on genomics
was done by Pennacchio et al. [10] to identify enhancers.
Since the study used a small training dataset, the lim-
ited prediction accuracy was one of their big challenges at
that time. In 2017, Zacher et al. proposed a novel unsu-
pervised genome segmentation algorithm called GenoS-
TAN (Genomic STate ANnotation) [11] to improve the
accuracy in enhancer/promoter identification by directly
learning from sequencing data of chromatin states (no
data transformation required). GenoSTAN used 127 cell
types and tissues collected from the ENCODE [13, 14] and
NIH Roadmap Epigenomics Program [15]. Although their
study using chromatin state data to identify enhancers
ended up with good results, the model sensitivity was
still lower than that of other methods using transcription-
based data because transcription-based predictive mod-
els using transient transcriptome profiling [16, 17] and
nascent transcriptome profiling [18] could significantly

boost up the model sensitivity. A year later, Lai et al. [12]
conducted wet-lab experiments to identify the enhancers
of red flour beetle (Tribolium castaneum) and evaluated
their activity.

Unlike in the past, computational scientists are now
equipped with high-performance computing resources
and advanced techniques to deal with the outgrowth of
biological data, especially ‘omic’ data. Troubleshooting
biological problems using various in silico approaches is
one of the best ways to take advantages of redundant and
available ‘omic’ data. For enhancer identification and clas-
sification, some in silico studies have also been conducted
using genetic regulatory elements such as transcriptional
factors binding motif occurrences [19], chromatin sig-
natures [20], and combined multiple datasets [21]. To
improve model performance, computational scientists
have applied various learning algorithms, e.g. the Random
Forest (RF) [22], deep belief networks [23], deep-learning-
based hybrid [24] and neural network [20] architectures.
In 2016, iEnhancer-2L [25] by Liu et al. and EnhancerPred
[26] by Jia and He were introduced as two effective meth-
ods using the same learning algorithm - Support Vector
Machine (SVM). While iEnhancer-2L used pseudo k-tuple
nucleotide composition (PseKNC) for sequence encod-
ing scheme, EnhancerPred used bi-profile Bayes and
pseudo-nucleotide composition. Both methods reported
acceptable performances; however, their MCCs were rel-
atively low. EnhancerPred performs slightly better than
iEnhancer-2L with small improvement in MCC; however,
its efficiency is still insufficient. In 2018, Liu et al. pro-
posed iEnhancer-EL [27] which is an upgraded version
of iEnhancer-2L. It has a very complicated structure with
two ensemble models from 16 individual key classifiers,
and the key classifiers were constructed from 171 SVM-
based elementary classifiers with three different types of
features: the PseKNC, subsequence profile, and k-mers.
Although iEnhancer-EL is currently one of the best meth-
ods for identifying enhancers and their strength, it should
be possible to develop better models using novel learning
algorithms and encoding schemes.

In this study, we propose a more efficient prediction
framework called iEnhancer-ECNN using a combination
of one-hot encoding (OHE) and k-mers as a sequence
encoding scheme and ensembles of convolutional neural
networks (CNNs). In order to make a fair comparison with
other previous studies, the same dataset used in Liu et al.’s
studies [25, 27] and Jia and He’s study [26] was used in our
model construction and evaluation.

Results and discussions
Sequence analysis
To perform comparative sequence analysis on biological
patterns between enhancers and non-enhancers as well
as those between strong enhancers and weak enhancers,
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Two Sample Logo [28] with independent t-test (p < 0.05)
was adopted to generate a logo to visualize the sequence.
An initial concept of presenting consensus sequences to
visualize shared biological patterns in a set of aligned
sequences was first proposed by Schneider et al. [29] in
1990. Each sequence-logo map displays information about
(i) the most prevalently found nucleotides scoring from
the head of each certain location, (ii) the occurrence fre-
quency of every nucleotide signified by the proportional
height of the character, and (iii) the significance of every
particular location relying on by the height of the entire
stack of characters.

For both layers in this study, a significance testing for
the variance of biological patterns between enhancers and
non-enhancers as well as between strong enhancers and
weak enhancers was conducted. For layers 1 and 2, the
enhancer set and strong enhancer set are considered pos-
itive sets while the non-enhancer set and weak enhancer
set are considered negative sets. The constructed map
for each layer provides information about two groups of
nucleotides observed in the positive set and the negative
set (base for comparison) sequentially. A nucleotide which
is commonly detected in a certain location of numer-
ous samples from the positive set is named ‘enriched
nucleotide’ whereas a nucleotide which is seldom detected
in a certain location of numerous samples from the posi-
tive set is named ‘depleted nucleotide’. Independent t-test
was done using the calculated occurrence frequencies of
a nucleotide at certain locations to gain information on
which nucleotide occurrence is accidental or directional.

Figure 1 indicates sequence characteristics of sites
between enhancers and non-enhancers and between
strong enhancers and weak enhancers, respectively, in the
development set. It is obviously seen that along most of
the enhancer sequences, each location is enriched with
only G and C while depleted with A and T. This signif-
icant difference between enhancers and non-enhancers
indicates a great separation in biological patterns between
two groups, or in other words, this finding is meaningful
for our classification model. Besides, structural differ-
ences between strong enhancers and weak enhancers are
evidently smaller than those between enhancers and non-
enhancers due to many shared biological patterns. As
shown in Fig. 1B, strong enhancers have a tendency to
accumulate G and C more rather than A and T while weak
enhancers show a completely reverse trend with a con-
densed population of A and T and a sparse population of
G and C.

Model evaluation
Tables 1 and 3 compare the performances on the indepen-
dent test set of 5 single CNN models versus the ensemble
model in layers 1 and 2, respectively, to examine the effi-
ciency of using ensemble learning. Tables 2 and 4 provide

information on 10 testing trials in layers 1 and 2, respec-
tively. For each trial, a random seed in the range from 3
to 21 was used to split the development dataset into five
parts using stratified sampling. Each part was in turn used
as the validation set for training a CNN model from the
remaining 4 parts.

Layer 1: enhancer identification
From five parts split from the development set, after 5
rotations, 5 trained CNN models were obtained to build
up an ensemble model. As seen from Table 1, the model
accuracy of these models varies between 0.740 and 0.776
with a very small standard deviation. For the AUC, all val-
ues are over 0.800 with the highest AUC value of 0.831.
Model 3 ends with an opposing result between sensitivity
and specificity together with the MCC. Model 3 obtains
the highest sensitivity but lowest specificity and MCC
compared to others which leads to higher standard devi-
ations in these metrics. In terms of the specificity and
MCC, models 1 and 4 were at the first place, respectively.
Although some metrics in single CNN models are slightly
higher than those of the ensemble model, the ensemble
model remains the one having higher efficiency in total
examination. In comparison, the specificity of the ensem-
ble model only smaller than that of model 1 while its
sensitivity and MCC are only smaller than sensitivity and
MCC of models 3 and 4, respectively. To observe the vari-
ation in all the evaluation metrics of the ensemble model,
10 trials were done on the independent test set (Fig. 2a
and Table 2). The results indicate a very small variation in
evaluation metrics among 10 trials with no outlier found,
especially the AUC – the least varied metric. The sensitiv-
ity is the second lowest metric, followed by the accuracy
and specificity. Moreover, the small variation of the MCC
implies highly stable prediction over many trials.

Layer 2: enhancer classification
Similarly, layer 2 also had its development set split into five
parts containing strong enhancers and weak enhancers in
an equal ratio in which 4 parts were used as a training
set and 1 part was used as a validation set. The ensem-
ble model was finally built up from the five separate CNN
models (Table 3). Generally, the variation in evaluation
metrics among the 5 models for enhancer classification
is greater than those of the five models for enhancer
identification. This fact can be explained by the different
numbers of samples between the two prediction layers.
The sample size of the development set used in layer 1 is
obviously significantly larger than the sample size of the
development set used in layer 2. Furthermore, differences
between enhancers and non-enhancers are more specific
than those between strong enhancers and weak enhancers
(Fig. 1a). Regardless of their strength, strong enhancers
and weak enhancer are still functional enhancers sharing
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Fig. 1 Sequence characteristics of a enhancers versus non-enhancers and b strong enhancers versus weak enhancers. Sequence analysis using logo
representations were created by Two Sample Logo with t-test (p < 0.05) with A, T, G, and C are colored with Green, Red, Yellow, and Blue, respectively
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Table 1 Results of an enhancer identification trial (trial 5 in
Table 2) on the independent test dataset

Training : Validation (Ratio 4:1) ACC (%) AUC (%) SN (%) SP (%) MCC

Model 1 (Parts 2, 3, 4, 5 : Part 1) 0.756 0.815 0.750 0.765 0.515

Model 2 (Parts 1, 3, 4, 5 : Part 2) 0.753 0.829 0.775 0.730 0.506

Model 3 (Parts 1, 2, 4, 5 : Part 3) 0.740 0.825 0.810 0.670 0.485

Model 4 (Parts 1, 2, 3, 5 : Part 4) 0.776 0.831 0.790 0.765 0.555

Model 5 (Parts 1, 2, 3, 4 : Part 5) 0.746 0.821 0.745 0.750 0.495

Ensemble Model 0.765 0.834 0.790 0.740 0.531

The highest value for each metric is in bold

more structural similarities (Fig. 1b). The sensitivity of
the ensemble model holds the first place, followed by the
AUC, accuracy, and specificity. The MCC of the ensem-
ble model is only over 0.408 but it is the highest value
compared to those of 5 single CNN models. Among these
evaluation metrics, the AUC is the most stable with the
smallest variation compared to the others. The accuracy
and AUC of model 1 is higher than those of the rest of
the models. Models 3 and 4 have the highest sensitivity
and highest specificity, respectively. Although the speci-
ficity of the ensemble model is relatively lower than some
single CNN models, its high sensitivity promises an effec-
tive computational framework because correctly detect-
ing strong enhancers is somehow more important than
correctly finding weak ones. The MCC of the enhancer
classification model varies more broadly compared to that
of the enhancer identification model. To observe the vari-
ation in all evaluation metrics of the ensemble model, 10
trials were done on the independent test set to collect data
(Fig. 2b and Table 4). The results indicate a quite large
variation in sensitivity and MCC among 10 trials. Despite

Table 2 Independent test identifying enhancers and
non-enhancers under 10 trials

No. of Trials ACC (%) AUC (%) SN (%) SP(%) MCC

1 0.768 0.831 0.780 0.755 0.535

2 0.765 0.834 0.790 0.740 0.531

3 0.770 0.835 0.775 0.765 0.540

4 0.768 0.831 0.795 0.740 0.536

5 0.773 0.832 0.785 0.760 0.545

6 0.778 0.837 0.800 0.755 0.556

7 0.773 0.832 0.780 0.765 0.545

8 0.773 0.832 0.780 0.765 0.545

9 0.758 0.830 0.785 0.730 0.516

10 0.763 0.830 0.780 0.745 0.525

Mean 0.769 0.832 0.785 0.752 0.537

SD 0.006 0.002 0.008 0.013 0.011

Table 3 Results of an enhancer classification trial (trial 9 in
Table 4) on the independent test dataset

Training : Validation (Ratio 4:1) ACC (%) AUC (%) SN(%) SP (%) MCC

Model 1 (Parts 2, 3, 4, 5 : Part 1) 0.700 0.764 0.780 0.620 0.405

Model 2 (Parts 1, 3, 4, 5 : Part 2) 0.660 0.740 0.720 0.600 0.322

Model 3 (Parts 1, 2, 4, 5 : Part 3) 0.670 0.730 0.850 0.490 0.364

Model 4 (Parts 1, 2, 3, 5 : Part 4) 0.665 0.715 0.660 0.670 0.330

Model 5 (Parts 1, 2, 3, 4 : Part 5) 0.600 0.681 0.680 0.520 0.203

Ensemble Model 0.695 0.759 0.840 0.550 0.408

The highest value for each metric is in bold

large variation, no outlier is found in all evaluation met-
rics. The averaged sensitivity of the model is significantly
greater than the others but its variation is also higher than
the rest of metrics. The MCC is the least varied metric,
followed by the AUC, accuracy, and specificity.

Comparative analysis
Table 5 gives a detailed comparative analysis on the model
performance between iEnhancer-ECNN and other exist-
ing state-of-the-art methods in previous studies. Except
for specificity, iEnhancer-ECNN achieves a significant
improvement in model performance based on the rest
of the evaluation metrics. For both layers 1 and 2, the
proposed method attains slightly lower value compared
to other methods introduced in previous studies. On the
other hand, remarkable improvements in the AUC, sen-
sitivity, and MCC are observed, especially those in the
model of layer 2 with a boost of about 11.0%, 46.5%,
and 65.0%, respectively. A significant increase in the
MCC indicates that the proposed method considerably

Table 4 Independent test classifying strong enhancers and weak
enhancers under 10 trials

No. of Trials ACC (%) AUC (%) SN (%) SP(%) MCC

1 0.650 0.728 0.680 0.620 0.301

2 0.710 0.795 0.880 0.540 0.447

3 0.695 0.751 0.920 0.470 0.437

4 0.670 0.749 0.750 0.590 0.344

5 0.660 0.724 0.720 0.600 0.322

6 0.690 0.779 0.810 0.570 0.391

7 0.670 0.736 0.740 0.600 0.343

8 0.660 0.728 0.750 0.570 0.325

9 0.695 0.759 0.840 0.550 0.408

10 0.675 0.735 0.820 0.530 0.366

Mean 0.678 0.748 0.791 0.564 0.368

SD 0.019 0.024 0.076 0.044 0.050
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Fig. 2 Variation in evaluation metrics from 10 trials of independent test for a Layer 1: Enhancer Identication and b Layer 2: Enhancer Classication

improves the model stability as well as overall perfor-
mance in comparison with the state-of-the-art methods
that have relatively small MCCs. This improvement is
essential in the model development to confirm the reli-
ability in the binary classification problem. The MCC
is considered to be more informative than the accuracy
when it considers the proportion of all the four categories
(TF, TN, FP, and FN) of the confusion matrix to show a
balanced evaluation in model assessment [30]. Undoubt-
edly, iEnhancer-ECNN performs better than other previ-
ously proposed methods with the surge in most of the
evaluation metrics.

CNNs and OHE have been used in prediction of
enhancer-promoter interactions [31] and enhancer iden-
tification (layer 1 only) [32]. However, CNNs only can
detect local features from OHE. Our method goes beyond
that by including global features of the whole sequence
through the statistics of 4 different types of k-mers. In
addition, in ensemble learning, the training sub-sets of all

the individual CNN models cover the whole development
set. This leads to better generalization of the ensemble
model compared to each individual CNN model. This
is the reason why iEnhancer-ECNN outperforms other
previously proposed methods using the same dataset
with significant improvements in most of the evaluation
metrics.

Conclusion
iEnhancer-ECNN using ensembles of convolutional neu-
ral networks combining with one-hot encoding and k-
mers descriptor as the sequence encoding scheme is an
efficient computational framework to identify enhancers
and classify their strength. The results confirm that the
proposed method can robustly and effectively address dif-
ficulties in enhancer identification and classification with
significant improvements in most of the evaluation met-
rics compared to other state-of-the-art methods using the
same benchmark dataset. In the future, other sequence

Table 5 Comparative analysis between results of the proposed method and other studies

Method ACC AUC SN SP MCC Source

Enhancer Identification

iEnhancer-2L 0.730 0.806 0.710 0.750 0.460 Liu et al., 2016

EnhancerPred 0.740 0.801 0.735 0.745 0.480 Jia and He, 2016

iEnhancer-EL 0.748 0.817 0.710 0.785 0.496 Liu et al., 2018

iEnhancer-ECNN 0.769 0.832 0.785 0.752 0.537 This study

Enhancer Classification

iEnhancer-2L 0.605 0.668 0.470 0.740 0.218 Liu et al., 2016

EnhancerPred 0.550 0.579 0.450 0.650 0.102 Jia and He, 2016

iEnhancer-EL 0.610 0.680 0.540 0.680 0.222 Liu et al., 2018

iEnhancer-ECNN 0.678 0.748 0.791 0.564 0.368 This study

Values which are significantly higher than the others are in bold
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encoding schemes and advanced ensemble learning meth-
ods will be explored to have a trained model to automati-
cally aggregate the predictions of all the CNN models.

Methods
Benchmark dataset
The dataset used in our experiments was collected from
Liu et al.’s studies [25, 27]. This dataset was also used
in the development of iEnhancer-2L [25], EnhancerPred
[26] and iEnhancer-EL [27]. In this dataset, information
about enhancers from 9 different cell lines was collected
and DNA sequences were extracted in the form of short
fragments with the same length of 200bp. The CD-HIT
software [33] was then used to exclude pairwise sequences
whose similarities were more than 20%. The dataset
comprises of a development (or cross-validation) set and
an independent test set. The development set encom-
passes 1,484 enhancer samples (742 strong enhancer and
742 weak enhancer samples) and 1,484 non-enhancer
samples. The independent test set contains 200 enhancers
(100 strong enhancers and 100 weak enhancers) and
200 non-enhancers. Similar to other studies, we used
the development set to construct two models for two
problems: enhancer identification (layer 1) and enhancer
classification (layer 2), then used the independent test
set to test the models. For each layer, we first randomly
divided the development set into 5 folds (or parts) using
stratified sampling. Each fold was in turn used as the
validation set while the remaining 4 folds were used as

the training set for training a CNN model. Then the
five trained CNN models were combined to create an
ensemble model for the layer. The ensemble model was
then used to test on samples from the independent test
set (Fig. 3). This whole process, including data partition-
ing, model training and model testing, was repeated for
10 times to observe the variation in model performance
across 10 trials. Tables 6 and 7 present the data distribu-
tion in 5 folds used in model training for layers 1 and 2,
respectively.

Sequence encoding scheme
We used one-hot encoding (OHE) and k-mer descriptor
to encode each input sequence for our CNN model. Every
enhancer in this study has a length of 200bp built up by
four nucleic acids, including Adenine (A), Guanine (G),
Cytosine (C), and Thymine (T). Adenine (A) and Guanine
(G) are purines while Cytosine (C), and Thymine (T) are
pyrimidines. For OHE, each character was transformed
into a new matrix built from a set of 4 binary numbers
representing four types of nucleic acids. For each matrix
corresponding to a certain type of nucleic acids, there are
three values assigned as 0 and one value assigned as 1
(Table 8).

In addition to OHE, we also used k-mers which are
the occurrence frequencies of k neighboring nucleic acids.
With respect to the nucleic acid Ni in a DNA sequence
S with length L (i = 1..L and L = 200 in this study), in
addition to the 4 binary values encoding Ni by OHE, the

Fig. 3 Overview of the model development
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Table 6 Data distribution of 5 parts in the development set for
identifying enhancers and non-enhancers

Part Non-enhancers
Enhancers

Strong Weak

1 301 151 142

2 295 153 146

3 295 148 151

4 292 153 149

5 301 137 154

Total 1484 742 742

following 4 values x, y, z, t were formed and added to the
encoding of Ni:

• 1-mer feature: x = #Ni in S
L , Ni ∈ {A, C, G, T}

• 2-mer (right) feature:

y =
{

#Ni,i+1 in S
L−1 if i < L
0 if i = L

Ni,i+1 ∈ {AA, AC, AG, ..., TG, TT}
• 2-mer (left) feature:

z =
{

#Ni−1,i in S
L−1 if i > 1
0 if i = 1

Ni−1,i ∈ {AA, AC, AG, ..., TG, TT}
• 3-mer feature:

t =
{

#Ni,i+1,i+2 in S
L−2 if i < L − 1
0 otherwise

Ni,i+1,i+2 ∈ {AAA, AAC, AAG, ..., TTG, TTT}
Thus, each enhancer sample with length 200 is encoded

by a matrix of size 200 × 8.

CNN architecture
Our proposed CNN architecture is described in Fig. 4.
The network input is a 200×8 matrix encoding a sequence
with length 200. The network consists of six 1-D CNN
blocks with batch normalization. Besides, for every three

Table 7 Data distribution of 5 parts in the development set for
classifying strong enhancers and weak enhancers

Part
Number of enhancers

Strong Weak

1 150 147

2 154 143

3 146 151

4 148 149

5 144 152

Total 742 742

Table 8 The corresponding code of each nucleic acid in one-hot
encoding

Nucleic Acid Code

‘A’ [ 1 0 0 0 ]

‘C’ [ 0 1 0 0 ]

‘G’ [ 0 0 1 0 ]

‘T’ [ 0 0 0 1 ]

blocks of 1-D CNN, there is one 1-D max pooling layer.
After the CNN and the max pooling layers, 768 features
are obtained and fed into two fully connected layers with
768 and 256 input neurons using the rectified linear unit
(ReLU) and sigmoid activation functions, respectively, to
produce a probability of being an enhancer for the input
sequence. The same architecture is used to classify strong
enhancers and weak enhancers. The models were trained
within 20 epochs using the binary cross entropy loss with
Adam optimizer [34] and the learning rate of 0.0001. For
each CNN model, the optimal network was selected corre-
sponding to the epoch at which the loss on the validation
set was minimal.

Ensemble model
The training process finished with 5 trained CNN models
for each layer. For each independent test sample passing
through those 5 CNN models, 5 hypotheses (probabili-
ties): H1, H2, H3, H4, and H5 were independently com-
puted. We tested the following ensemble methods in order
to select the most effective one.

• The Voting method : At first, the class of each
hypothesis under the threshold of 0.5 were
determined to collect 5 class hypotheses. The
resultant class was decided based on the frequency of
the outcome.

• The Averaging method : The hypothesis H was
calculated as the average value of these five
hypotheses under the threshold of 0.5 to give the final
result.

• The Median method : The hypothesis H was
calculated as the median value of these five
hypotheses under the threshold of 0.5 to suggest the
final result.

The threshold of 0.5 was chosen since that value is the
default decision threshold in most of classification algo-
rithms. Since our preliminary screening shows the Aver-
aging method worked more effectively compared to others
in this study, we adopted this method to construct the
ensemble models.

Model evaluation
To evaluate the model performance, evaluation metrics
including accuracy (ACC), sensitivity (SN), specificity
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Fig. 4 Architecture of the proposed CNN models

(SP), Matthews’s correlation coefficient (MCC), and Area
Under the ROC Curve (AUC), were used. TP, FP, TN, and
FN are abbreviated terms of True Positive, False Positive,
True Negative, and False Negative values, respectively.
The mathematical formulas of these metrics are expressed
below:

Accuracy (ACC) = TP + TN
TP + TN + FP + FN

, (1)

Specificity (SP) = TN
TN + FP

, (2)

Sensitivity (SN) = TP
TP + FN

, (3)

MCC = TP×TN − FP×FN√
(TP + FP)(TP+FN)(TN +FP)(TN +FN)

.(4)

Abbreviations
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Ensemble of CNN; MCC: Matthew’s correlation coefficient; OHE: One-hot
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