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Abstract

Background: Membrane proteins play an important role in the life activities of organisms. Knowing membrane
protein types provides clues for understanding the structure and function of proteins. Though various computational
methods for predicting membrane protein types have been developed, the results still do not meet the expectations
of researchers.

Results: We propose two deep learning models to process sequence information and evolutionary information,
respectively. Both models obtained better results than traditional machine learning models. Furthermore, to improve
the performance of the sequence information model, we also provide a new vector representation method to replace
the one-hot encoding, whose overall success rate improved by 3.81% and 6.55% on two datasets. Finally, a more
effective model is obtained by fusing the above two models, whose overall success rate reached 95.68% and 92.98%
on two datasets.

Conclusion: The final experimental results show that our method is more effective than existing methods for
predicting membrane protein types, which can help laboratory researchers to identify the type of novel membrane
proteins.
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Background
Protein is an important component of all cells and tis-
sues in the human body and is the material basis of life
[1–5]. Membrane proteins represent one important pro-
tein type that is rich in function, they participate in many
important reactions of the cell, including transporting
substances into and out of cells as a carrier, acting as a
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specific receptor for hromones, and carrying out cellular
recognition functions, as well as being responsible for sig-
nal transduction and cell-cell interactions [6]. Among the
genomes that have been completely sequenced, the num-
ber of membrane proteins accounts for 30% [7]. Moreover,
membrane proteins are of particular importance in drug
therapy, as they act as the targets for many drugs. Cur-
rently, the effects more than 50% of drugs on the market
are exerted by the actions of membrane proteins [8]. Since
the function of membrane protein is closely related to
its type, the prediction of membrane protein types can
contribute to research in the field of bioinformatics.
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According to their functions, membrane proteins can be
classified into three classes: integral, peripheral and lipid-
anchored [9]. Based on the direct interaction relationship
between membrane proteins and lipid bilayers, the three
classes can be further extended into eight basic types: (1)
type I membrane proteins, (2) type II membrane proteins,
(3) type III membrane proteins (4) type IV membrane
proteins, (5) multipass transmembrane proteins, (6) lipid
chain-anchored membrane proteins, (7) GPI-anchored
membrane proteins, and (8) peripheral membrane pro-
teins. Among them, Types I, II, III and IV are single-
pass transmembrane proteins, and detailed descriptions
of their differences are given in [9].

To help laboratory researchers discover the type of
novel membrane protein, various computation methods
are proposed for membrane protein type recognition.
Many of these approaches incorporate machine learning
algorithms and statistical analysis techniques, such as k-
nearest neighbor (KNN) [10], the naive Bayesian model
(NBM) [11], support vector machines (SVM) [12–14],
random forests (RF) [15], probabilistic neural network
(PNN) [16] and hidden Markov models [7].

The most popular feature extraction methods for pre-
dicting membrane protein types are based on sequence
information. The pseudo-amino acid composition
(PseAAC) [17] method incorporates information about
sequence order. Local amino acid composition (LAAC),
local dipeptide composition (LDC), global descriptor
(GD), Lempel-Ziv complexity (LZC), autocorrelation
descriptor (AD), sequence-order descriptor (SD) and
Hilbert-Huang transform (HHT) are proposed based on
amino acid classification and physicochemical properties
[18], and these methods are partially applied in our pre-
vious research [19]. The peptide composition method,
such as dipeptide composition (DipC) [20] and tripeptide
composition (TipC) [21] are also powerful sequence
information-based feature extraction methods.

The evolutionary information, which mainly refers
to the position-specific scoring matrix (PSSM), is also
widely used to predict membrane protein types [20, 22].
To extract rich evolutionary information from PSSM,
many researchers have proposed their own methods,
such as the reduced position-specific score matrix
(RPSSM) [23], evolutionary difference position-specific
score matrix (EDPSSM) [24], tri-gram position-specific
score matrix (TriPSSM) [25], k-separated-bigrams
position-specific score matrix (KPSSM) [26],
correlation position-specific scoring matrix (CoPSSM)
[27], and pseudo position-specific score matrix
(PsePSSM) [9]. These methods are all obtained through
complex feature engineering.

In this paper, we improve the performance in mem-
brane protein type prediction. The main contributions of
the paper are summarized as follows: First, we present

two deep neural network (DNN) models to process the
sequence information and evolutionary information sep-
arately. These models both achieve better performance
than traditional machine learning models. Second, by
using the DNN model with convolutional and recurrent
layers, we can remove the burden of feature engineering
and the reliance on domain experts. Third, we provide
a new vector representation based on autoencoder and
physicochemical property indexes. Numerous experimen-
tal results prove that the new vector has more powerful
representation ability than one-hot encoding. Finally, a
more effective model is constructed by fusing the above
two models with the ensemble learning.

The DNN model has shown its superiority in the field
of bioinformatics [28–37]. However, to the best of our
knowledge, this paper is the first to propose DNN mod-
els for the prediction of membrane protein types. The
two DNN models proposed in this paper can process the
sequence information and evolutionary information, sep-
arately. When processing sequence information, we use a
1D convolutional layer [38] and bidirectional long short
term-memory (Bi-LSTM) layers [39], and when process-
ing evolutionary information, a 2D convolutional layer
and CapsNet layer [40] are adopted. Among these lay-
ers, compared to convolutional network, CapsNet is a new
network that can extract local position information.

Methods
Datasets
In this work, we use two datasets to evaluate the perfor-
mance of our method, hereafter referred to as Dataset 1
and Dataset 2. Dataset 1 consists of two benchmark sets,
the training set and the testing set, which are both from
paper [41] and used in previous studies [9, 10, 12, 13,
20]. Dataset 2 is constructed by Chen [12]; it also con-
sists of two benchmark sets. Table 1 shows the concrete
distribution of Dataset 1 and Dataset 2.

Architecture of the proposed DNN
To improve the performance of the prediction of mem-
brane protein types, we build the DNN model with a
keras framework (http://www.keras.io). Considering the
respective characteristics of sequence information and
evolutionary information, we build two different models
to process them, which are hereafter referred to as the
sequence information model and evolutionary informa-
tion model, respectively.

Sequence information model
In this model, the input sequences are converted into
numerical vectors of fixed length by truncating the long
sequence and padding the short sequence with ‘0’. The
length of the sequence ranges from 50 to 5000 in our
dataset. Although the length of the sequence varies

http://www.keras.io
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Table 1 The distribution of samples for Dataset 1 and Dataset 2

Membrane protein types Dataset 1 Dataset 2

Training set Testing set Training set Testing set

Type I 610 444 561 245

Type II 312 78 316 79

Type III 24 6 32 9

Type IV 44 12 65 17

Mutipass 1316 3265 1119 2478

Lipid-chain-anchored 151 38 142 36

GPI-anchored 182 46 164 41

Peripheral 610 444 674 699

overall 3249 4333 3073 3604

greatly, sequences with a length of less than 1500 account
for almost 98% of the total dataset. Therefore, taking the
utilization of information and the computational com-
plexity into account, we decided to set the fixed length to
1500. Each of the basic 20 amino acids is converted into
a number of 0-19. Ultimately, to prevent different encod-
ing from affecting the performance of model, one-hot
encoding is used before inputting the vector into the model.

The architecture of the sequence information model,
as shown in Fig. 1, consists of one 1D convolutional
layer (filters: 256, kernel__size: 15, strides: 10, padding:

‘same’, activation: ‘relu’), two Bi-LSTM layers (units: 128,
dropout: 0.5 and rest default setting) and one fully con-
nected layer (softmax). The 1D convolutional layer can
reduce the complexity of the Bi-LSTM layer that reduces
the shape of the output matrix from 1500×256 tensor to
150×256. Moreover, the 256 filters in the layer can also
extract rich information from the sequence. Next, two
Bi-LSTM layers are applied, which can identify features
separated by large gaps. In previous studies, a normal
LSTM layer is mainly used to process sequence informa-
tion [29, 30]. Compared to normal LSTM, the Bi-LSTM

Fig. 1 The sequence information model uses 1D Conv and Bi-LSTM layers. First, the membrane protein sequences are encoded into a matrix of size
1500×20. Then, these matrixes are fed to the 1D Conv layer (filters: 256, kernel size: 15, strides: 10, padding: same, activation: relu). Next, two Bi-LSTM
layers (units: 128, dropout: 0.5 and the remainder as default settings) are used to identify features separated by large gaps. Last, the output from the
Bi-LSTM layer is passed through a final dense layer that uses a softmax function to obtain the probability value belonging to each membrane
protein type
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layer we used can take advantage of both historical input
and future information, which performs better for our
task. Each Bi-LSTM unit comprises three gates, which are
shown in Fig. 1. Their calculation process is as follows:

ft = σ(Wf ·[ ht−1, xt] +bf ) forget gate (1)

it = σ(Wi·[ ht−1, xt] +bi) input gate (2)

C̃t = tanh(WC ·[ ht−1, xt] +bC) candidate cell states
(3)

Ct = ft ∗ Ct−1 + it ∗ C̃t updated cell states (4)

ot = σ(Wo·[ ht−1, xt] +bo) output gate (5)

ht = ot ∗ tanh(Ct)) hidden cell states (6)

where Wf , Wi, WC and Wo denote the weight matrix of
the forget gate, input gate, candidate cell states and output
gate, respectively, and bf , bi, bC , and bo denote the bias of
the forget gate, input gate, candidate cell states and output
gate, respectively. The forget gate decides which informa-
tion is discarded from the cell state, where ht−1 represents
the output of the previous cell, and xt represents the input
of the current cell. σ represents the sigmod function. The
input gate decides how much new information is added
to the cell states, and it uses two steps to accomplish this
task: First, a sigmoid layer determines which information
needs to be updated; a tanh layer generates a vector C̃t ,
which is the alternative content to update. Then, we com-
bine two parts to update the state of the cell. The output
gate will determine what value to output. First, we run a
sigmoid layer to determine which part of the cell state will
be output. Next, we process the cell state through tanh
(obtaining a value between -1 and 1) and multiply it by the
output of the sigmoid gate. Eventually, we will only output
the part of our output that we determined.

Then, the output from Bi-LSTM layer is passed through
a final dense layer that used a softmax function to obtain
the probability value belonging to each membrane pro-
tein type. We compile our keras model with the ‘Adam’
optimizer (lr: 0.001, beta__1: 0.9, beta__2: 0.999, decay=0).
Finally, we find that adding the BatchNormalization lay-
ers (default setting) after three mainly layers in our model
helps to accelerate convergence.

Evolutionary information model
In this paper, evolutionary information mainly refers to
the PSSM, which was first proposed by Jones for predict-
ing the secondary structure of proteins [42]. The PSSM

can discover protein sequences that have evolved relation-
ships with search sequences. It is expressed as follows:

PSSM =

⎡
⎢⎢⎢⎣

M1→1 M1→2 · · · M1→20
M2→1 M2→2 · · · M2→20

...
...

. . .
...

ML→1 ML→2 · · · ML→20

⎤
⎥⎥⎥⎦ (7)

where L is the length of the sequence, and Mi→j denotes
the score of the amino acid in the i-th position of the
amino acid being mutated to j-th position of the amino
acid during the evolution process. Because membrane
protein sequences vary in size, their PSSM shapes are
also different. Similar to the sequence information model,
we also truncate the long sequence and pad the short
sequence with ‘0’ to convert the PSSM matrix into a
1500×20 matrix.

The architecture of evolutionary information model is
shown in Fig. 2. It consists of two 2D convolutional layers,
two average pooling layers, one PrimaryCaps and one fully
connected layer. The first 2D convolutional layer (filters:
256, kernel__size: (5,5), strides: 1, padding: ‘valid’, activa-
tion: ‘relu’) is used to extract rich and effective features
from the PSSM. Next, the first 2D average pooling layer
(pool__size: (2,2) and the remainder as default settings)
is used to retain the main features while reducing the
parameters and calculations of the next layer to prevent
overfitting. Although paper [40] argued that the pool-
ing layer may throw away information about the precise
position of the entity within the region, we find that the
pooling layer and CapsNet work together to obtain the
best results in our task. One possible reason is that the
pooling layer can improve the robustness of extracted fea-
tures. Then, the second 2D convolutional layers (filters:
128, kernel__size: (5,5), strides: 1, padding: ‘valid’, acti-
vation: ‘relu’) and the second 2D average pooling layer
(pool__size: (2,2) and the remainder as default settings)
are reused to obtain more advanced features. Moreover,
each convolutional layer has a dropout technique with the
rate 0.5 to prevent the model from overfitting. The first
four layers are designed to increase the representation
power of CapsNet.

The PrimaryCaps layer contains 4 primary capsules that
accept the basic features detected by the first four lay-
ers and generate a combination of features. The 4 main
capsules of this layer are essentially similar to the con-
volutional layer. Among them, the 1×1 convolution ker-
nel used in our study not only achieves cross-channel
interaction and information integration, but also reduces
the number of convolution kernel channels. Each cap-
sule applies sixteen 1×1×64 convolution kernels to the
372×2×128 input tensor, thus generating a 372×2×64
output tensor. With a total of 4 capsules, the output is
a 372×2 × 4×16 tensor. Since the length of a capsule
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Fig. 2 The evolutionary information model uses 2D Conv and CapsNet layers. First, the PSSM matrix is processed as the matrix with the same shape.
These matrixes are fed to the 2D Conv layer (filters: 256, kernel size: (5,5), strides: 1, padding: valid, activation: relu) and average pooling layer (pool
size: (2,2) and the remainder as default settings) to extract the rich and effective features. Next, the 2D Conv layer(filters: 128, kernel__size: (5,5),
strides: 1, padding: ’valid’, activation: ’relu’) and average pooling layer(pool__size: (2,2)) are reused to extract more advanced features. The
PrimaryCaps layer is the convolutional capsule layer, which has size 1×1 convolution kernels and 4 channels of 16D capsules. The ProteinCaps layer
has eight 16D capsules to represent one of membrane protein types. Finally, the L2-norm of each capsule vector is calculated to indicate the
probability of each type

represents the probability that the entity presented, the
CapsNet layer needs a new activation function, which
is called the squashing function. It is a novel nonlin-
ear activation function that accepts an input vector and
then compresses its length to [0,1] as output, which is
calculated as follows:

Vj =
∥∥sj

∥∥
1 + ∥∥sj

∥∥2
sj∥∥sj
∥∥ (8)

where Vj and sj are the vector output and input of the
CapsNet, respectively.

The last layer contains eight membrane protein type
capsules, one for each type of membrane protein. The cal-
culation between the PrimaryCaps layer and ProteinCaps
layer is shown in Fig. 3. Among them, ui represents the i-
th capsule in PrimaryCaps. Wij is the weight matrix that
represents the spatial relationship and other important
relationships between low-level capsules and high-level
capsules. There are eight capsules (Vj, j ∈[ 1, 2, · · · , 8])
in ProteinCaps, each of which receives the inputs from
all capsule outputs in PrimaryCaps. Vj is calculated by
the weighted sum of ũji and then is passed through the
squashing function. Here, the weights cij are obtained by
an iterative dynamic routing process that can be found
in [40].

The output of the ProteinCaps layer has eight 16D vec-
tors. During training, for each training sample, the loss
value is calculated as follows:

Lc =Tcmax(0, m+−‖Vc‖))2+λ(1−Tc)max(0, ‖Vc‖)−m−)2

(9)

where the value of Tc is decided by the correct label. If the
correct label corresponds to the membrane protein type
in ProteinCaps, then Tc = 1; otherwise, Tc = 0 . For
the value of the other hyperparameters m+, m− and λ, we
used the default values 0.9,0.1 and 0.5, respectively, which
are suggested in [40].Then, eight loss values are added to
obtain the final loss.

Finally, we use the ‘Adam’ optimizer method (lr: 0.0001,
beta__1: 0.9, beta__2: 0.999, decay=0). The suggested set-
tings, three routing iterations and the margin loss func-
tion, are used in our work.

Fusion information model
Many studies have proved that the fusing information
method has better results than the single information
method [12, 20, 43–45]. Therefore, we also present a
fusion information model based on ensemble learning.
Among these methods, the ensemble learning method
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Fig. 3 Computation between the PrimaryCaps and ProteinCaps layers.There are 2976 16D capsules (each ui is an 16D vector) in PrimaryCaps. Each
ûj|i is produced by multiplying ui by a weight matrix Wi,j (16×16). Capsule Vj (16D vector and j ∈ [1, 8]) in ProteinCaps is produced by a weighted
sum over all ûj|i and the squashing nonlinear activation function. The parameter ci,j is determined by the iterative dynamic routing process

that we adopted is a stacking algorithm, and its details can
be found in our previous work [19]. Figure 4 shows the
complete flow chart of the stacking algorithm, where the
meta-classifier that we used is multiple logistic regression
(MLR).

Research has shown that using the class probability out-
put of the base classifier as the input of the meta classifier
performs better [46]. Then, we use P(x) as the output of
the base classifier, it can be represented as follows:

P(x) =
(

PT
1 , PT

2

)

=

⎛
⎜⎜⎝P1

1, P1
2, P1

3, P1
4, P1

5, P1
6, P1

7, P1
8︸ ︷︷ ︸

Sequence_informtaion_model

, P2
1, P2

2, P2
3, P2

4, P2
5, P2

6, P2
7, P2

8︸ ︷︷ ︸
Evolutionary_informtaion_model

⎞
⎟⎟⎠

Model training
In most experiments, the DNN models are trained using
identical training strategies. The dataset is divided into

three parts, the training set, validation set and testing
set, which play different roles in our work. The train-
ing set is used to train the model, and the validation set
is used to adjust parameters and select the best model.
The testing set is used to evaluate the performance of the
model at the end. In our work, 20% of samples are sep-
arated from the original training set as a validation set.
Then, the distributions of three sets in two datasets are
shown in Table 2. All DNN models are implemented using
keras 2.1.2. Model training and testing are performed
on a personal computer equipped with an Nvidia GTX
1060 GPU.

Model evaluation
We use sensitivity (Se), specificity (Sp), accuracy (ACC)
and overall success rate (OSR) to evaluate the classifica-
tion performance. They are defined as follows:

Sei = TPi/(TPi + FNi) (10)



Guo et al. BMC Bioinformatics 2019, 20(Suppl 25):700 Page 7 of 17

Fig. 4 The flow of the stacking algorithm. Model_1 refers to the sequence information model, and Model_2 refers to the evolutionary information
model. The class probability outputs of two models are combined to serve as a new training set to train the meta-classifier (MLR). When testing
unknown membrane protein samples, we take the result of the meta-classifier as the final output

Spi = TNi/(TNi + FPi) (11)

ACCi = TPi + TNi
TPi + TNi + FNi + FPi

(12)

OSR =
∑k

i=1 TPi∑k
i=1(TPi + FNi)

(13)

where TP, TN, FP and FN represent true positive, true
negative, false positive and false negative, respectively.

The Matthews correlation coefficient (MCC) is also
used in our work. It is generally considered to be a more
balanced indicator, even if the sample content of the two
categories varies widely [47]. The MCC is essentially a cor-
relation coefficient between the actual classification and
the predicted classification. Its value range is [-1, 1]. A
value of 1 indicates a perfect prediction for the subject. A
value of 0 indicates that the predicted result is not as good
as the result of random prediction, and -1 means that the

predicted classification is completely inconsistent with the
actual classification. The MCC is defined as follows:

MCCi = TPi × TNi − FPi × FNi√
(TPi + FNi)(TPi + FPi)(TNi + FPi)(TNi + FNi)

(14)

The construction of vector representation
One-hot encoding ignores the possible relationship
between amino acids. For example, alanine and cysteine
have a certain relationship in their physicochemical prop-
erties, yet ‘0’ and ‘1’ do not provide much informtaion
about this relationship. Moreover, we usually need more
data to train because the amino acids are stored as sparse
matrixes. Using a vector representation method can effec-
tively solve the above problems. Continuous bag of words
(CBOW) and Skim-Gram [48] are two popular vector rep-
resentation methods that are widely used in the field of
natural language processing (NLP). Limited by the size
of protein samples and the characteristics of the protein
sequence, these methods are no longer applicable. In this
paper, we provide a new vector representation method
based on autoencoder and the physicochemical properties

Table 2 The distribution of three data in two datasets

Membrane protein types
Dataset 1 Dataset 2

Training set Validation set Testing set Training set Validation set Testing set

Type I 488 122 444 449 112 245

Type II 250 62 78 253 63 79

Type III 19 5 6 25 7 9

Type IV 35 9 12 52 13 17

Mutipass 1052 264 3265 895 224 2478

Lipid-chain-anchored 121 30 38 114 28 36

GPI-anchored 146 36 46 131 33 41

Peripheral 488 122 444 539 135 699

overall 2599 650 4333 2458 615 3604
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of amino acids. This method can achieve a more compact
representation of input symbols and yield semantically
similar symbols close to each other in vector space.

The AAindex is a database of numerical indexes repre-
senting various physicochemical properties of amino acids
and pairs of amino acids [49]. The database now has a
total of 557 indexes, which all come from the published
paper. In this research, the physicochemical properties
indexes with ‘NA’ are screened out, and the remaining
537 indexes are adopted. Using a physicochemical prop-
erties index that represents the amino acids is a good idea
to replace the one-hot encoding. However, this method
would consume a large amount of storage space and
greatly increase the computational complexity. To process
the above problems, autoencoder is used to create a more
effective representation.

Autoencoder is a neural network that can capture the
most important features of data. It consists of the input
layer, multiple hidden layers and output layer. The input
and output of the autoencoder are consistent, and the
goal is to reconstruct itself using some high-level feature
recombination. If the number of nodes of the hidden layer
is smaller than the input layer and the output layer, it
represents the same low-density information and is a cen-
tralized representation of the input data obtained from the

learning. In our work, we take 537 physicochemical prop-
erties indexes of each amino acid as input, reconstruct
this informatin with the autoencoder, and then obtain a
more effective vector representation from the intermedi-
ate layer. The architecture of the autoencoder that we used
is shown in Fig. 5.

Results and discussion
The performance of vector representation
To explore the advantage of the new vector representation
method, we compared the performance between the one-
hot encoding and our method in the sequence information
model. We note that our process of parameter adjustment
is all on the validation set and not reparameterized to
apply on the testing set.

Figure 6 shows the overall success rate of vector rep-
resentations using different dimensions in Dataset 1 and
Dataset 2. To verify whether the vector representation
that we proposed is better than one-hot encoding, we also
indicated the overall success rate of the one-hot encoding
method in the figures. It can be seen from the figure that
our method is better in most cases. Taking both the pre-
diction performance and computational complexity into
account, we finally chose the vector representation with
10-dimension to replace the one-hot encoding.

Fig. 5 The structure of autoencoder. It consists of an input layer, five hidden layers and an output layer. The input layer has 537 units; the first two
layers and the last two layers of the five hidden layers have 128, 64, 64, and 128 units, respectively, the number of nodes in the middle layer of the
hidden layers is an additional hyperparameter obtained by training; and the output layer has 537 units
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Fig. 6 Comparison of the overall success rate between our method and one-hot encoding on Dataset 1 and Dataset 2. The x-axis represents the
number of dimensions reduced by the autoencoder. The y-axis represents the overall success rate. a and b show the results of the validation set and
testing set on Dataset 1; c and d show the results on Dataset 2

Furthermore, to verify whether the vector representa-
tion is helpful to improve the performance of the model,
we also randomly generate a 10-dimensional vector in
the interval [0,1] for comparison experiments; the results
are shown in Table 3. From the table, we find that the
vector representation that we proposed is more effec-
tive than other methods both on Dataset 1 and Dataset
2. In addition, we find that the random method is even
worse than the one-hot encoding. Although the random
method has a lower dimension, it cannot express the
relationship between amino acids well, which makes the
result worse. The final experimental results illustrate the
reliability of the new vector representation method that
we proposed.

Table 3 Comparison of the overall success rate between different
vector representation methods on Dataset 1 and Dataset 2

Method
Dataset 1 Dataset 2

Validation set Testing set Validation set Testing set

One hot encoding 80.78% 87.77% 78.21% 82.63%

Random method 74.77% 80.87% 71.22% 81.94%

Our method 85.54% 91.58% 83.25% 89.18%

Note: Best performing method in bold.

The effective of sequence information model
Table 4 gives the overall success rate of the compari-
son between the sequence information model and tra-
ditional models on Dataset 1 and Dataset 2, where four
popular features used for comparative experiments are
AAC, DipC, TipC and PseAAC. Among them, AAC, DipC
and Tipc are amino acid composition-based methods;
PseAAC is the method based on amino acid composi-
tion and physicochemical properties. These features are
all extracted from the membrane protein sequence. The
machine learning algorithm used to compare random

Table 4 Comparison of the overall success rate between four
traditional models and sequence information model on Dataset
1 and Dataset 2

Method
Dataset 1 Dataset 2

Overall success rate Overall success rate

AAC+RF 85.02% 79.55%

DipC+RF 86.12% 80.88%

TipC+RF 84.21% 79.00%

PseAAC+RF 85.74% 80.27%

Our model 91.58% 89.18%

Note: Best performing method in bold.
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forests. Research has illustrated its effectiveness in the
prediction of membrane protein types [50]. The optimal
parameters in random forests are obtained by using the
grid search method and 5-fold cross-validation on the
training set. From the table, we find that our DNN model
has a better overall success rate than all the machine learn-
ing methods. Compared with the DipC, which has the
best results among the four sequence features, our model

improved by 5.43% and 8.30% on Dataset 1 and Dataset 2,
respectively.

Tables 5 and 6 give the values of Se, Sp, ACC and MCC
for eight membrane protein types using four traditional
models and our DNN model on Dataset 1 and Dataset
2, respectively. Although our model is not as good as the
traditional model in some indicators, our model achieves
better results in most cases. Furthermore, we find that it

Table 5 Comparison of the Se, Sp, ACC and MCC between four traditional models and sequence information model on Dataset 1

Membrane protein types Index AAC DipC TipC PseAAC Our model

Se 0.7928 0.7095 0.5225 0.8221 0.8356

Type I Sp 0.9537 0.9671 0.9805 0.9568 0.9941

ACC 0.9372 0.9407 0.9335 0.9430 0.9778

MCC 0.6898 0.6772 0.5936 0.7192 0.8751

Se 0.2692 0.0641 0.0256 0.2949 0.8077

Type II Sp 0.9946 0.9993 1.0 0.9951 0.9871

ACC 0.9815 0.9825 0.9825 0.9825 0.9838

MCC 0.3499 0.1964 0.1587 0.3845 0.6492

Se 0.0 0.0 0.0 0.0 0.1667

Type III Sp 1.0 1.0 1.0 1.0 0.9998

ACC 0.9986 0.9986 0.9986 0.9986 0.9986

MCC 0.0 0.0 0.0 0.0 0.2881

Se 0.0833 0.0 0.0 0.0 0.6667

Type IV Sp 1.0 1.0 1.0 1.0 0.9984

ACC 0.9975 0.9972 0.9972 0.9972 0.9986

MCC 0.2883 0.0 0.0 0.0 0.5950

Se 0.9069 0.9587 0.9816 0.9029 0.9461

Mutipass Sp 0.8661 0.7004 0.4766 0.8858 0.9092

ACC 0.8968 0.8950 0.8571 0.8987 0.9370

MCC 0.7390 0.7051 0.5847 0.7479 0.8355

Se 0.1579 0.0789 0.0263 0.1579 0.1579

Lipid-chain-anchored Sp 0.9988 1.0 1.0 0.9993 0.9979

ACC 0.9915 0.9919 0.9915 0.9919 0.9905

MCC 0.2904 0.2798 0.1615 0.3219 0.2473

Se 0.3696 0.0435 0.0435 0.3478 0.8478

GPI-anchored Sp 0.9974 1.0 1.0 0.9960 0.9951

ACC 0.9908 0.9898 0.9898 0.9892 0.9935

MCC 0.4694 0.2075 0.2075 0.4054 0.7393

Se 0.7342 0.6261 0.4662 0.8041 0.8806

Peripheral Sp 0.9262 0.9617 0.9874 0.9262 0.9609

ACC 0.9065 0.9273 0.9340 0.9137 0.9527

MCC 0.5747 0.5981 0.5835 0.6226 0.7708

Note: Best performing method in bold.
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Table 6 Comparison of the Se, Sp, ACC and MCC between four traditional models and sequence information model on Dataset 2

Membrane protein types Index AAC DipC TipC PseAAC Our model

Se 0.6571 0.5306 0.3388 0.6898 0.8408

Type I Sp 0.9384 0.9643 0.9824 0.9440 0.9806

ACC 0.9193 0.9348 0.9387 0.9267 0.9711

MCC 0.4951 0.4903 0.4156 0.5341 0.7841

Se 0.1139 0.0 0.0 0.0633 0.7468

Type II Sp 0.9901 1.0 1.0 0.9889 0.9739

ACC 0.9709 0.9781 0.9781 0.9686 0.9689

MCC 0.1387 0.0 0.0 0.0696 0.5267

Se 0.0 0.0 0.0 0.0 0.0

Type III Sp 1.0 1.0 1.0 1.0 1.0

ACC 0.9975 0.9975 0.9975 0.9975 0.9975

MCC 0.0 0.0 0.0 0.0 0.0

Se 0.0 0.0 0.0 0.0 0.7647

Type IV Sp 1.0 1.0 1.0 1.0 0.9958

ACC 0.9953 0.9953 0.9953 0.9953 0.9947

MCC 0.0 0.0 0.0 0.0 0.5935

Se 0.8721 0.9290 0.9617 0.8709 0.9157

Mutipass Sp 0.8526 0.7105 0.4885 0.8588 0.9813

ACC 0.8660 0.8607 0.8138 0.8671 0.9362

MCC 0.7022 0.6669 0.5442 0.7058 0.8638

Se 0.0556 0.0 0.0 0.0278 0.0

Lipid-chain-anchored Sp 1.0 1.0 1.0 1.0 0.9983

ACC 0.9906 0.9900 0.9900 0.9903 0.9883

MCC 0.2346 0.0 0.0 0.1659 -0.0041

Se 0.3659 0.0488 0.0 0.3659 0.9024

GPI-anchored Sp 0.9986 1.0 1.0 0.9941 0.9938

ACC 0.9914 0.9892 0.9886 0.9870 0.9928

MCC 0.5203 0.2197 0.0 0.3839 0.7490

Se 0.7425 0.6881 0.5451 0.7797 0.9013

Peripheral Sp 0.8885 0.9164 0.9580 0.8954 0.9418

ACC 0.8602 0.8721 0.8779 0.8729 0.9340

MCC 0.5893 0.5965 0.5740 0.6290 0.8025

Note: Best performing method in bold.

is difficult for the method combining feature engineering
and the machine learning algorithm to predict the small
types, especially in Type 4 membrane protein samples
where the value of Sn and Mcc is zero in most tradi-
tional models. However, our model can predict the small
type samples well. The reason may be the powerful feature
extraction capabilities of the convolutional layer and Bi-
LSTM layer that we used. The experimental results prove

that our proposed sequence information model has better
performance than traditional models.

The effective of evolutionary information model
Then, we use the same experimental method to
compare the performance between the evolutionary
information model and seven popular PSSM-based tra-
dition methods proposed by other researchers, including
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Table 7 Comparison of the overall success rate between seven
traditional models and evolutionary information model on
Dataset 1 and Dataset 2, respectively

Method Dataset 1 Dataset 2

Overall success rate Overall success rate

EDPPSSM+RF 86.82% 79.83%

KPSSM+RF 92.34% 87.99%

CPSSM+RF 88.83% 83.55%

TriPSSM+RF 93.21% 89.43%

RPSSM+RF 90.56% 84.05%

CoPSSM+RF 90.79% 84.21%

PsePSSM+RF 91.71% 86.85%

Our model 94.02% 89.79%

Note: Best performing method in bold.

EDPSSM, KPSSM, CPSSM, TriPSSM, RPSSM, CoPSSM
and PsePSSM. They are all powerful features extracted
from PSSM. Table 7 gives the overall success rate between
seven traditional models and the evolutionary informa-
tion model on Dataset1 and Dataset 2. From the table,
we find the best method for the traditional model is
TriPSSM, which utilizes PSSM linear probabilities to com-
pute features. Although TriPSSM can obtain the out-
standing grades on membrane protein types prediction,
we find that it has 8000-dimensional features; the high
dimensionality of features in turn increases the com-
puting complexity. Our model is still effective since
it can use GPU acceleration to yield better results in
less time.

Table 8 Comparison of the Se, Sp, ACC and MCC between seven traditional models and the evolutionary information model on
Dataset 1

Membrane protein types Index PsePSSM RPSSM EDPSSM KPSSM CPSSM CoPSSM TriPSSM Our model

Se 0.9122 0.8761 0.8491 0.9054 0.8739 0.8806 0.9122 0.9144

Type I Sp 0.9776 0.9733 0.9622 0.9859 0.9666 0.9781 0.9884 0.9920

ACC 0.9709 0.9633 0.9506 0.9776 0.9571 0.9682 0.9806 0.9841

MCC 0.8505 0.8112 0.7546 0.8800 0.7856 0.8328 0.8953 0.9129

Se 0.7308 0.6410 0.5256 0.6923 0.4231 0.6923 0.8205 0.8462

Type II Sp 0.9927 0.9918 0.9960 0.9913 0.9979 0.9922 0.9929 0.9944

ACC 0.9880 0.9855 0.9875 0.9859 0.9875 0.9868 0.9898 0.9912
MCC 0.6819 0.6067 0.6035 0.6339 0.5713 0.6489 0.7424 0.7748
Se 0.1667 0.0 0.0 0.1667 0.0 0.0 0.1667 0.1667

Type III Sp 1.0 0.9998 1.0 1.0 1.0 1.0 1.0 0.9993
ACC 0.9988 0.9984 0.9986 0.9988 0.9986 0.9986 0.9988 0.9984
MCC 0.4080 -0.0006 0.0 0.4080 0.0 0.0 0.4080 0.2032

Se 0.4167 0.5000 0.4167 0.6667 0.0833 0.3333 0.6667 0.75
Type IV Sp 0.9995 0.9993 1.0 0.9995 1.0 0.9998 0.9995 0.9995

ACC 0.9979 0.9979 0.9984 0.9986 0.9975 0.9979 0.9986 0.9982
MCC 0.5446 0.5763 0.6450 0.7296 0.2883 0.5156 0.7296 0.7828

Se 0.9275 0.9394 0.9219 0.9495 0.9305 0.9326 0.9553 0.9593
Mutipass Sp 0.9654 0.9438 0.8305 0.9625 0.9026 0.9682 0.9691 0.9785

ACC 0.9444 0.9405 0.8994 0.9527 0.9236 0.9414 0.9587 0.9640
MCC 0.8619 0.8493 0.7360 0.8799 0.8042 0.8560 0.8947 0.9083

Se 0.3158 0.2368 0.2105 0.3684 0.2105 0.3684 0.3158 0.6053
Lipid-chain-anchored Sp 0.9986 0.9979 0.9977 0.9984 0.9991 0.9972 0.9970 0.9960

ACC 0.9926 0.9912 0.9908 0.9928 0.9922 0.9917 0.9910 0.9926
MCC 0.4557 0.3403 0.3018 0.4924 0.3719 0.4414 0.3850 0.5862

Se 0.6522 0.5217 0.3913 0.6957 0.3913 0.7174 0.6957 0.8043
GPI-anchored Sp 0.9963 0.9986 0.9967 0.9986 0.9988 0.9951 0.9984 0.9963

ACC 0.9926 0.9935 0.9903 0.9954 0.9924 0.9922 0.9952 0.9942
MCC 0.6484 0.6431 0.4645 0.7631 0.5503 0.6582 0.7531 0.7465

Se 0.9077 0.8536 0.6824 0.8784 0.8176 0.8851 0.8964 0.9009
Peripheral Sp 0.9537 0.9509 0.9481 0.9524 0.9403 0.9452 0.9578 0.9637

ACC 0.9490 0.9409 0.9208 0.9448 0.9278 0.9391 0.9515 0.9573
MCC 0.7655 0.7218 0.5959 0.7427 0.6678 0.7260 0.7711 0.7933

Note: Best performing method in bold.
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Tables 8 and 9 report the results, measured in Se, Sp,
ACC and MCC over all methods on Dataset 1 and Dataset
2. From the tables, we can draw a conclusion that our
model is more effective than the traditional model in
evolution information extraction. The convolutional layer
has a powerful ability to extract features from the evo-
lutionary information, and the CapsNet layer can extract

local position information. These abilities explain why our
DNN model could achieve better results.

The effective of stacking ensemble method
To investigate on how the fusion model impacts the
performance, we report the overall success rate of the
validation set and testing set using two single models and

Table 9 Comparison of the Se, Sp, ACC and MCC between seven traditional models and the evolutionary information model on
Dataset 2

Membrane protein types Index PsePSSM RPSSM EDPSSM KPSSM CPSSM CoPSSM TPSSM Our model

Se 0.8571 0.7633 0.7265 0.7959 0.7633 0.7673 0.8653 0.8082

Type I Sp 0.9586 0.9574 0.9512 0.9705 0.9556 0.9550 0.9759 0.9845

ACC 0.9517 0.9442 0.9359 0.9587 0.9426 0.9423 0.9684 0.9725

MCC 0.6943 0.6290 0.5821 0.7048 0.6224 0.6229 0.7748 0.7853

Se 0.4304 0.4051 0.3038 0.4810 0.2785 0.4304 0.4557 0.4684

Type II Sp 0.9887 0.9881 0.9904 0.9889 0.9952 0.0.9858 0.9906 0.9901

ACC 0.9764 0.9753 0.9753 0.9778 0.9795 0.9736 0.9789 0.9786

MCC 0.4327 0.4059 0.3423 0.4759 0.3873 0.4039 0.4769 0.4797

Se 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1111

Type III Sp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9958

ACC 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9936

MCC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0803

Se 0.1765 0.1176 0.0588 0.3529 0.1176 0.2353 0.3529 0.3529

Type IV Sp 0.9994 0.9997 1.0 1.0 1.0 1.0 1.0 0.9980

ACC 0.9956 0.9956 0.9956 0.9969 0.9958 0.9964 0.9969 0.9950

MCC 0.3238 0.2788 0.2420 0.5932 0.3423 0.4842 0.5932 0.4011

Se 0.9044 0.8971 0.8882 0.9350 0.9023 0.8910 0.9435 0.9443

Mutipass Sp 0.9494 0.9050 0.7655 0.9263 0.8712 0.9334 0.9316 0.9574

ACC 0.9184 0.8996 0.8499 0.9323 0.8926 0.9043 0.9398 0.9484

MCC 0.8232 0.7776 0.6517 0.8464 0.7572 0.7930 0.8627 0.8839

Se 0.1111 0.0278 0.0833 0.0833 0.0278 0.0833 0.0833 0.6111

Lipid-chain-anchored Sp 0.9986 0.9997 0.9997 0.9986 0.9994 0.9992 0.9983 0.9927

ACC 0.9897 0.9900 0.9906 0.9895 0.9897 0.9900 0.9892 0.9889

MCC 0.2186 0.1161 0.2480 0.1731 0.0939 0.2012 0.1627 0.5238

Se 0.4146 0.2927 0.2439 0.4146 0.2927 0.3902 0.4146 0.7073

GPI-anchored Sp 0.9961 0.9986 0.9983 0.9949 0.9992 0.9983 0.9992 0.9966

ACC 0.9895 0.9906 0.9897 0.9914 0.9911 0.9881 0.9925 0.9933

MCC 0.4717 0.4508 0.3864 0.5381 0.4807 0.4226 0.5907 0.7039

Se 0.8884 0.8183 0.6581 0.8512 0.7883 0.8326 0.8741 0.8627

Peripheral Sp 0.9253 0.9050 0.9112 0.9312 0.9046 0.9064 0.9377 0.9404

ACC 0.9181 0.8882 0.8621 0.9156 0.8821 0.8921 0.9254 0.9254

MCC 0.7616 0.6742 0.5635 0.7460 0.6513 0.6872 0.7752 0.7725

Note: Best performing method in bold.
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Table 10 Comparison of the overall success rate between two
single information model and fusion model on Dataset 1 and
Dataset 2

Method
Dataset 1 Dataset 2

Validation set Testing set Validation set Testing set

Sequence
information
model

85.54% 91.58% 83.25% 89.18%

Evolutionary
information
model

90.46% 94.02% 80.98% 89.79%

Fusion model — 95.68% — 92.98%

Note: Best performing method in bold.

the fusion model (Table 10). From the table, we find that
the fusion model achieves better results both on datasets,
demonstrating its superiority in prediction.

Figures 7 and 8 give the comparison results, mea-
sured in Se, Sp, ACC and MCC over three models on
Dataset 1 and Dataset 2,respectively. We find that the
fusion model achieves the best results in most cases.
However, the performance of small-scale forecasts has not
yet met our expectations. Other effective strategies for
solving imbalance problems may contribute to improving
our method.

Furthermore, the prediction of membrane protein types
requires not only high classification accuracy but also
certain operational efficiency. Table 11 lists the run-
ning time for different models when predicting 100

membrane protein samples. We find that the process
of fusion takes approximately 1.93e-10s, and the run-
ning time of the fusion model is almost the sum of
two single models. Though the time complexity of the
fusion model is higher, it is also within the tolerance
range.

Comparison with the existing methods
To demonstrate the performance of our DNN model in
practical use, we compared our DNN model with eight
state-of-the-art machine learning methods in the predic-
tion of membrane protein types. These models all proceed
through complex feature engineering, including feature
extraction, dimension reduction and so on. Table 12 rep-
resents the overall success rate between our DNN model
with eight models on Dataset 1 and Dataset 2. Taking
the accuracy of prediction and the degree of domain
experts dependence into account, we find the DNN model
not only achieves the best performance both on Dataset
1 and Dataset 2, but also removes the burden of fea-
ture engineering, which illustrates the effectiveness of
our model.

Conclusion
In this paper, we propose two DNN models to process
the sequence information and evolutionary information
separately. Among these models, 1D convolutional layers
and Bi-LSTM layers are used for the sequence informa-
tion model, while the evolutionary information model

Fig. 7 Comparison of two single models with the fusion model on Dataset 1: a Sensitivity (Se); b Specificity (Sp); c Accuracy (ACC) and d Mathews
correlation coeffcient (MCC)
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Fig. 8 Comparison of two single models with the fusion model on Dataset 2: a Sensitivity (Se); b Specificity (Sp); c Accuracy (ACC) and d Mathews
correlation coeffcient (MCC)

uses 2D convolutional layers and CapsNet layers. In the
comparative experiments, we compare these models with
the traditional model. Numerous experimental results
demonstrate that our two proposed DNN models not
only obtain more competitive results in membrane pro-
tein type prediction but also can remove the burden of
feature engineering and the reliance on domain experts.
In addition, to obtain a better prediction performance, the
stacking ensemble method is used to fuse the above two
models.

Furthermore, we provide a new vector representation
method based on autoencoder and the physicochemical
properties of amino acids to improve the performance
of the sequence information model. Compared with the
one-hot encoding, the new vector representation method
not only represents the relationship between amino acids
well but also can effectively improve the prediction per-
formance.

Finally, our method can be applied not only to mem-
brane protein type prediction but also to other fields

Table 11 Comparison of the running time for different models
when predicting 100 membrane protein samples

Model Running time (s)

Sequence information model 0.97

Evolutionary information model 0.50

Fusion model 1.47

of bioinformatics [51–63]. However, there is still room
for further investigation. For example, the problem of an
imbalanced dataset had a negative effect on the accuracy
of small-sized types. Some strategies for processing with
the imbalanced dataset may improve the performance of
our DNN model.

Table 12 Comparison of the overall success rate with eight
state-of-the-art methods

Method
Overall success rate

Dataset 1 Dataset 2

AAC based on Covariance [9] 37.2% —

PsePSSM based on ensemble
method [9]

91.6% 78.3%

Physicochemical properties
based on ensemble method
[13]

91.0% —

Fusion representation based
on SVM [16]

92.6% 88.2%

PsePSSM based on LLDA and
ensemble method [22]

88.7% —

PsePSSM and DC based on GPP
and KNN [20]

90.2% —

PsePSSM based on PCA and
KNN [22]

80.66% —

Previous work [19] 93.49% —

This paper 95.68% 92.98%

Note: Best performing method in bold.
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k-separated-bigrams position-specific score matrix; LAAC: Local amino acid
composition; LDC: local dipeptide composition; LZC: Lempel-Ziv complexity;
MCC: Matthews correlation coefficient; MLR: multiple logistic regression. NBM:
naive bayesian model; NLP: natural language processing; OSR: overall success
rate; PNN: probabilistic neural network; PseAAC: pseudo-amino acid
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