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Abstract

Cancer is one of the leading causes of death worldwide, despite large efforts to improve 

understanding of cancer biology and develop treatments. Efforts to improve cancer treatment are 

limited by the complexity of the local milieu in which cancer cells exist. The tumor 

microenvironment (TME) consists of a diverse population of tumor cells and stromal cells with 

immune constituents, microvasculature, extracellular matrix (ECM), and gradients of oxygen, 

nutrients, and growth factors. The TME is not recapitulated in traditional models used in cancer 

investigation, limiting the translation of preliminary findings to clinical practice. Advances in 

three-dimensional (3D) cell culture, tissue engineering, and microfluidics have led to development 

of “cancer-on-a-chip” platforms that expand the ability to model the TME in vitro and allow for 

high through-put analysis. Here we discuss advances in the development of cancer-on-chip 

platforms, implications for drug development, challenges to leveraging this technology for 

improved cancer treatment, and future integration with artificial intelligence for improved 

predictive drug screening models.
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1. Introduction

Cancer is a leading cause of death worldwide, with an estimated 17.0 million new cancer 

cases and 9.5 million cancer-related deaths reported by the International Agency for 

Research on Cancer in 2018 [1]. By 2040, global incidence will grow to 27.5 million new 

cancer cases, with cancer-related mortality at an estimated 16.3 million [1]. Cancer is the 

second leading cause of death in the United States, with approximately 1.74 million new 

cancer cases and 600,000 cancer-related deaths in 2018 (American Cancer Society) [1, 2] 

Despite extensive efforts by many research groups to improve the understanding of cancer 

biology, identify novel therapeutics, and push these advances into clinical practice, cancer 

remains a global burden to human healthcare and a prominent cause of death.

Malignant tumors often undergo the process of metastasis, disseminating cancer cells to 

distant locations in the body [3]. During metastasis, cancer cells leave the primary tumor site 

and travel to other regions of the body via the blood or lymphatic system, forming new 

tumors in other organs or tissues [3]. Metastatic tumors drastically increase patient mortality 

and decrease the efficacy of clinical treatments [4]. While patients diagnosed with localized 

tumors can often be successfully treated with surgery and/or radiation, with relatively high 

survival rates, a diagnosis of metastatic cancer often designates a terminal illness, with a five 

year survival rate less than twenty percent for half of all cancer sites[5]. The development of 

cancer metastases often necessitates the use of chemotherapeutic drugs, which enter the 

body’s circulation and travel, withinflicting cytotoxicity on tumor cells and therefore 

impacting tumor growth and, ideally, curing the patient [6].

The staggeringly high mortality and morbidity rates associated with cancer highlight the 

need for more efficacious therapies. Drug discovery and development for cancer treatment 

has been slow in its clinical translation due to a high attrition rate during drug development 
[7]. Despite robust research efforts, only 5.1% of anti-cancer drugs that enter phase I clinical 

trials receive Food and Drug Administration (FDA) approval [8]. One reason for this low 

translation rate is the poor ability of disease and drug screening models to predict patient 

outcomes [7]. The improved ability to more accurately and rapidly identify drug candidates 

and eliminate ineffective drugs as potential candidates would drastically improve the drug 

development process and accelerate the rate of clinical translation of [7, 9].

A central challenge in translating research advances from pre-clinical models to patient 

therapies and treatments is the immense complexity of the tumor microenvironment (TME). 

The TME is a complex niche created by each tumor and influenced by a tumor’s interactions 
[10, 11]. It is comprised of the non-cancerous cells within a tumor that support tumor cell 

growth. The TME consists of a heterogeneous population of stromal and immune cells, 

microvasculature, Eextracellular matrix (ECM), and the proteins produced and secreted by 

tumor cells. The TME is characterized by its specific mechanical properties and complex 

gradients of oxygen, nutrients, and growth factors. These components influence tumor 

biology and play a role in invasion, metastasis, and treatment outcomes[12]. A 

comprehensive review of TME components’ respective roles in these processes and cancer 

treatment can be found in previously published review papers [10, 13]. Current preclinical 

models for anti-cancer drug screening fall into two categories, in vitro and in vivo models. 
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The simplest, and most commonly used, in vitro model is the traditional two-dimensional 

(2D) culture of immortalized cell lines [14]. 2D culture is relatively inexpensive and allows 

for high-throughput analysis and is therefore commonly used in studies aiming to elucidate 

cancer biology or identify novel chemotherapeutic agents. However, despite their 

advantages, these models subject cancer cells to artificially 2D growth conditions and lack 

key components of the TME that influence cancer biology and drug response, including the 

stroma, ECM, tumor mechanical properties, and intertumoral gradients [14, 15]. As a result, 

the predictive value of these models is limited. Another traditional pre-clinical tool for 

cancer studies is in vivo animal models. Animal models for cancer mimic the tumor 

microenvironment to a greater fidelity than simplified 2D cell culture [16-18]. These models 

are often used to study an individual patient’s tumor ex vivo via patient-derived xenograft 

(PDX) models. However, despite their advantages, these models have several limitations. 

While these models provide a three-dimensional (3D) environment, a comparison between 

two vastly different species cannot be made with high accuracy. As a result, there is often a 

disparity between the outcomes of cancer related drug studies in animal models and patient 

trials. In addition, animal studies are often cost prohibitive. Thus, an alternative model is 

needed to provide efficient and effective drug screening to guide the initial selection of 

chemotherapeutic agents for cancer patients. This need drives the development of 3D 

models, which seek to integrate the advantages of in vivo and in vitro techniques for 

improved cancer studies and drug development.

Recently, much effort has been put into the development of organ-on-a-chip platforms that 

recapitulate both the biology and physiology of in vivo human tumors [7, 19-21]. The majority 

of these platforms are designed to mimic crucial functions of organs and tissues, enabling 

the investigation of pharmacokinetics and pharmacodynamics [19]. These approaches employ 

the use of multichannel, 3D microfluidic chips to simulate the mechanics, activity and 

physiological response of organs. Cancer-on-a-chip models are at the frontier of 

nanomedicine and offer promising utility as sophisticated microsystems to elucidate the 

mechanisms of cancer biology and improve anti-cancer drug development. As new organ-

on-a-chip platforms are developed, becoming increasingly higher throughput, large data sets 

are generated, bringing forth new challenges and opportunities. The development of these 

high-throughput organ-on-a-chip platforms gives rise to the application of deep learning-

based analysis processes for high-throughput drug screening, making way for a new avenue 

of cutting-edge research[22]. In this review, we will highlight seminal cancer-on-a-chip 

papers and new advances in the field, incorporating discussion on key features of the TME 

and the challenges associating with recapitulating its features. We will discuss recent 

applications of cancer-on-a-chip models for pathomorphological and drug development 

studies, with special emphasis on the integration of and challenges associated with 

combining these platforms with machine learning and data processing technologies. Future 

perspectives on how cancer-on-a-chip and machine learning algorithms can synergize to 

improve anti-cancer drug development will be considered.
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2. Anti-Cancer Drug Development and the Need for Improved Predictive 

Models

The anti-cancer drug develpment process starts with the identification of effective 

compounds via pre-clinical models. These compounds are then evaluated further in 

sequential human clinical trials to assess safety, dosing, and efficacy, comparing the drug in 

question to the current standard of care. Unfortunately, the majority of compounds identified 

as effective in pre-clinical models are found to benot safe or efficacious in these later studies 
[8, 23]. The low predictive value of pre-clinical models increases the cost and resources 

expended during the drug development process. Such clinical trial failures point to the need 

for improved pre-clinical models that mimic the TME with high fidelity [1, 18, 23].

In addition to the challenges associated with current pre-clinical models, progress in anti-

cancer drug development is hindered by the complexity of cancer biology. Cancer biology is 

highly heterogenous and complex on several levels: among tumor subtypes, individual 

patients, and separate tumors within one patient. Selection of chemotherapeutic agents is 

currently dominated by evidence generated from randomized clinical trials (RCTs), in which 

patients are assigned to treatment groups by chance. Given the ongoing development of 

many new chemotherapeutics and the necessity to monitor the stability of previously 

developed agents, it is impossible to perform RCTs to investigate all FDA approved drugs 

for each tumor type, let alone trials to investigate all drug combinations. An individual 

patient’s cancer biology is unique and tumors of the same histologic subtype often show 

vastly different responses to therapies. Thus, initiatives for precision, or personalized, 

medicine have emerged [24]. This emerging field is based on the principle that the genetic 

and molecular information of an individual patient can be used to deploy more effective, less 

toxic, and patient-specific treatments [24]. Furthermore, in order to personalize the 

chemotherapy regimens given to a patient and optimize the chance of an effective response, 

there exists the need to develop robust models to perform drug screening for both general 

cancer subtypes and for an individual patient’s tumors.

3. Comparison of Pre-Clinical Cancer Models

3.1. Two-Dimensional Monoculture

In traditional 2D cultures, cells are grown as an adherent monolayer in a culture dish, 

attached to the plastic dish surface [25, 26]. Assays derived from 2D monolayers are easy to 

use, low cost, and high throughput. However, despite their advantages, these assays are quite 

limited in their predictive value. One such limitation is the inability of 2D cell cultures to 

mimic the native structure of tissues and tumors [14, 26]. The 2D culture environment does 

not recapitulate the cell-cell and cell-environment interactions present in native tumor 
[14, 26]. These interactions are fundamental to cell proliferation, cell differentiation, gene and 

protein expression, stimuli response, drug metabolism, and other cellular functions [14, 27]. 

Another limitation of 2D culture models is that cells in an adherent monolayer have infinite, 

homogenous access to key nutrients, including oxygen and metabolites [14, 26]. In vivo, 
cancer cells have more variable access to nutrients and oxygen due to natural tumor 
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architecture [27]. Because of these disadvantages, there exists the need to find alternate 

models which better mimic the native cancer microenvironment.

3.2. Transwell Model

Transwell assays are used to study the invasion and migrations of cancer cells [28]. These 

assays use a cell culture insert made of a porous, polymeric membrane that allows for 

migration through the pores [29, 30]. Transwell assay applications include migration, 

invasion, and transendothelial migration [29, 30]. Migration assays, the simplest Transwell-

based assay, seed cancer cells on top of the polymeric membrane insert and measure the 

ability of the cells to translocate though the membrane’s pores [28-30]. Invasion assays are 

more complex in that they add a layer of ECM on top of the porous membrane and 

characterize cancer cell migration through the ECM [28-30]. Transwell assays are used as 

both a tool for drug screening and a model for studying cancer cell migration, invasion, 

extravasation, and matrix remodeling. The Transwell-based assay serves as a straightforward 

in vitro technique for studying a tumor’s ability to metastasize to a secondary site. However, 

despite their advantages, Transwell assays study the motility of individual cells and, as a 

result, is not an optimal tumor model.

3.3. 3D Culture Models

3D culture models use various matrices or scaffolds for cancer cells to grow and ECM, thus 

mimicking important components of the TME. Scaffolds support cell attachment, growth, 

and morphogenesis [29]. These scaffolds are typically made from natural or synthetic 

materials, such as gelatin, collagen, alginate, hyaluronic acid, polyethylene glycol, or 

polylactide, polyatcide-co-glycolide and various other polymers [7]. These scaffold-based 

approaches are ideal in that they have similar mechanical and physical properties to the 

native ECM and TME [7]. More recently, alternative approaches to scaffolds have been 

developed, including the creation of cell spheroids via bioprinting [7]. These structures have 

improved perfusion due to their vascularization but are limited by technical challenges and 

their capacity to recapitulate complex tissue types [21]. Various other methods have been 

developed, e.g. the use of non-adhesive polyethylene glycol di-methacrylate hydrogel 

microwells to produce cancer cell multicellular aggregates [31], hanging drop cultures, and 

spinner cultures. While these methods can be improved upon, these models are an important 

foundation for more novel platforms, such as cancer-on-a-chip, as they model tumor-tumor 

cell interactions, native ECM, and may be designed to recapitulate the biophysical properties 

of native tumor.

3.4. Animal Models

Preclinical animal models are a necessary component in the process of anti-cancer drug 

development and discovery [32]. These in vivo models capture physiological complexity with 

higher fidelity than 2D monoculture techniques [7]. While these models have vastly 

improved our understanding of cancer, they are also limited in their capacity. One such 

shortcoming of animal models is their limited translatability to humans. The inability of 

animal models to fully recapitulate human cancer physiology is evidenced by the failure in 

clinical trials of drugs identified in preclinical results [7]. To improve the replicative value of 

in vivo animal studies, PDX tumor models have been established. PDX models are created 
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by implanting cancer cells or tissues derived from patient tumors into immunodeficient mice 
[33]. PDX models are used extensively in cancer research, asthey simulate human tumor 

biology in vivo. While these models better replicate human tumor biology, the use of 

immunocompromised animals impedes analysis of the immune system’s response to a tumor 
[17, 34]. An additional challenge with PDX models is the establishment rate. Previous 

research reports a successful formation rate of implanted tumors as being 39.2% [35]. As 

animal models are expensive, highly regulated, and limited by a low initiation rate, there are 

constraints to the number of studies that can be done, preventing the PDX model from being 

a high-throughput assay. In addition, the procedure of creating PDX models takes months to 

establish, making PDXs logistically difficult for use in making timely clinical decisions [36]. 

Despite their advantages, animal models do not practically allow for the high-throughput 

assessment of multiple combinations of chemotherapeutics, highlighting further the need for 

high-throughput platforms to be used in precision medicine to identify anti-cancer drugs on 

a patient-specific basis. A thorough discussion of pre-clinical models and their advantages 

and disadvantages can be found in previously published reviews [14, 26, 28, 37].

4. Cancer-on-a-Chip Platform

4.1. Organ-on-a-Chip Structure and Function

In recent years, organ-on-a-chip platforms have significantly advanced for several 

applications, such as preclinical drug screening and disease modeling. Organs-on-a-chip are 

microdevices with miniaturized tissues to model human organ physiology in vitro [38]. 

Organ-on-a-chip devices incorporate microfluidics with 3D tissues to recapitulate native 

organ complexity and cues, for example electrical signals, fluid flow, and biochemical cues. 

Organ-on-a-chip has many advantages, including improved recapitulation of native 

microenvironment, simplicity, decreased cost, and reproducibility. The microfluidic chip 

components are traditionally made of polydimethylsiloxane (PDMS), which has ideal 

properties, such as transparency, low toxicity to cells, and high permeability to O2 and CO2 

gases [39]. Cell are cultured in small chambers within these miniature chips, either in 2D 

monolayers or 3D suspensions, to emulate organ tissues. Membranes may be integrated into 

the microfluidic chips, creating multiple channels and separating the cells[40-47]. The 

microfluidic components of organ-on-a-chip platforms recapitulate in vivo conditions, such 

as flow, pressure, and nutrient levels. Organ-on-a-chips are also able to expose the cells or 

tissues to ontrolled laminar flow of fluids, improving the accuracy of biomarker-

identification and drug-screening [48]. Examples of organ-on-a-chip platforms include 

thrombosis-on-a-chip [49], alveolus-on-a-chip [50], lung-on-a-chip [45], gut-on-a-chip [45]. 

More details of organ-on-a-chip development and applications can be found in previously 

published reviews [38, 51, 52].

4.2 Organ-on-a-Chip Advantages

Organ-on-a-chip platforms are miniaturized, reducing the required sample sizes and 

materials consumed during in vitro testing [53]. As a result, organ-on-a-chip testing is less 

costly than alternative preclinical models, such as animals. In addition, organs-on-a-chip 

perhaps offer an ethical advantage and alternative to animal models. Due to the miniaturized 

nature of these platforms, it has become possible to use materials from a single animal to 
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runs hundreds of tests, instead of running a single test on hundreds of animals. The small 

size and low cost of organs-on-a-chip allow for accelerated research and testing, as many 

samples can be run on one device. Another advantage of organs-on-a-chip is the ability to 

recapitulate native microenvironments, modelling mechanical stresses, nutrient diffusion, 

and fluid flow, for example. These advantages have sparked interest in combining organ-on-

a-chip platforms with other 3D models, such as organoid cultures. While 3D organoids may 

recapitulate a singular organ, organ-on-chip platforms mimic how these organs interact with 

their in vitro environment. Further discussion on the combination of 3D organoid cultures 

with organs-on-a-chip can be found in recent reviews [53, 54].

4.3 Cancer-on-a-Chip Platforms

Cancer-on-a-chip platforms were developed by using cancer and tumor-derived cells and 

matrix materials inside of previously developed cancer-on-a-chip platforms. The 

microfluidic devices developed for organ-on-a-chip platforms have shown to be promising 

for applications in large scale, high-throughput anti-cancer drug screening, study of 

metastatic cancer processes, and screening of drugs against a patient’s individual tumor 

(personalized medicine) [7, 13, 21, 55]. In the subsequent sections, we will focus our 

discussion on cancer-on-a-chip models that recapitulate components of the TME. A 

discussion of cancer-on-a-chip to evaluate nanomedicine [19] and for personalized medicine 

applications [56] can be found in recently published reviews.

5. Applications of Cancer-on-a-Chip Technologies

The development of cancer-on-a-chip systems has greatly expanded the ability of in vitro 
models to recapitulate the TME. With the recent development of dynamic culture systems 

and the advent of organ-on-a-chip platforms, which offer spatial and temporally controlled 

microenvironments, the improved cancer modelling has become an attractive prospect for 

studying both cancer biology and treatment options [57]. Although this field is still in its 

infantile stage, its progress is expected to grow exponentially. Cancer-on-a-chip models offer 

many advantages. First, they allow researchers to mimic elements of the TME in isolation or 

in concert, including the addition of cancer cells to stromal cells, immune constituents, 

vasculature, and oxygen, nutrient, or growth factor gradients. Cancer-on-a-chip systems also 

allow for non-invasive real time monitoring of crucial cellular parameters and recapitulate 

the complex cellular and extracellular microenvironment of tumors. These abilities allow for 

the investigation into the role microenvironmental features play in the progressing stages of 

cancer metastasis [24]

Cancer-on-a-chip models have been used in to evaluate aspects of cancer biology in several 

different malignancies, examining local tumor invasion, metastasis and angiogenesis, as well 

as serving as models for immunotherapy research and drug screening [4, 7, 29]. These studies 

examined several types of cancer as model systems, including some of the most common 

and deadly cancers, e.g. breast [36, 58, 59], lung [20, 60] and pancreatic cancer [15]. It is very 

important to work on these frontiers, but, nevertheless, other cancer models should be 

developed both to address special characteristics and the subtypes of cancers, as well as the 

comprehensive spectrum of cancers, including those of the head and neck.
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5.1. Cancer-on-a-Chip Systems Model Tumor Morphology and Drug Response with High 
Fidelity

Cancer-on-a-chip systems that recapitulate in vivo cancers and tumors are fundamental to 

improved strategies for anti-cancer drug selection. In 2014, Vidi et al. developed a cancer-

on-a-chip model, mimicking cancer mammary ducts [61]. The breast-on-a-chip device was 

comprised of a breast luminal epithelium monolayer on a semicircular acrylic support. 

Tumor cells grown in these channels were different morphologically than the same cells 

cultured on a traditional flat surface. Additionally, tumor nodules cultured in these channels 

displayed a different anti-cancer drug sensitivity compared to their flat and monoculture 

counterparts, providing new insight for the design and testing of cancer therapies.

An important component of developing a new platform is the comparison of its results to the 

existing standard. In 2017, Beer et al. compared their pancreatic ductal adenocarcinoma-on-

a-chip model to other in vitro and to in vivo PDX models (Figure 1) [15]. Their HepaChip 

consisted of eight chambers, each containing three 1 mm × 60 μm cell culture regions, which 

were coated with collagen. These cell culture regions were irradiated by UV light, creating 

acid groups to which collagen was bound. Electrodes were integrated on the wall of each 

chamber, creating dielectrophoretic forces. pancreatic Ductal adenocarcinoma (PDAC) 

human cell lines were cultured inside of the polymer chambers. The combination of 

microfluidics and dielecrophoresis assembled in vitro micro-organs. The experimental 

results show morphological and growth characteristics more like that of spheroid cultures 

than the 2D culture. Compared to traditional 2D pre-clinical platforms, the HepaChip model 

is better at capturing cell-cell and cell-ECM interactions, and thus it is more biomimetic, 

representing a more predictive model with potential to be useful in the development of 

personalized pancreatic cancer treatment.

Another more recent study by Lanz et al. utilized breast cancer cell lines for developing a 

high throughput breast-cancer-on-a-chip to study the response of triple negative breast 

cancer cell lines (MDA-MB-453, MDA-MB-231, AND HC1937) to anti-cancer therapeutic 

drugs (paxlitaxel, olaparib, and cisplastin) [36]. Several conditions were evaluated, including 

cell seeding density, ECM composition, biomechanical conditions, and the response to 

therapy, as compared to those seen in 2D cultures [36]. Differences in drug response were 

observed different ECM materials )Matrigel vs BME2rgf vs collagen 1). This microfluidic 

platform allowed for the simultaneous culture of 96 perfused microtissues (approximately 10 

cells per data point). Additional advantages include the use of small quantities of material 

and the ability to perform drug screening using patient-derived samples. This strategy is a 

vast improvement from previous 3D culture techniques, as it allows for constant perfusion of 

the culture medium. While the tested system did not entirely capture in vivo complexities, 

this strategy presents a more high throughput and efficient system for testing and raises the 

possibility for use in developing personalized medicine by determining appropriate drug 

sensitivity and predicting individual patient response in a real-time fashion.
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5.2. Cancer-on-Chip Systems Model Mechanical Properties of the Tumor 
Microenvironment

In addition to modelling tumor morphology and drug response, cancer-on-a-chip platforms 

also offer improved modelling of the TME’s mechanical properties, such as its stiffness, 

which plays a role in cancer progression [62]. In 2017, Hassell et al. studied non-small-cell 

lung cancer (NSCLC) in an organ-on-a-chip device (Figure 2) [60]. This NSCLC-on-a-chip 

model recapitulated organ microenvironment-specific growth, tumor dormancy, and 

response to tyrosine kinase inhibitor (TKI), a therapy used in vivo in human patients. This 

new platform revealed a newly observed mechanical sensitivity of NSCLCs. TKI therapeutic 

response was discovered to be sensitive to the physical cues of breathing motions, with 

mechanical breathing motions perhaps suppressing NSCLC response to TKI therapy. This 

new finding elucidates understanding of NSCLC and can help to explain therapy resistance 

in patients with lung tissue that remains aerated and mobile, as mechanical strain leads to the 

downregulation of epidermal growth factor receptor (EGFR), which is partly responsible for 

decreased response to therapy in persistent tumors [60]. The understanding of this previously 

unstudied mechanism has implications in future mitigation of drug resistance and 

development of efficacious therapies.

These findings further validate the need for the development of dynamic systems and 

platforms, which take into consideration the components of the TME [63]. Future work need 

not only consider traditional properties, such as cell type and ECM, but also dynamic 

properties, such as mechanical stiffness, to mimic in vivo events and develop more reliable 

predictive models.

5.3. Cancer-on-Chip Systems Model Tumor Immune Microenvironment

Immune system elements play a large role in the TME, with crosstalk between the immune 

and cellular TME components [64]. Interactions within the TME contribute to cancer 

initiation (carcinogenesis), progression and metastasis. After a tumor escapes immune 

recognition, , the TME affects immune cell behavior and the two play a synergistic role in 

tumor progression [65]. Organ-on-a-chip platforms can be useful in the development of 

immuno-oncology models. Such a model was shown by Biselli et al. in their work on 

mononuclear and cancer cells (Figure 3) [66]. The presented cancer-on-chip model studied 

the crosstalk between immune cells, leukocytes and human breast cancer cells treated with 

chemotherapeutics. The study compared leukocytes with and without the FRP1 gene and 

concluded that leukocytes lacking the FPR1 gene do not recognize the chemotherapy-treated 

cells, while leukocytes with expression of FPR1 perform random walks, drifting towards the 

tumor cells and establishing persistent interactions with them [66]. These findings 

demonstrate the capacity and necessity to develop immune-oncology methods using the 

organ-on-a-chip platform, as immune response is a key component of the in vivo 
environment (evidenced by the cell-cell interactions of immune and tumor cells) [66, 67]. A 

detailed discussion on crosstalk between the TME and immune system can be found in a 

recent review paper [64].
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5.4. Cancer-on-Chip Systems Model Tumor Angiogenesis, Microvasculature, and 
Lymphatics

Angiogenesis plays a critical role in both the growth and metastatic spread of tumor cells 
[68, 69]. The TME can regulate angiogenesis, via ECM molecules and growth factors within 

the TME [70]. Increased vascularity has been observed, even in the bone marrow, in patients 

with hematological malignancies [68]. Despite this observation, the role of angiogenesis in 

regulating hematological malignancies is not well understood [68]. In 2016, Zheng et al. used 

a 3D microfluidic angiogenesis-on-a-chip to study the unique morphogenic signatures of 

angiogenesis induced by leukemic cells, with or without bone marrow stromal cell co-

culture [68]. The microfluidic device was fabricated from PDMS by soft lithography, forming 

three parallel microchannels, separated by trapezoidal posts. The central channel was filled 

with collagen 1 and the side channels with endothelial and leukemia derived cells. The role 

of leukemic cells on angiogenic induction and vessel formation was observed. This model 

has not yet been achieved via existing 2D culture techniques. Angiogenesis in the bone 

marrow is a highly dynamic process and is critically dependent on both cell-cell and cell-

matrix interactions, which are abundant in the native bone marrow microenvironment, 

presenting the critical need for functional angiogenic assays.

The lymphatic system serves as a method through which many cancers can be disseminated. 

New microfluidic flow systems make it possible to study the role of lymphatic capillary 

microenvironment in the lymphatic invasion of mammary adenocarcinoma cells [69]. This 

platform allows for the quantification of cell transmigration and its dynamics, revealing that 

both luminal and transluminal flow are important in increasing tumor transmigration, as 

opposed to the previous belief that this behavior was a result of luminal flow alone. This 

study provides new insights on flow-mediated regulation of lymphatic tumor migration and 

presents a new tool for exploration of cancer therapy, allowing for medium to high 

throughput studies.

5.5. Cancer-on-Chip Systems Model Cancer Invasion and Metastasis

Cancer metastases contribute to over 90% of cancer-related mortalities [71]. Thus, the use of 

experimental models to effectively represent the metastatic microenvironment is warranted. 

Metastasis-on-a-chip platforms allow for the study of important aspects of the metastasis 

process, such as physiochemical factors from the tumor stroma and heterocellular 

interactions, which influence cell migration, as well as physicochemical gradients, which 

lead to tumor cell motility and invasion [21]. An early study to visualize metastatic 

progression in 2007 by Yates et al. developed a system to visualize the interactions between 

tumor cells and target organs to where they metastasize [72]. This study investigated hepatic 

cells with prostate and breast carcinoma cells, examining tumor cell invasion and expansion. 

They found that tumor cells were unable to grow without a supporting hepatic microtissue, 

due to the absence of paracrine functionality or liver structure support. The developed 

system served as a crucial model for examining tumor-host interactions during the processes 

of metastasis and invasion, circumventing the limitations of previous models.

More recently, microfluidic metastasis-on-a-chip models have been designed to more 

accurately study cancer progression [59]. These studies investigate the various stages of 
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cancer metastasis, lymphangiogenesis [73] and angiogenesis, intravasation [74, 75], arrest, 

organ-specific extravasation [76-79], and the formation of micro-metastases. Additionally, 

studies looked at invasion rate as a method for studying cancer [80]. In 2018, Hao et al. 
developed a bone-on-a-chip model the aid in the study of breast cancer metastasis to bone 

tissue [58]. This new bone-on-chip design is miniaturized, increasing experimental 

throughput, and facilitates easy and frequent observations. Fundamental markers of breast 

cancer colonization of the bone were observed and confirmed with in vivo collected data.

Another organ-on-a-chip study constructed a multi-organ microfluidic chip platform to 

investigate lung cancer metastasis [20]. This multi-organ-on-a-chip system consisted of 4 

organs, one upstream lung and three downstream organs, with three parallel microchannels 

formed by PDMS. Bronchial epithelial, lung cancer, microvascular endothelia, and fibroblast 

cells were grown in the lung organ, and astrocytes, osteocytes, and hepatocytes were grown 

in the three downstream organs, mimicking the metastasis of lung cancer to the brain, bone, 

and liver. Damage to the astrocytes, osteocytes, and hepatocytes validated metastasis in the 

organs-on-a-chip system.

Migration and invasion studies in cancer-on-a-chip models improved upon the use of more 

traditional assays, such as transwell cultures and scratch-wound assays. Recent work from 

Toh et al. utilized a microfluidic cancer-on-chip cell migration model which resolved 

different aspects of cell intravasation (the invasion of cancer cells into a blood or lymphatic 

vessel) in a biologically relevant 3D microenvironment [81]. The described platform 

incorporates a 3D microenvironment, which plays a critical role in the invasive properties of 

cancer cells, with a microfluidic system, creating an appealing model for the testing of anti-

migration and anti-invasion cancer drugs, which can be multiplexed to allow for high 

throughput assays. The development of new tumor models will be crucial in improving 

management of cancers and the prognosis of cancer patients and, as a result, may help 

ultimately in the reduction of healthcare costs [82].

5.6. Cancer-on-Chip Systems for Use in Chemotaxis Studies

The cell types and factors in the TME influence the occurrence of cancer migration modes 
[83]. Microfluidic organ-on-a-chip systems have been used to study the chemotaxis, or 

migration due to chemical gradients, of cancer cells [84]. Aung et al. developed a cancer-on-

chip platform with cancer spheroids encapsulated with gelatin methacryloyl (GelMA) 

hydrogel, surrounded by an endothelial cell barrier [84]. For this study, they harnessed the 

chemoattracted-induced motility of human umbilical vein endothelial cells (HUVEC) and 

cancer spheroids to control organization within the microfluidic device. Cancer cell 

migration was observed in relation to the presence and location of the chemotactic source. 

Although this study uses an endothelial cell-cancer cell coculture, this approach provides a 

framework for establishing platforms with the same level of complexity as physiological 

tumors.These models bridge the gap between in vitro cell culture and in vivo animal 

experiments and serve as a promising platform for studying tumor behaviors in the vascular 

system [85]. More complex, hybrid cancer-on-a-chip models incorporate 3D tumor tissue 

models, such as spheroids, resulting in more advanced and high-performance models 
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[86] [87]. In the future, these models will have elucidated mechanisms for cancer invasion, 

such as chemotaxis, and present the possibility of developing migration inhibitory drugs [84].

5.7. Cancer on a Chip Platform for Cancer Treatment and Drug Development

Improved 3D culture models have been developed with the prospect of accelerating the 

selection of therapies by improving the ability to predict anti-cancer drug responses [36]. One 

avenue of new cancer-on-a-chip studies involves the use of 3D microfluidic devices for 

improved anti-cancer drug screening and selection. Examples of these new strategies include 

a 3D high-throughput perfused microfluidic platform for testing new breast cancer therapies, 

developed by Lanz et al. (Figure 4) [36], and microfluidic platform for studying biomolecular 

characteristics of pancreatic ductal adenocarcinoma cells, developed by Beer et al. [15]. 

These strategies employ microfluidic-based devices, which show promise to be used for 

personalized pharmacological testing. Microfluidic systems can be employed for the 

fabrication of drug delivery systems having precisely controlled size and shape, rigidity as 

well as drug-loading. In addition, microfluidic systems can be efficiently used for the 

evaluation of drug-releasing preparations [88]. Because organ-on-a-chip platforms can 

recapitulate human physiology and pathophysiology, they can be effectively helpful in 

translating new therapeutics to the clinic including advanced nanomedicine [19].

Hassell et al. finds that microenvironmental cues elicited by cells, as well as mechanical 

cues, significantly influence non-small-cell lung cancer growth in vitro [60]. More 

importantly, their data demonstrates the ability of orthotopic cancer chip models to mimic 

growth patterns observed in vivo in patients and is consistent with that of human clinical 

trials, a feature which had not previously been recapitulated in vitro [60]. Other strategies to 

mimic the TME include the use of multicellular aggregates (“microtumors”) of subtype-

specific breast cancer cells, by Singh et al. [31], human-on-chip microvascular assay for 

visualization of tumor cell extravasation dynamics, by Chen et al. [76], as well as 

development of an array of gut-on-a-chips for drug development [89]. The ultimate value in 

these new developments lies in their potential to allow for high-throughput drug screening of 

chemotherapeutics on ex vivo models of individual patients’ tumors.

6. High Throughput Cancer-on-Chip Studies for Large Data Generation

Cancer-on-a-chip models are advantageous for preclinical drug screening, as they can be 

designed to allow for high-throughput analysis of anti-tumor drug response and other 

biological parameters [19, 90]. In order to generate the large quantities of data needed to 

appropriately predict drug efficacy and potential side effects, as is seen in clinical trials, 

high-throughput systems need to be developed. With the use of cancer-on-a-chip platforms, 

this type of large data creation and large scale analysis is possible.

6.1. Large Data Generating Cancer-on-Chip Studies

In order to perform high-throughput studies, a large number of devices must be fabricated 

with high fidelity, reproducibility and homogeneity or a device must have the capacity to run 

many tests on a single chip. In 2017, Chen et al. published a protocol extension describing 

the fabrication of a microfluidic device for modelling early metastasis in Nature Protocols 
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[76]. Their device was made from PDMS and featured three hydrogel regions, separated by 

channels for media. Microposts marked the device between each region. The central region 

was filled with a fibrin gel and human umbilical vein endothelial cell (HUVEC) suspension 

and the two peripheral regions were filled with a fibrin gel and human lung fibroblast 

suspension. Their device served as a model for microcirculation, representing 

transendothelial migration and early metastasis. They reported the capacity to fabricate and 

seed up to 36 devices at a time without impacting cell viability. Coupled with rapid 

quantification, their large number of devices per experiment is expected to allow for high 

parametric and throughput study, generating a large quantity of data.

To address the challenges associated with current in vitro and in vivo preclinical models, 

such as the need for large numbers of cell or animal materials, researchers have developed 

microdevices with up to thousands of microwells, allowing for high-throughput testing. In 

2014, Zhang et al. developed a microfluidic device with 4000 ultraminiaturized wells for 

high-throughput monitoring of chemotactic migration and invasion [91]. Their multi-well 

invasion (MI) chip was fabricated from PDMS using photolithography. The MI-chip was 

comprised of four compartments, each containing ten, ten by ten microwell arrays, equaling 

4000 microwells. They fabricated both round (200 μm diameter) and square (200 × 200 μm) 

wells, with a depth of 160 μm. The MI-chips were used to perform 3D cell invasion assays 

with breast cancer cell lines, to validate the chip’s capacity to be used as a model for 

studying metastatic breast cancer. The MI-chip used a small cell sample size (less than 1000 

cells), allowing it to be used in the future with limited cell sources, such as primary tumor 

cell samples. The chip can be used in the future to run many tests at one time or run tests on 

rare samples, making it a useful future tool for clinicians to evaluate the behavior of cancer 

cells and anti-cancer drug regimens.

Another method for generating large data sets via organ-on-a-chip is the fabrication of 

multiple models on a single device. To our knowledge, there is not currently published 

literature joining multiple cancer-on-a-chip platforms. However, groups have multiplexed 

organ-on-a-chip devices together for other applications. Work in the organ-on-a-chip field 

reports the use of an array of gut-on-a-chip devices joined together, comprising a total of 

357 gut tubes [89]. The OrganoPlate (shown in Figure 5) is a 384-well plate platform housing 

40 networks of microfluidic channels. Each OrganoPlate housed 40 epithelial gut tubes, 

which were tested against drug compounds at different concentrations to study the effect on 

epithelial barrier integrity. The study generated over 20,000 data-points, making it the largest 

reported organ-on-chip data set thus far. This study’s high-throughput nature shows the 

promise of organ-on-a-chip platforms for use as new, efficient, and reliable pre-clinical 

models, with applications in anti-cancer drug testing [89, 92].

6.2. Large Data Management and Extraction of Information

With high-throughput platforms, such as organ-on-a-chip, generating unprecedented 

quantities of data, there lies the need for appropriate data management and analysis systems. 

While cancer-on-a-chip platforms have been rapidly developing, machine learning 

algorithms to manage this data have been developing in parallel. New data management 

strategies should incorporate four core pillars. The first pillar in data management is the 
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hardware implementation of microchips, with appropriate sensors and microsystems to 

measure the desired parameters. The second pillar of large data management is data 

collections, transmission, and storage. The third pillar required is advanced machine learning 

algorithms to extract information from the available huge data sets. Finally, the fourth pillar 

concerns the interpretation of obtained data and its applications in the discovery of new 

theories.

Cancer-on-a-chip platform sensors continuously measure attributes of all cells within the 

device. The data flow can be of extremely high volume; for example, if there are 50,000 

cells under investigation, each with 20 measured factors per minute, then one would receive 

approximately two gigabytes of data each day (variable by the coding method of the 

collected data). With several parallel platforms and prolonged data collection (potentially 

months of collection), the size of the collected data may be exceedingly large.

After data collection, the next large stage is the big data processing. For this purpose, we 

rely on highly sophisticated machine learning (ML) algorithms, which can be divided into 

two categories: supervised or unsupervised learning [93]. These algorithms take into 

consideration the number of cells (N), number of parameters or attributes (M) and the 

number of samples (T). In this example, we can define health status as H and assign binary 

values of 0 (dead cell) and 1 (fully healthy cell). After collecting big size data, we can build 

some model (dynamic or otherwise) for the relationship between cellular attributes and 

health. The data is typically divided into two parts, with one part (the learning portion) used 

for modeling and the second used for validation; the first part should be large enough in size 

to capture important mapping relations between the attributes and the output status H. Other 

alternative ML algorithms to be used include recurrent type networks with deep learning 

structure. There are many ML algorithms with different concepts and criteria. A crucial 

component to any model, however, is keeping the complexity at enough to obtain a good 

generalized model but avoid creating unnecessary complexity, which may give high errors in 

the validation and testing phase.

There are other alternative approaches to supervised learning which are not discussed in this 

review. More information regarding ML algorithms can be found in other sources [93]. 

Another challenge of big data processing is the interpretation of the ML algorithm results. 

Advanced artificial intelligence (AI) algorithms may be used to help human experts interpret 

ML outcomes. The discussed methodologies will aid in the processing and interpretation of 

data collected from future high-throughput, large data generating studies. With real-time 

data collection and processing, in the future, researchers will be able to perform trials on 

millions of therapeutic agents against a patient’s specific tumor. Microfluidics, sensors, 

computing facilities, smart algorithms, and intelligent micro-automated systems can be 

joined as the basis of advanced systems for next-generation anti-cancer drug design and 

development [7, 94].

7. Challenges and Future Work

Recent studies involving cancer-on-a-chip technologies have made great strides in better 

recapitulating the TME and in vivo cancer microenvironment. However, there is still work to 
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be done identifying the fundamental TME elements needed to better mimic cancer tissue, for 

both the study of cancer biology and improved predictive ability of pre-clinical models for 

anti-cancer drug development. The development of personalized cancer-on-a-chip platforms 

for patients’ primary tumor tissues will be a large step forward in harnessing the capabilities 

of cancer-on-a-chip platforms. This advancement will result in precision medicine and 

personalized oncology. Incorporation of TME elements, such as oxygen concentration and 

cytokine concentration gradients, will increase the complexity of cancer-on-a-chip models, 

improving the predictive power of these platforms. Once developed, there will likely be 

many challenges in the adoption of these technologies: i.e.) standardization and validation 

against current models.

With the adoption of organ-on-a-chip technologies, future oncology treatment is expected to 

be vastly different than today’s regimens As we move towards personalized oncology 

models, one predicted outcome is the use of patient derived cells and extracted ECMs in 

chip technologies, capturing the biochemical, biophysical and mechanical cues of the in vivo 
human cancer microenvironment. Another advantage of cancer-on-a-chip technologies is the 

capability for high throughput, personalized screening of anti-cancer drug treatment and 

therapies. The capabilities of these platforms may also be expanded and used for more 

innovative cancer detection [51], e.g. on-chip blood tests to replace bone biopsies for 

multiple myeloma [81].

8. Conclusions

Once cancer-on-a-chip technologies are fully realized, the current regimented practice of 

choosing specific chemotherapeutics based solely on tumor type will seem imprecise and 

inaccurate. Personalized cancer chemotherapy will eventually be adopted and the use of 

cancer-on-a-chip models will become the clinical standard, allowing for more precise and 

individual function-based selection of chemotherapeutics. After the predictive power of 

these models are demonstrated, on-a-chip tests will serve a central role in the development 

and approval of new cancer therapeutics, replacing current pre-clinical models. Adoption of 

these new technologies will both accelerate and decrease the costs of the drug development 

process and increase the precision of cancer therapy, benefiting patients, physicians and 

care-providers, as well as pharmaceutical and insurance companies.
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Figure 1: 
Photographs and simulation of the HepaChip. (A) Image of the chip, with 8 culture 

chambers, fluid inlet and outlet and gold electrodes. (B) Enlarge view of single chamber, 

with 2 electrodes and 3 assembly ridges. (C) Simulation of the flow and cell trajectory inside 

of the culture chamber. (D) Live/dead staining of BxPC3, growing on the assembly ridge. 

(E) Live/dead staining of PANC1, spread on well channel walls and bottom. (F) Mitosis of 

MxPC3, observed after 16h culture. Reproduced under the terms of the Creative Commons 

License. [15] 2017 Nature.
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Figure 2: 
Human Orthotopic Lung Cancer-on-a-Chip Model. (A) Schematic of a cross-section through 

the designed microfluidic chip. (B) Micrograph of a cross-section of the two central 

channels of the alveolus chip taken via fluorescence micrograph. (C) Immunofluorescence 

micrograph of a cluster of GFP labelled NSCLC cells, implanted in the airway chip. (D) 

Quantification of NSCLC densities after implantation in the chip. (E) Growth pattern of GFP 

labelled lung cancer cells within the epithelial monolayer. (F) Lung cancer cell growth 

dynamics. Reproduce with permission. [60] 2017 Elsevier.
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Figure 3: 
(A) General schematic of the immune-oncology chip, whose design features six reservoirs 

for cells loading and culture medium replacement and four compartments for cell culture. 

(B) Detailed view of the four chambers. (C) Picture of the whole device. (D-F) Trajectories 

of FPR1 CC cells, FPR1 CA cells, and FPR1 AA cells (respectively). Reproduced under the 

terms of the Creative Commons License. [66] 2017 Nature.
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Figure 4: 
Microtiter cancer-on-a-chip plate for anti-cancer breast cancer drug testing. (A) Photo of the 

OrganoPlate platform. (B-D) Closeup, top, and side view of an individual channel, 

respectively. (E) Photo demonstrating the filling of an ECM channel. (F) Epifluorescence 

microscopy images showing morphology and viability of MDA-MB-453 in Matrigel®, 

BME2rgf and collagen I, under both static and perfusion conditions. (G) Quantification of 

the effect of ECM composition, seeding density, and perfusion or static conditions on cell 

viability. Reproduced under the terms of the Creative Commons License. [36] 2017 BioMed 

Central.
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Figure 5: 
(A) Photograph of the bottom of an OrganoPlate, showing 40 microfluidic channel networks 

and the top of a 384 well plate device. (B) Zoomed in photograph of a single microfluidic 

channel network, with three channels joining in the center. (C, D) Horizontal and vertical 

cross section. (E) 3D sketch of the chip, comprised of a tubule, an extracellular matrix gel, 

and a perfusion lane. Reproduced under the terms of the Creative Commons License. [89] 

2017 Nature.
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Table 1:

Summary of Cancer-on-Chip Studies

No. Cancer type Method Result Authors Year Ref.

1. Breast cancer Microfluidic 3D in vitro model for 
breast cancer metastasis to bone

3D in vitro data on extravasation and 
micrometastasis generation of breast 
cancer cells within bone 
microenvironment

Bersini et al. 2014 (51)

2. Breast cancer 3D bone-on-chip for bone metastasis 
study of breast cancer cells

Unique hallmarks of breast cancer 
bone in colonization observed, 
previously only seen in vivo

Hao et al. 2018 (50)

3. Breast cancer Disease-on-a-chip model in which 
cancer grows within phenotypically 
normal breast luminal epithelium on 
semicircular acrylic supports

Mimicry of tumor environment 
provides a framework for the design 
and test of anti-cancer therapies

Vidi et al. 2014 (54)

4. Breast cancer 3D high-throughput microfluidic 
platform for screening of three triple 
negative breast cancer lines against 
several anti-cancer drugs

High-throughput organ on a chip 
platform to select therapies in 
personalized medicine

Lanz et al. 2017 (12)

5. Cancer immune 
interactions

Organ-on-chip tool to evaluate 
cancer-immune cell interactions

Quantitative confirmation of the 
essential role of FPR1 in cancer 
chemotherapy response

Biselli et al. 2017 (60)

6. Lung cancer Multi-organ microfluidic chip 
mimicking in vivo microenvironment 
of lung cancer metastasis

Multi-organ system provides useful 
tool to investigate cell-cell interactions 
in metastasis

Xu et al. 2016 (53)

7. Lung Organ-on-chip model recapitulates 
orthotopic lung cancer growth and 
therapeutic response

Discovery of mechanical stimuli 
dependent TKI therapy resistance

Hassell et al. 2017 (52)

8. Pancreatic ductal 
adenocarcinoma

Microfluidic 3D platform for 
culturing pancreatic ductal 
adenocarcinoma cells

Growth characteristics closer to those 
of cells grown as spheroids than as 
classical 2 dimensional (2D) in vitro 
cultures.

Beer et al. 2017 (13)
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