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Abstract

The type-1 parathyroid hormone receptor (PTHR1), which regulates calcium homeostasis and 

tissue development, has two native agonists, parathyroid hormone (PTH) and PTH-related protein 

(PTHrP). PTH forms a complex with the PTHR1 that is rapidly internalized and induces 

prolonged cAMP production from endosomes. In contrast, PTHrP induces only transient cAMP 

production, which primarily arises from receptors on the cell surface. We show that backbone 

modification of PTH(1-34)-NH2 and abaloparatide (a PTHrP derivative) with a single homologous 

β-amino acid residue can generate biased agonists inducing prolonged cAMP production from 

receptors at the cell surface. This unique spatio-temporal profile could be useful for distinguishing 

effects associated with the duration of cAMP production from effects associated with the site of 

cAMP production.
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Information transfer at the molecular level is critical in living systems, and many natural 

messages are encoded in amino acid sequences. Evolutionary modulation of these messages 

is focused on side chains of proteins and peptides. Chemical synthesis enables an expansion 

in polypeptide language via backbone modification, which can be implemented without 

changing side chains. We have begun to explore this approach in the context of polypeptide 

hormones that activate B family GPCRs, many of which are targets of therapeutic interest.
1–4 Previously, β-amino acids have been used to modulate proteolytic stability, receptor-

subtype selectivity, and signaling profiles of peptidic GPCR agonists.5–9 The present study 

introduces a new capability of α→β substitution, modulation of the spatiotemporal 

characteristics of signal transduction.

Agonist binding to a GPCR induces conformational changes that are sensed by cytosolic 

binding partners. Different intracellular partners, such as Gs or β-arrestins, are predicted to 

engage distinct receptor conformations.10 Biased agonism11 is observed when a ligand 

favors a receptor conformation attractive to one partner relative to others. Our group 

previously discovered that replacing multiple α amino acid residues of glucagon-like 

peptide-1 (GLP-1) with cyclic β amino acid residues generated biased agonists favoring 

receptor interaction with β-arrestins relative to Gs. However, these α/β peptides were much 

less potent agonists than the original α peptide (GLP-1).9 Here we show that minimal 

backbone alteration enabled by the use of homologous β residues can generate potent 

agonists with high signaling selectivity at the PTHR1 and an altered spatiotemporal 

signaling profile relative to α-peptide prototypes.

The PTHR1 is an important target for the treatment of osteoporosis and hypoparathyroidism. 

Activation of the PTHR1 by its two native ligands, PTH and PTHrP, initiates Gs/cAMP/PKA 

signaling and β arrestin recruitment.12, 13 PTH and PTHrP differ, however, in their spatio-

temporal signaling profiles.14 PTHrP causes transient cAMP production from receptors on 

the cell surface, while PTH triggers prolonged cAMP production after the receptor-agonist 

complex has translocated to endosomes.15–17

Signaling duration is an important determinant of the physiological effects exerted by 

PTHR1 agonists,18 but the subcellular location of GPCR signaling can also influence 

physiological outcome.19 Therefore, molecular tools that enable dissection of the spatial and 

temporal dimensions of PTHR1 signaling would be useful for elucidating the physiological 

roles of this receptor.20, 21 We asked whether backbone modification could provide a PTHR1 

agonist with a unique spatio-temporal signaling profile relative to natural hormones, 
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specifically, an agonist that would induce prolonged receptor activation that occurs only at 

the cell surface.

Because binding of β-arrestin to the PTHR1 is necessary for receptor internalization and 

attenuates cell-surface Gs/cAMP signaling,22 PTHR1 engaged by a Gs-biased agonist might 

persist at the cell surface and cause prolonged cAMP production from that location, if the 

agonist had sufficient affinity. Previous approaches to Gs-biased agonists of the PTHR1 have 

involved amino acid side chain modification and achieved only limited success.13, 23, 24 We 

pursued α→β backbone modification5, 8, 25, 26 with PTH(1-34) and in PTHrP analogue 

abaloparatide (ABL), both of which are used to treat osteoporosis.27, 28

The N-terminal region of peptidic PTHR1 agonists inserts deeply into the transmembrane 

domain (PTHR1-TMD) and causes conformational changes to which transducers respond.29 

The PTHR1 conformation required for Gs activation appears to differ from that needed for 

recruitment of β-arrestins.30 We hypothesized that backbone modification in the N-terminal 

region of PTH(1-34) might induce PTHR1 conformations that differentially affect Gs 

activation and β-arrestin recruitment. Our search for Gs-biased agonists based on 

PTH(1-34)-NH2 began with a set of previously described analogues generated by replacing 

each of the first eight residues, individually, with the (S*)-β3, the (S*)-β2 or the (R*)-β2 

homologue (S* and R* defined in SI).8 Several of these backbone-modified analogues 

(Figure S1) were indistinguishable from PTH(1-34)-NH2 in stimulating cAMP production, a 

marker of Gs activation, as evaluated in HEK-293 cells stably expressing human PTHR1 and 

the GloSensor for cAMP detection (Table S1). In new studies, we evaluated these analogues 

for their ability to recruit β-arrestins to the PTHR1 via bioluminescence resonance energy 

transfer (BRET) measurements using CHO-FlpIn cells stably transfected with PTHR1-Rluc8 

and β-arrestin-1-Venus or β-arrestin-2-Venus (Table S1). Considerable variation in 

recruitment of β-arrestins to the PTHR1 was observed. Incorporating the (S*)-β2 homologue 

at position 5 or the (R*)-β2 homologue at position 7 or 8 (peptides 1-3) caused the most 

significant BRET reductions (Figure 2a and S6a).

With PTH(1-34)-NH2 as the reference agonist, we quantified the signaling bias of 1-3 based 

on the Black-Leff operational model (Figure 2c), in which ΔΔlog(τ/KA) denotes the bias 

factor.31, 32 This quantification method minimizes the dependence of bias factor on cell type.
31 Both 2 and 3 were ~10-fold biased toward the Gs-mediated signaling pathway vs. β-

arrestin recruitment, relative to PTH(1-34)-NH2. Peptide 1 displayed a more moderate bias. 

We found that previously described peptides containing a single side-chain modification,24 

Tyr1-PTH(1-34)-NH2 and Trp1-PTHrP(1-36)-NH2, are defective for β-arrestin recruitment, 

as reported; however, both were ~5-fold less potent than PTH(1-34)-NH2 in stimulating 

cAMP production (Figure S2). Neither of these side chain-modified peptides displayed the 

level of signal bias observed for backbone-modified peptides 1-3.

ABL shows a significant bias toward cAMP production relative to PTH(1-34)-NH2 (Figure 

S3). Despite this bias, ABL is relatively effective at recruiting β-arrestins to the PTHR1 

(Figure S4), which motivated us to use ABL to evaluate the generality of the α→β 
modification strategy. Initial modifications of ABL involved positions 7 and 8, based on 

observations with PTH(1-34)-NH2 analogues. However, most of these modifications caused 
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substantial declines in stimulation of cAMP production (Figure S5). The differential 

tolerance of β homologue incorporation at positions 7 and 8 suggests that the PTHR1-TMD-

binding modes of PTH(1-34)-NH2 and ABL are different, which is consistent with the 

discovery that the N-terminal regions of PTH(1-34) and PTHrP(1-34) are not functionally 

equivalent for receptor binding.33 More interesting results emerged from α→β substitutions 

at positions 1 and 2 of ABL. Peptides 4-6 were very effective at stimulating cAMP 

production but significantly less effective than ABL or PTH(1-34)-NH2 at recruiting β-

arrestins (Figures 2b, S6b and S7).

The signaling duration of Gs-biased agonists 1-6 was evaluated with “washout” assays in 

which cells were stimulated with an agonist for a defined period, and then the agonist was 

washed away, and cAMP production was monitored (“ligand-off phase”).34, 35 For 2, 3 and 

5, cAMP production was more transient than for PTH(1-34)-NH2 (Figure S8). In contrast, 1 
induced more prolonged signaling relative to PTH(1-34)-NH2 (Figure 3a). While ABL was 

more short-acting than PTH(1-34)-NH2 at their equiactive concentrations,36 both 4 and 6 
performed similarly to PTH(1-34)-NH2 in this assay at the tested concentration (Figures 3b 

and S9).

To evaluate the location of the cAMP production stimulated by 1, 4 or 6, we introduced an 

excess of PTHR1 antagonist (D)Trp12,Tyr34-bPTH(7-34) during the washout assay. We 

hypothesized that this peptidic antagonist should compete with agonist molecules for 

PTHR1 remaining on the cell surface, but the antagonist should not reach internalized 

agonist-receptor complexes.22, 37, 38 For 1, 4, and 6, the presence of antagonist after washout 

caused a profound drop in the duration and extent of cAMP production (Figures 3 and S10). 

In contrast, only a modest drop was observed after washout with antagonist for PTH(1-34)-

NH2, which is known to continue stimulating cAMP production from endosomes.15 These 

observations support the conclusion that most cAMP production induced by 1, 4 or 6 
involves PTHR1 at the cell surface.

Both the PTHR1 and β-arrestin are overexpressed in the cells used for the BRET assay, 

while the washout assay was performed in HEK293 cells expressing β-arrestin at 

endogenous levels. We therefore evaluated β-arrestin recruitment induced by 1, 4 or 6 via 

co-immunoprecipitation (co-IP) of endogenous β-arrestin and the PTHR1 in HEK293 cells 

stably expressing hemagglutinin (HA)-tagged PTHR1.13 As shown in Figures 4 and S11, 

PTH(1-34)-NH2 effectively induced co-IP of the PTHR1 and β-arrestin, while agonists 1, 4 
and 6 induced very little co-IP. Peptide 6 was further studied via confocal microscopy in 

HEK293 cells expressing SNAP-tagged PTHR1 and GFP-tagged β and β-arrestin, 6 did not 

induce observ-arrestin-2. While PTH(1-34)-NH2 effectively triggered the co-localization of 

the PTHR1 able β-arrestin recruitment to the PTHR1 (Figure S12). These observations 

support the conclusion that biased agonists 1, 4 and 6 are relatively ineffective at inducing β-

arrestin recruitment to the PTHR1, which causes receptors activated by these peptides to 

remain at the cell surface.

Blocking endosomal acidification was shown to prolong cAMP production of PTH.17 We 

therefore conducted additional washout experiments with bafilomycin A1 (BA1), an 

inhibitor of endosomal acidification,39 to gain further insight on the signaling profiles of 1, 4 
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and 6. After agonist washout, cells were incubated in a solution containing both BA1 and the 

antagonist. Inclusion of BA1 after washout had very little effect on the extent of post-

washout cAMP production induced by 4 or 6 (Figures 3c and S13a), but BA1 caused a 

substantial increase in post-washout cAMP production induced by 1, relative to the level 

observed with the antagonist alone. This observation suggests that the single α➞β2 

replacement at position 5 of PTH(1-34)-NH2 (to generate 1) exerts dual effects on the 

agonist profile by diminishing β-arrestin recruitment induced by 1 and rendering 1 
susceptible to acidification-induced dissociation from the receptor within endosomes. These 

two effects could be synergistic in restricting the cAMP production induced by 1 to 

receptors on the cell surface in the absence of BA1, although the endosomal dissociation 

effect is presumably minor. When tested at the same ligand concentration, ABL also 

displayed more sustained post-washout cAMP production in the presence of BA1 (Figure 

S13b), suggesting that endosomal acidification induces ABL dissociation from the receptor. 

In contrast to the agonist activity of 1 or ABL, the spatial restriction of cAMP production 

induced by 4 or 6 seems to arise predominantly from their inability to induce receptor 

internalization.

We have shown that introducing a single extra CH2 unit into the backbone of a long 

polypeptide agonist can substantially change the signaling profile that results from 

engagement of a class B GPCR. Moreover, altering the position of the extra CH2 along the 

backbone can lead to different signaling outcomes. (In the SI, we interpret the behavior of 

our biased agonists in terms of recent advances in GPCR structural analysis.) Because this 

backbone-focused approach maintains the native side chain sequence, and because the 

backbone-modified peptides can be prepared via conventional solid-phase synthesis, 

designing and generating a “test set” of β-containing analogues based on a known 

polypeptide agonist is straightforward (in contrast to exploring a potentially infinite set of 

analogues containing unnatural side chains40). While displaying high potency and efficacy 

in stimulating cAMP production via activation of the PTHR1, β-residue-containing peptides 

1, 4 and 6 are highly defective for β-arrestin recruitment. When compared to the α-peptide 

prototypes at equiactive concentrations, these three α/β peptides induce longer duration of 

cAMP production that emanates predominantly from receptors at the cell surface. There is a 

long-standing belief that sustained cAMP production from PTHR1 stimulation will lead to 

RANKL activation and bone resorption.[NEED REF!] However, it is unclear at present 

whether the spatial aspect of cAMP production contributes to the RANKL activation. The 

highly Gs-biased agonists 4 and 6 could be useful tools to explore questions in this vein.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
α/β PTHR1 agonists displaying significant Gs-biased agonism relative to PTH(1-34)-NH2. 

See the supporting information for the definition of R* and S*. nL denotes norleucine. U 
denotes 2-aminoisobutyric acid.
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Figure 2. 
Activity profiles of PTH and α/β Gs-biased PTHR1 agonists. a.b. Concentration-response 

effects of PTH and peptides 1-6 for cAMP production and β-arrestin-1 recruitment (β-

arrestin-2 data in SI). Data represent mean ± s.e.m from n ≥ 6 independent experiments. c. 

Calculated bias factors of 1-6 relative to PTH(1-34)-NH2. *, #Statistically significant 

difference from PTH using one-way ANOVA (* P < 0.0001; # P < 0.001).
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Figure 3. 
Effect of competitive antagonist and BA1 on signal duration of PTHR1 agonists. a.b. Post-

washout cAMP production mediated by 1 nM PTH, 1, 4 or 6 in HEK293 cells stably 

expressing hPTHR1. c. Washout assay data from part a and b presented as area under curve 

(AUC); data for measurements with BA1 are included. Data represent mean ± s.e.m of n = 4 

(PTH(1-34)-NH2 and 1), n = 3 (4 and 6) independent experiments. All the ligand activities 

are normalized to that of PTH(1-34)-NH2 at 1 nM. Statistically significant difference using 

one-way ANOVA (**** P < 0.0001, *** P < 0.001, ** P < 0.01).
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Figure 4. 
Recruitment of endogenous β-arrestin to PTHR1 detected by co-immunoprecipitation. 

HEK293 cells stably expressing HA-tagged PTHR1 were challenged with PTH(1-34)-NH2 

and peptides 1-6. The left and right panels of b are from the same blot with unrelated data 

omitted from the center
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