Skip to main content
. 2019 Aug 13;42(12):zsz180. doi: 10.1093/sleep/zsz180

Table 4.

Sleep/wake differentiation performance by random forest classifier across different feature inputs in the Apple Watch (PPG, MEMS) dataset

Accuracy Wake correct (specificity) Sleep correct (sensitivity) κ AUC
Motion 0.793 0.713 0.8 0.27 0.81
0.869 0.53 0.9 0.329
0.891 0.457 0.93 0.346
0.904 0.399 0.95 0.352
HR 0.771 0.454 0.8 0.142 0.708
0.849 0.282 0.9 0.152
0.872 0.221 0.93 0.149
0.886 0.174 0.95 0.14
Motion, HR 0.792 0.707 0.8 0.267 0.816
0.869 0.519 0.9 0.322
0.89 0.448 0.93 0.339
0.904 0.394 0.95 0.349
Motion, HR, and Clock Proxy 0.799 0.789 0.8 0.303 0.871
0.879 0.653 0.9 0.405
0.901 0.579 0.93 0.433
0.914 0.513 0.95 0.444

Fraction of wake correct, fraction of sleep correct, accuracy, κ, and AUC for sleep-wake predictions of random forest classifier with use of motion, HR, clock proxy, or combination of features. HR, heart rate.