Sunflower |
P. fluorescens |
IAA production, siderophore production and K+/Na+ ratio |
Shilev et al., 2012 |
|
Pseudomonas aeruginosa |
EPS production |
Tewari and Arora, 2014b |
|
Pseudomonas sp. |
IAA production, phosphate solubilization, siderophore, nitrogen fixation, HCN, chitinase and β-1-3 glucanase activity |
Tewari and Arora, 2016 |
|
Soybean |
P. putida H-2-3 |
ABA, salicylic acid and JA and gibberellins |
Kang et al., 2014 |
|
Bradyrhizobium japonicum USDA 110 and P. putida TSAU1 |
Root system physiology, nitrogen and phosphorus acquisition and nodule formation |
Egamberdieva et al., 2017a |
|
Bacillus firmus SW5 |
Antioxidant enzyme and alternation in root system architecture |
El-Esawi et al., 2018a |
|
Bradyrhizobium japonicum, Bacillus subtilis SU-12 and Serratia proteamaculans
|
Antioxidant enzyme and Proline content |
Han and Lee, 2005 |
|
Pseudomonas simiae |
IAA production, phosphate solubilization and siderophore production |
Vaishnav et al., 2016 |
|
B. japonicum and B. subtilis
|
EPS production, antioxidant activity and concentration of proline |
Han and Lee, 2005 |
|
P. fluorescens |
CK production |
Bhattacharyya and Jha, 2012 |
|
Groundnut |
P. aeruginosa AMAAS57 and P. aeruginosa BM6 |
IAA production, HCN, ammonia, phosphate solubilization, production of phenol and free amino acids |
Ghorai et al., 2015 |
|
B. saurashtrense, B. casei, Haererohalobacter |
Osmotic stress and proline |
Shukla et al., 2012 |
|
P. fluorescens |
ACC deaminase |
Saravanakumar and Samiyappan, 2007 |
|
Klebsiella, Pseudomonas, Agrobacterium, and Ochrobactrum
|
IAA production, phosphate solubilization, ACC deaminase |
Sharma et al., 2016 |
|
Rape seed |
Rhizobium sp. |
ACC deaminase, IAA production and phosphate solubilization |
Saghafi et al., 2018 |
|
P. fluorescens and P. putida
|
ACC deaminase, IAA and hydrogen cyanide |
Jalili et al., 2009 |
|
P. putida UW4 |
Photosynthesis, antioxidant enzyme, membrane transportation and pathogenesis-related responses |
Cheng et al., 2012 |
|
Cotton seed |
P. putida R4 and Pseudomonas chlororaphis R5 |
IA production |
Egamberdieva et al., 2015 |
|
P. putida |
Germination rate and biomass |
Yao et al., 2010 |
|
Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans
|
Seed germination |
Irizarry and White, 2017 |
|
Klebsiella oxytoca Rs-5, Bacillus sp. SL-13, Bacillus sp. SL-14 and Bacillus sp. SL-44 |
Antioxidant enzymes and photosynthetic pigment content |
Wu et al., 2012 |
|
Rice |
Alcaligens sp., Bacillus sp. and Ochrobactrum sp. |
ACC deaminase |
Bal et al., 2013 |
|
Serratia sp. and Pseudomonas sp. |
IAA production, nitrogen fixation, and phosphate solubilization |
Nakbanpote et al., 2014 |
|
P. pseudoalcaligenes and B. pumilus
|
Reduced the toxicity of ROS by reducing plant cell membrane index, cell caspase-like protease activity, and programmed cell death |
Jha and Subramanian, 2013 |
|
Bacillus aryabhattai MS3 |
Nitrogen fixation, IAA production, phosphorus solubilization and siderophore production |
Sultana et al., 2018 |
|
Enterobacter sp. P23 |
Phosphate solubilization, IAA production, siderophore production, HCN production |
Sarkar et al., 2018 |
|
Halobacillus dabanensis strain SB-26, Halobacillus sp. GSP 34 |
Nitrogen fixation and IAA production |
Rima et al., 2018 |
|
Pseudomonas strains PF1 and TDK1 |
Antioxidant enzyme |
Sen and Chandrasekhar, 2015 |
|
B. stratosphericus (NBRI 5Q and NBRI 7A) |
Phosphate solubilization, ACC deaminase activity IAA production |
Misra et al., 2017 |
|
B. amyloliquefaciens NBRISN13 (SN13) |
Betaine, sucrose and trehalose |
Nautiyal et al., 2013 |
|
Bacillus and Citrobacter
|
Nitrogen fixation, phosphate solubilization and IAA production |
Habib et al., 2016b |
|
B. pumilus |
Antioxidative enzymes |
Khan et al., 2016 |
|
Chick pea |
P. pseudoalcaligens |
Phosphate solubilization, siderophore and IAA production |
Patel et al., 2012 |
|
Mezorhizobium ciceri |
Nodulation and Nitrogen fixation |
Egamberdieva et al., 2014 |
|
H. variabilis (HT1) and P. rifietoensis (RT4)
|
Biofilm formation and EPS |
Qurashi and Sabri, 2012a |
|
Mesorhizobium strains |
ACC deaminase activity improved nodulation and reduced level of ethylene |
Chaudhary and Sindhu, 2015 |
|
Mung bean |
Rhizobium and pseudomonas
|
Photosynthetic rate, chlorophyll content and water use efficiency |
Ahmad et al., 2013 |
|
Rhizobium sp. |
ACC deaminase |
Aamir et al., 2013 |
|
P. fluorescens (Mk20) and Rhizobium phaseoli
|
ACC deaminase |
Ahmad et al., 2011 |
|
Lentil |
Rhizobium leguminosarum bv.viciae |
IAA production and phosphate solubilization |
Jida and Assefa, 2011 |
|
Pseudomonas jessenii and R. leguminosarum (P10Z22) |
ACC deaminase |
Zahir et al., 2011 |
|
Rhizobium sp. BCKV MU5 and BCKV MU2 |
Nodulation efficiency |
Halder et al., 2016 |
|
Pea |
Arthrobacter protophormiae with R. leguminosarum and Glomus mosseae
|
Reduction of ethylene stress through ACC deaminase |
Barnawal et al., 2014 |
|
Pigeon pea |
Bradyrhizobium (RA-5) and Burkholderia cepacia (RRE-5) |
Enhancement of root nodulation and N2 fixation |
Bano et al., 2015 |
|
P. putida, P. fluorescens, Bacillus cereus with Rhizobium strain |
Nodulation and N2 fixation |
Tilak et al., 2006 |
|
Black gram |
P. fluorescens SA8 with kinetin (10 μM) |
Improvement in water relation, gas exchange, and photosynthetic content |
Yasin et al., 2018 |
|
Faba bean |
P. putida, P. fluorescens and B. subtilis
|
Increase in growth traits of plant |
Metwali et al., 2015 |
|
|
Pseudomonas anguilliseptica SAW 24 |
Biofilm production and EPS production |
Mohammed, 2018 |
Maize |
Pseudomonas syringae, Enterobacter aerogenes and P. fluorescens
|
ACC deaminase |
Nadeem et al., 2007 |
|
Azospirillum brasilense |
Ion toxicity, NOR and nitrogenase activity |
Hamdia et al., 2004 |
|
Pseudomonas and Enterobacter spp. |
ACC deaminase |
Nadeem et al., 2009 |
|
Azotobacter chroococcum |
Improved K+/Na+ratio, polyphenol content and proline concentration |
Rojas-Tapias et al., 2012 |
|
Proteus penneri, P. aeruginosa, and A. faecalis
|
EPS |
Naseem and Bano, 2014 |
|
B. amyloliquefaciens |
Soluble sugar content and antioxidant enzymes |
Chen et al., 2016 |
|
Pantoea agglomerans |
Up-regulation of aquaporin genes |
Gond et al., 2015 |
|
Rhizobium and Pseudomonas
|
Osmotic regulation |
Bano and Fatima, 2009 |
|
Staphylococcus sciuri |
Antioxidant enzymes |
Akram et al., 2016 |
|
Bacillus spp. and Arthrobacter pascens
|
phosphate solubilization, osmotic regulation and antioxidant enzymes |
Ullah and Bano, 2015 |
|
Bacillus aquimaris DY-3 |
Chlorophyll content, osmotic regulation and antioxidant enzymes |
Li and Jiang, 2017 |
|
P. syringae and P. fluorescens
|
ACC deaminase |
Zafar-ul-Hye et al., 2014 |
|
A. brasilense strains Ab-V5 and Ab-V6 and Rhizobium tropici strain CIAT 899 |
Antioxidant enzymes and proline contents |
Fukami et al., 2018 |
|
Gracilibacillus, Staphylococcus, Virgibacillus, Salinicoccus, Bacillus, Zhihengliuella, Brevibacterium, Oceanobacillus, Exiguobacterium, Pseudomonas, Arthrobacter, and Halomonas spp. |
IAA production, ACC deaminase, phosphate solubilization and biofilm formation |
Aslam and Ali, 2018 |
|
Serratia liquefaciens KM4 |
Facilitated gas exchange, osmoregulation, antioxidant enzymes, nutrient uptake and downregulation of ABA biosynthesis |
El-Esawi et al., 2018b |