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Abstract

Metastasis requires cancer cells to undergo poorly-understood metabolic changes1–3. We found 

that metabolic differences among melanoma cells confer differences in metastatic potential as a 

result of differences in Monocarboxylate Transporter 1 (MCT1) function. In vivo isotope tracing 

in patient-derived xenografts revealed differences in nutrient handling between efficiently and 

inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of 

tumor lactate in efficient metastasizers. Efficient metastasizers had higher MCT1 levels and MCT1 

inhibition reduced lactate uptake. MCT1 inhibition had little effect on primary subcutaneous tumor 

growth but depleted circulating melanoma cells and reduced metastatic disease burden in patient-

derived xenografts and in mouse melanomas. MCT1 inhibition suppressed the oxidative pentose 

phosphate pathway and increased ROS levels. Anti-oxidants blocked the effect of MCT1 

inhibition on metastasis. MCT1high and MCT1−/low cells from the same melanomas had similar 
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capacities to form subcutaneous tumors, but MCT1high cells formed more metastases after 

intravenous injection. Metabolic differences among cancer cells thus confer differences in 

metastatic potential as metastasizing cells depend upon MCT1 to manage oxidative stress.

One sentence summary:

Differences in MCT1 function among melanoma cells confer differences in oxidative stress 

resistance and metastatic potential

Metastasis is a very inefficient process in which few disseminated cancer cells survive1. One 

factor that limits metastasis in some cancers, including melanoma, is oxidative stress2–6. 

Melanoma cells experience increased oxidative stress during metastasis, and must undergo 

metabolic changes to survive, including increased dependence upon the folate pathway3, a 

major source of NADPH for oxidative stress resistance7,8. Cells use NADPH to regenerate 

glutathione, a buffer against oxidative stress. Glutathione and other anti-oxidants promote 

cancer initiation and progression3,9–12. This suggests pro-oxidant therapies would inhibit the 

progression of some cancers, though they may promote the initiation or progression of 

others13.

Lactate synthesis and export from highly glycolytic cells is necessary to remove excess acid 

and to sustain glycolysis14. Lactate was, thus, considered a waste product that must be 

eliminated by cancer cells despite the fact that some cancer cells take up and metabolize 

lactate in culture15,16. Lung cancers17 and pancreatic cancers18 use Monocarboxylate 

Transporter 1 (MCT1) to transport lactate from the circulation into the tumor, with some of 

the carbon from lactate supplying the tricarboxylic acid (TCA) cycle. Enhanced lactate 

transport correlates with worse outcomes17, raising the question of whether lactate 

consumption is a biomarker of more aggressive cancers or whether it promotes cancer 

progression.

Lactate is transported across the cytoplasmic membrane mainly by MCT1 and MCT419. 

These transporters enable bidirectional, passive transport of lactate and related 

monocarboxylates, including pyruvate15,16,19,20. Although MCT1 transports multiple 

carboxylates, its main physiological function in vivo is lactate import as lactate is at least 10-

fold more abundant than other carboxylates in the fed state19. Nonetheless, the directionality 

of transport by MCTs depends on lactate and proton concentration gradients. MCT1 

inhibition can induce cell death by inhibiting glycolysis as a result of the failure to export 

lactate in culture21, and can suppress xenograft growth in mice15 and cancer cell migration 

in culture22,23. However, most studies of MCT function were performed in culture, where 

cells tend to be more highly glycolytic than in vivo17, raising the question of whether MCTs 

regulate cancer progression in vivo.

Efficient metastasizers take up more lactate

Efficient metastasizers give rise to circulating cancer cells and distant macrometastases in 

patients and after xenografting in NOD/SCID IL2Rγnull (NSG) mice while inefficient 

metastasizers do not give rise to detectable cancer cells in the blood and metastasize more 
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slowly in mice and in patients24 (Extended Data Fig. 1a). We subcutaneously injected 

efficiently (from patients M405, M481, M487 and UT10) and inefficiently (from patients 

M715, UM17, UM22, UM43, UM47, M498, M528, M597, and M610) metastasizing 

melanomas into NSG mice. We used established techniques17 to infuse 13C-labeled nutrients 

into these mice when the tumors reached approximately 2 cm in diameter, then examined 

labeling in metabolites extracted from the blood and tumors. [U-13C]glutamine infusion 

enriched the circulating glutamine pool and produced no differences in labeling between 

efficient and inefficient metastasizers (Extended Data Fig. 1b, c). [U-13C]glucose infusion 

modestly but significantly elevated glucose enrichments in inefficient compared to efficient 

metastasizers (Fig. 1a), despite no differences in circulating glucose (Extended Data Fig. 1d, 

e). For this reason, we normalized glucose-derived metabolites in the tumor to glucose m+6. 

After this normalization, 3-phosphoglycerate (3PG) labeling was similar between the tumor 

types, but efficiently-metastasizing tumors had elevated lactate labeling relative to 3PG (Fig. 

1b). In efficient, but not inefficient metastasizers, the absolute enrichment in circulating 

lactate also exceeded the enrichment in tumor 3PG (Fig. 1c). These labeling features in 

efficient metastasizers are similar to some human lung cancers, where excess lactate labeling 

relative to 3PG was explained by uptake of lactate derived from infused glucose17.

We next infused [U-13C]lactate using conditions that produced steady-state labeling and 

abundance in the blood (Extended Data Fig. 1e, f) and no differences in tumor lactate 

abundance between efficient and inefficient metastasizers (Fig. 1d). To account for labeling 

resulting from transfer of 13C from lactate to glucose through gluconeogenesis, followed by 

glucose uptake and glycolysis in the tumor, we normalized metabolite labeling to 3PG, 

which presumably arises from glycolysis. Lactate enrichment was higher in efficient than 

inefficient metastasizers, and exceeded enrichment in 3PG or pyruvate (Fig. 1e). These data 

suggest that efficient metastasizers are better than inefficient metastasizers at taking up 

circulating lactate. Efficient metastasizers also had higher enrichments in metabolites related 

to the TCA cycle (citrate, glutamate and malate; Fig. 1e), suggesting that 13C from lactate 

was transferred to the TCA cycle. Both efficiently and inefficiently metastasizing 

melanomas expressed lactate dehydrogenase (LDH) A and B, indicating their capacity to 

metabolize lactate (Extended Data Fig. 1i).

To verify lactate uptake directly, we infused [2-2H]lactate. Exchanges between lactate and 

pyruvate transfer 2H to NAD+, resulting in unlabeled lactate (Extended Data Fig. 1h); thus 

the appearance of label in the tumors indicates uptake of lactate, not pyruvate17. As 

expected, we observed label in tumor lactate but not pyruvate or alanine (Fig. 1f). Lactate 

labeling was higher in efficient than inefficient metastasizers (Fig. 1f), despite similar 

labeling in the blood (Extended Data Fig. 1g). Efficient metastasizers also contained labeled 

malate (Fig. 1f), which could arise from transfer of 2H from NAD2H to malate (Extended 

Data Fig. 1h)17,25.

Higher MCT1 in efficient metastasizers

We observed consistently higher levels of MCT1 in efficient as compared to inefficient 

metastasizers by western blot (Fig. 2a; see Extended Data Fig. 2a for quantitation). We 

confirmed this difference using two other anti-MCT1 antibodies by immunofluorescence 
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analysis (Extended Data Fig. 2e–j) and flow cytometry (Fig. 2d–e, Extended Data Fig. 2c; 

see Extended Data Fig. 2d for quantitation). The difference in surface MCT1 staining 

between efficient and inefficient metastasizers by flow cytometry was particularly dramatic. 

Immunofluorescence analysis suggested that MCT1 staining tended to be more cell surface 

associated in efficient metastasizers (Extended Data Fig. 2j) and more diffusely cytoplasmic 

in inefficient metastasizers (Extended Data Fig. 2i).

MCT1 and CD147 (a co-chaperone of MCT126) expression did not differ between primary 

and metastatic tumors (Extended Data Fig. 3a–g), consistent with a prior study27. We did not 

detect MCT2 in any of the melanomas we studied (Fig. 2b). MCT4 was expressed (Fig. 2c; 

see Extended Data Fig. 2b for quantitation) but did not consistently differ between primary 

and metastatic tumors (Extended Data Fig. 3b).

MCT1 is required during metastasis

To test whether MCT1 mediates lactate uptake by melanoma cells, we transplanted 

efficiently metastasizing melanomas from three patients subcutaneously in NSG mice then 

treated half of the mice for 7 days with AZD3965 (30 mg/kg/day), a selective MCT1 

inhibitor that does not have activity against MCT428. We infused [U-13C]lactate and 

measured the fractional enrichment in lactate relative to 3PG in the tumors. In all three 

melanomas, AZD3965 treatment significantly reduced lactate labeling, to the point that 

lactate and 3PG were equivalently labeled, consistent with the labelled lactate arising from 

glycolysis rather than lactate uptake (Fig. 2f). Therefore, MCT1 mediates lactate uptake in 

efficient metastasizers.

AZD3965 treatment did not significantly alter the levels of MCT1 (Extended Data Fig. 3h–

i), CD147 (Extended Data Fig. 3j–k), β1 integrin (Extended Data Fig. 3n–o), or CD98 

(Extended Data Fig. 3l–m) on the surface of melanoma cells. AZD3965 treatment also did 

not significantly alter IKKα (Extended Data Fig. 3p–r) or IKKβ (Extended Data Fig. 3s–u) 

levels, or the epithelial-mesenchymal transition markers E-cadherin (Extended Data Fig. 4a), 

N-cadherin (Extended Data Fig. 4b), and Vimentin (Extended Data Fig. 4c).

To test if MCT1 inhibition affected primary tumor growth or metastasis, we subcutaneously 

transplanted efficiently metastasizing melanoma cells from three patients into NSG mice. 

Once tumors were palpable, we treated every second day with AZD396529. AZD3965 had 

little effect on the growth of subcutaneous tumors (Fig. 2g) but substantially reduced the 

frequency of circulating melanoma cells in the blood (Fig. 2h), and metastatic disease 

burden in the same mice (Fig. 2i; Extended Data Fig. 5).

We also infected melanoma cells from three patients with scrambled control shRNA or 

shRNAs against MCT1 (Extended Data Fig. 6a; these shRNAs did not affect MCT4 

expression, Extended Data Fig. 6b) then transplanted the cells subcutaneously in NSG mice. 

MCT1 knockdown had little effect on the growth of the subcutaneous tumors (Extended 

Data Fig. 6c), but significantly reduced the frequency of circulating melanoma cells in the 

blood (Extended Data Fig. 6d), and metastatic disease burden in all three melanomas 

(Extended Data Fig. 6e). Over-expression of an shRNA-insensitive MCT1 cDNA (Extended 
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Data Fig. 6f) rescued these effects (Extended Data Fig. 6h) without affecting subcutaneous 

tumor growth (Extended Data Fig. 6g).

MCT1 over-expression in inefficiently metastasizing melanoma cells significantly increased 

metastatic burden in vivo without affecting subcutaneous tumor growth (Extended Data Fig. 

7e–g). MCT1 is thus sufficient to increase metastasis in at least some melanomas.

We also inhibited MCT1 in mouse melanomas30 in immunocompetent C57BL mice 

(AZD3965 also has activity against mouse MCT131). MCT1 inhibition by treatment with 

AZD3965 (Fig. 2j and 2k) or CRISPR mediated deletion (Extended Data Fig. 7a–c) reduced 

metastatic disease burden without significantly affecting the growth of subcutaneous tumors. 

Human and mouse melanomas thus became more dependent upon MCT1 function during 

metastasis in both immunocompromised and immunocompetent environments.

MCT1 promotes survival during metastasis

Inhibition of MCT1 with AZD3965 did not impair the migration/invasion of melanoma cells 

in culture (Extended Data Fig. 8a). Acute treatment with AZD3965 for 7 days in mice with 

established subcutaneous and metastatic tumors did not significantly affect the growth of 

subcutaneous or metastatic tumors, but did reduce the frequency of melanoma cells in the 

blood (Extended Data Fig. 8b and 8c). This suggests MCT1 inhibition reduced melanoma 

cell survival during metastasis.

To further test this, we resected the primary tumors to extend mouse survival (see schematic 

in Extended Data Fig. 8d). Treatment with AZD3965 prior to primary tumor resection, when 

cells were spontaneously metastasizing, significantly reduced metastatic tumor burden 

(Extended Data Fig. 8e). In contrast, treatment with AZD3965 only after primary tumor 

resection, after metastatic tumors were established, did not reduce metastatic tumor burden 

(Extended Data Fig. 8e). Melanoma cells are, therefore, particularly dependent upon MCT1 

during metastasis.

Analyses of clinical data27 and TCGA data showed that higher MCT1 expression is 

associated with significantly worse overall survival (Extended Data Fig. 9a). Differences in 

MCT2 or MCT4 expression did not significantly affect survival (Extended Data Fig. 9b and 

9c). Consistent with the correlation between CD147 and MCT1 expression26, higher CD147 
expression was also associated with significantly worse survival (Extended Data Fig. 9d).

MCT1 inhibition induces oxidative stress

MCT1/4 inhibition in cancer cells in culture promotes oxidative stress by inhibiting lactate 

export, leading to reduced glycolysis21,32. AZD3965 treatment increased ROS levels in all 

three melanomas (Fig. 3a–c; see Extended data Fig. 9e–f for the gating strategy to identify 

melanoma cells by flow cytometry) as did MCT1 deletion from YUMM cells (Extended 

Data Fig. 7d). AZD3965 did not increase ROS levels in melanomas after shRNA-

knockdown of MCT1, suggesting an on-target effect (Extended Data Fig. 6i). AZD3965 also 

reduced the glutathione (GSH) to oxidized glutathione (GSSG) ratios (Extended Data Fig. 

10a) and NADPH levels (Extended Data Fig. 10b). Moreover, treatment with the anti-

Tasdogan et al. Page 5

Nature. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oxidant, N-acetyl-cysteine (NAC), rescued the effects of AZD3965 on circulating melanoma 

cells and metastatic disease burden (Fig. 3d–f). MCT1 inhibition thus impairs metastasis at 

least partly by increasing oxidative stress.

To test if MCT1 inhibition affected the pentose phosphate pathway (PPP), we infused 

[1,2-13C]glucose into xenografted mice and compared the relative flux of labelled glucose 

through glycolysis versus the oxidative PPP by comparing the ratio of M+1 lactate (derived 

from the oxidative PPP) to M+2 lactate (derived from glycolysis)33 (Extended Data Fig. 

10c). We observed a trend toward increased glucose enrichment in tumors treated with 

AZD3965 (Fig. 4a). We consistently observed a lower M+1 lactate/M+2 lactate ratio in 

AZD3965-treated as compared to control tumors for all three melanomas (Fig. 4b, Extended 

Data Fig. 10d). This suggests MCT1 inhibition reduced flux through the oxidative PPP 

relative to glycolysis.

Upon infusion of [U-13C]glucose into xenografted mice (Extended Data Fig. 10e), 

AZD3965 treatment did not alter isotope enrichment in glucose or glycolytic intermediates 

(Fig. 4e–h), but reduced isotope enrichment in the oxidative PPP (Fig. 4i and 4j). AZD3965 

treatment did not generally reduce the levels of glycolytic intermediates (Extended Data Fig. 

10f and 10h) but did reduce the levels of oxidative PPP intermediates (Extended Data Fig. 

10g and 10i). Therefore, the effect of MCT1 inhibition in melanoma cells in vivo (inhibition 

of lactate import, favoring glycolysis over the PPP) was quite different from MCT1 

inhibition in culture (inhibition of lactate export, reducing glycolysis21,32). In lung cancer, 

MCT1 deletion also reduced lactate export and glycolysis in culture, but reduced lactate 

uptake and enhanced glucose metabolism in vivo17.

Lactate import can alter intracellular pH and the NAD+/NADH ratio because lactate is co-

transported with a proton and converted to pyruvate intracellularly, converting NAD+ to 

NADH19. Consistent with this, in all three melanomas, AZD3965 treatment significantly 

increased intracellular pH (Fig. 4c), strongly suggesting substantial MCT1-dependent 

lactate/proton import in these tumors. The increase in pH after MCT1 inhibition could 

reduce flux through the PPP relative to glycolysis as elevated pH activates 

phosphofructokinase (PFK1) activity and suppresses glucose-6-phosphate dehydrogenase 

(G6PD) activity34,35, rate-limiting enzymes in glycolysis and the PPP, respectively. 

AZD3965 treatment also significantly increased the NAD+/NADH ratios (Fig. 4d), which 

has the potential to enhance glycolysis at the expense of the PPP.

Heterogeneity in MCT1 expression

Flow cytometry revealed a more prominent MCT1high cell population among melanoma 

cells in the blood (see arrows in Fig. 5b and 5d) as compared to subcutaneous tumors in the 

same mice (Fig. 5a and 5c). This suggests that surface MCT1 was upregulated in circulating 

cells to increase PPP function, or that MCT1high cells preferentially survived during 

metastasis.

To test if differences in MCT1 expression conferred differences in metastatic potential we 

isolated MCT1high and MCT1−/low melanoma cells by flow cytometry from subcutaneously 
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growing M405, M481, and UT10 xenografts then transplanted the cells either 

subcutaneously (where oxidative stress does not appear to be limiting for tumor formation) 

or intravenously (where oxidative stress is limiting for tumor formation)3. MCT1high and 

MCT1−/low cells did not differ in their capacity to form subcutaneous tumors or the rates at 

which the subcutaneous tumors grew (Extended Data Fig. 10j). In contrast, after intravenous 

injection, MCT1high cells formed significantly more metastatic tumors than MCT1−/low cells 

(Fig. 5e) and the metastatic disease burden in visceral organs was significantly greater (Fig. 

5f). This suggests that differences in MCT1 expression confer differences in the ability to 

survive during metastasis.

The ability of MCT1 to export lactate and to bidirectionally transport other 

monocarboxylates15,19,20 may contribute to its ability to promote metastasis. Other MCTs, 

particularly MCT4, may also influence the survival of melanoma cells during metastasis. 

Lactate taken up by melanoma cells via MCT1 likely has multiple metabolic fates. Some of 

the lactate, or pyruvate generated from the lactate, might be exported from the cell. The 

conversion of imported lactate to pyruvate, followed by export of that pyruvate20, could still 

stimulate flux through the PPP by reducing intracellular pH and the NAD+/NADH ratio.

METHODS

Melanoma specimen collection and enzymatic tumor disaggregation

Melanoma specimens were obtained with informed consent from patients according to 

protocols approved by the Institutional Review Board of the University of Michigan Medical 

School (IRBMED approvals HUM00050754 and HUM00050085; see ref24) and the 

University of Texas Southwestern Medical Center (IRB approval 102010–051). Materials 

used in the manuscript are available, either commercially or from the authors, though there 

are restrictions imposed by Institutional Review Board requirements and institutional policy 

on the sharing of materials from patients. Single cell suspensions were obtained by 

dissociating tumors in Kontes tubes with disposable pestles (VWR) followed by enzymatic 

digestion in 200 U/ml collagenase IV (Worthington), DNase (50 U/ml) and 5 mM CaCl2 for 

20 min at 37°C. Cells were filtered through a 40-μm cell strainer to remove clumps.

Mouse studies and xenograft assays

All mouse experiments complied with all relevant ethical regulations and were performed 

according to protocols approved by the Institutional Animal Care and Use Committee at the 

University of Texas Southwestern Medical Center (protocol 2016–101360). Melanoma cell 

suspensions were prepared for injection in staining medium (L15 medium containing bovine 

serum albumin (1 mg/ml), 1% penicillin/streptomycin, and 10 mM HEPES (pH 7.4) with 

25% high-protein Matrigel (product 354248; BD Biosciences)). Subcutaneous injections 

were performed in the right flank of NOD.CB17-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice in a 

final volume of 50 μl. Four to 8-week-old male and female NSG mice were transplanted 

with 100 melanoma cells subcutaneously unless otherwise specified. Mouse cages were 

randomized between treatments (mice within the same cage had to be part of the same 

treatment). Both male and female mice were used. Subcutaneous tumor diameters were 

measured weekly with calipers until any tumor in the mouse cohort reached 2.5 cm in its 
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largest diameter, in agreement with the approved animal protocol. At that point, all mice in 

the cohort were euthanized and spontaneous metastasis was evaluated by gross inspection of 

visceral organs for macrometastases and bioluminescence imaging of visceral organs to 

quantify metastatic disease burden (see details below).

YUMM1.7 (BrafV600E/+; PTEN−/−; Cdkn2−/−), YUMM3.3 (BrafV600E/+; Cdkn2−/−), and 

YUMM5.2 (BrafV600E/+; p53−/−) cell lines30 were obtained from and authenticated by 

ATCC and cell lines were confirmed to be mycoplasma free using the MycoAlert detection 

kit (Lonza). YUMM1.7, YUMM3.3 and YUMM5.2 were transfected with dsRed2 and 

luciferase (dsRed2-P2A-Luc) for bioluminescence imaging. Subcutaneous injections of 

20,000–50,000 cells were performed in the right flank of 6- to 8-week-old male and female 

C57/BL6 mice in 50 μl.

For studies that involved treatment with the MCT1 inhibitor (AZD3965, Selleckchem), 

when subcutaneous tumors became palpable, the mice were administered AZD3965 by oral 

gavage every second day in xenografted mice and every day for mice transplanted with 

YUMM cells (30 mg/kg body mass in 200 μl of 0.5% promethylcellulose, 0.2% Tween80 

and 5% DMSO). Tumor growth was monitored weekly with a caliper. Mice were euthanized 

when the primary tumor reached 2.5 cm in its largest diameter. In addition to measuring 

subcutaneous tumor diameters, the frequency of circulating melanoma cells in the blood 

(obtained by cardiac puncture) was measured by flow cytometry, and metastatic disease 

burden was measured by total bioluminescence levels in dissected visceral organs.

Bioluminescence imaging

Metastatic disease burden was monitored using bioluminescence imaging (all melanomas 

were tagged with stable expression of luciferase). Five minutes before performing 

luminescence imaging, mice were injected intraperitoneally with 100 μl of PBS containing 

D-luciferin monopotassium salt (40 mg/ml) (Biosynth) and mice were anaesthetized with 

isoflurane 2 min prior to imaging. All mice were imaged using an IVIS Imaging System 200 

Series (Caliper Life Sciences) with Living Image software. Upon completion of whole-body 

imaging, mice were euthanized and individual organs were surgically removed and imaged. 

The exposure time ranged from 10 to 60 s, depending upon the maximum signal intensity, to 

avoid saturation of the luminescence signal. To measure the background luminescence, a 

negative control mouse not transplanted with melanoma cells was imaged. The 

bioluminescence signal (total photon flux) was quantified with ‘region of interest’ 

measurement tools in Living Image (Perkin Elmer) software. Metastatic disease burden was 

calculated as observed total photon flux across all organs in xenografted mice minus 

background total photon flux in negative control mice. Negative values were set to 1 for 

purposes of presentation and statistical analysis.

Cell labeling and flow cytometry

Melanoma cells were identified and sorted flow cytometrically as described3. All antibody 

staining was performed for 20 min on ice, followed by washing with HBBS and 

centrifugation at 200xg for 5 min. Cells were stained with directly conjugated antibodies 

against mouse CD45 (violetFluor 450, eBiosciences), mouse CD31 (390-eFluor450, 
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Biolegend), mouse Ter119 (eFluor450, eBiosciences) and human HLA-A, B, C (G46–2.6-

FITC, BD Biosciences). Human melanoma cells were isolated as cells that were positive for 

HLA and negative for mouse endothelial and hematopoietic markers. Cells were washed 

with staining medium and re-suspended in 4’,6-diamidino-2-phenylindole (DAPI; 1 μg/ml; 

Sigma) to eliminate dead cells from sorts and analyses. To analyze other markers, cells were 

stained with Alexa Fluor647-conjugated anti-human MCT1 (Bioss antibodies), Alexa 

Fluor488-conjugated anti-human CD147, PE-Vio770-conjugated anti-human CD98, Alexa 

Fluor700-conjugated anti-human β1-Integrin, FITC-conjugated anti-E-Cadherin (CD324) or 

PE/Cy7-conjugated anti-N-Cadherin (CD325). Cells were examined on an LSRFortessa cell 

analyzer (Becton Dickinson) or sorted on a FACS Fusion Cell Sorter (Becton Dickinson). 

For analysis of circulating melanoma cells, blood was collected from mice by cardiac 

puncture with a syringe pretreated with citrate-dextrose solution (Sigma) when subcutaneous 

tumors reached 2.5 cm in diameter. Red blood cells were sedimented using Ficoll, according 

to the manufacturer’s instructions (Ficoll Paque Plus, GE Healthcare). Remaining cells were 

washed with HBSS (Invitrogen) prior to antibody staining and flow cytometry.

Lentiviral/shRNA transduction of human melanoma cells

All melanomas expressed DsRed and luciferase as described3,24. All shRNAs were 

expressed from a pGFP-C-shLenti vector (Origene). For MCT1 (SLC16A1) knockdown, 

Origene shRNA clones TL309405A (5’-gaggaagagaccagtatagatgttgctgg-3’) and TL309405B 

(5’-atccagctctgaccatgattggcaagtat-3’) were used. For MCT1 (SLC16A1) over-expression, 

the human open reading frame was obtained from the Precision LentiORF collection 

(Dharmacon) in a bicistronic lentiviral construct that co-expressed turbo green fluorescent 

protein (pLOC-MCT1-IRES-tGFP). As a control, turbo red fluorescent protein (tRFP) was 

expressed in place of MCT1 in the same construct (pLOC-tRFP-IRES-tGFP). In rescue 

experiments, the MCT1 cDNA was mutated to change wobble bases in 10 consecutive 

codons to render the MCT1 cDNA insensitive to the anti-MCT1 shRNAs we used without 

affecting the amino acid sequence (5’-gag gaa gag acc agt ata gat gtt gct ggg-3’ to 5’-gaa 

gag gaa act agc att gac gtc gca ggc-3’ for shRNA#1 and 5’-aat cca gct ctg acc atg att ggc aag 

tat-3’ to 5’-aac ccg gcc cta acg atg ata ggg aaa tac-3’ for shRNA#2). The shRNA-resistant 

MCT1 sequence was cloned into the pLVX-EF1a-IRES-mCherry lentiviral vector to infect 

melanoma cells.

For virus production, 0.9 μg of the appropriate plasmid together with 1 μg of helper plasmids 

(0.4 μg pMD2G and 0.6 μg of psPAX2) were transfected into 293T cells using polyjet 

(SignaGen) according to the manufacturer’s instructions. The resulting replication-

incompetent viral supernatants were collected at 48 h after transfection and filtered through 

a 45 μm filter. 300,000 freshly dissociated melanoma cells were infected with viral 

supernatants supplemented with 10 μg/ml polybrene (Sigma) for 4 hours. Cells were then 

washed twice with staining medium (L15 medium containing bovine serum albumin (1 mg/

ml), 1% penicillin/streptomycin, and 10 mM Hepes (pH 7.4)), and approximately 25,000 

cells (a mixture of infected and non-infected cells) were suspended in staining medium with 

25% high-protein Matrigel (product 354248; BD Biosciences) and then injected 

subcutaneously into NSG mice. After growing to 1 to 2 cm in diameter, the tumors were 

excised and dissociated into single-cell suspensions as described above. DsRed and GFP 
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double-positive cells were sorted and transplanted into NSG mice for in vivo studies to 

assess the effect of each shRNA construct on tumor growth and metastasis.

CRISPR editing of MCT1 in mouse melanoma cells

Single guide RNAs (sgRNAs) targeting exon 2 of mouse MCT1 were designed using 

publicly available tools (http://crispr.mit.edu): MCT1 sgRNA #1 5’– 

AAATGCCACCTGCGATTGGA–3’; MCT1 sgRNA #2 5’–ATGGATATCATCTATAATGT–

3’. The sgRNAs were cloned into the U6-driven Cas9 expression vector (pX458-
pSpCas9(BB)-2AGFP; 48318, Addgene)36. Approximately 100,000 YUMM1.7 mouse 

melanoma cells were plated in tissue-culture-treated 6-well plates in DMEM low glucose 

plus 10% FBS and 1% penicillin/streptomycin. 1 μg of each of the two sgRNA constructs 

was co-transfected into the melanoma cells using polyjet (SignaGen) according to the 

manufacturer’s instructions. After 48 hours, GFP+ cells were sorted into 96-well plates with 

DMEM low glucose plus 10% FBS and 1% penicillin/streptomycin at clonal density, then 

clones were expanded, and genomic DNA was isolated to screen for MCT1 exon 2 deletions.

Cell invasion

Transwell invasion assays were carried out using Corning BioCoat Tumor Invasion Systems 

(354165, Corning) as previously described37. Briefly, 5×105 cells were seeded in the upper 

chamber of each well in serum-free culture medium. Fetal bovine serum (10%) in DMEM in 

the lower chamber was used as the chemoattractant. The invasive cells that migrated across 

the insert toward the lower chamber were stained with crystal violet solution after 24-hours 

of incubation at 37°C in 5% CO2. Images were captured using an Olympus microscope with 

a DP71 high resolution digital camera and cells were counted using ImageJ.

In vivo isotope tracing

All in vivo isotope tracing experiments were performed when subcutaneous tumors reached 

2 cm in diameter. Before infusions, mice were fasted for 16 hours, then a 27-gauge catheter 

was placed in the lateral tail vein under anesthesia. We intravenously infused 

[U-13C]glutamine (CLM-1822, Cambridge Isotope Laboratories) as a bolus of 0.1725 mg/g 

body mass over 1 min in 150 μl of saline, followed by continuous infusion of 0.00288mg/g 

body mass/min for 5 hours (in a volume of 150 μl/hour)38. For [U-13C]glucose (CLM-1396, 

Cambridge Isotope Laboratories) and [1,2-13C]glucose infusion (CLM-504, Cambridge 

Isotope Laboratories), we intravenously infused a bolus of 0.4125 mg/g body mass over 1 

min in 125 μl of saline, followed by continuous infusion of 0.008 mg/g body mass/min for 3 

hours (in a volume of 150 μl/hour)17. At the end of the infusion, mice were killed, tumors 

were harvested, and immediately frozen in liquid nitrogen. To assess the fractional 

enrichments in plasma, 20 μl of blood was obtained after 30, 60, 120, and 180 minutes of 

infusion. For [U-13C]lactate (CLM-1579, Cambridge Isotope Laboratories) and 

[2-2H]lactate (693987, Sigma-Aldrich) infusion, we intravenously infused a bolus of 0.24 

mg/g body mass over 10 min in 15 μl of saline, followed by continuous infusion of 0.0048 

mg/g body mass/min for 3 hours (in 120 μl/hour)17. Care was taken during infusions not to 

increase blood glucose or lactate concentrations over pre-infusion levels.
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Gas chromatography mass spectrometry

For gas chromatography-tandem mass spectrometry (GC-MS), subcutaneous tumor 

fragments weighing 5–15 mg were homogenized using an electronic tissue disruptor 

(Qiagen) in ice-cold 80:20 methanol:water (vol:vol) followed by with three freeze-thaw 

cycles in liquid nitrogen. The supernatant was collected after a 10 min centrifugation at 

13,000xg at 4°C then lyophilized. To analyze isotope enrichment in the plasma, whole blood 

was chilled on ice then centrifuged for 1 minute at 13,000xg at 4°C to separate the plasma. 

Aliquots of 20–40 μl of plasma were added to 80:20 methanol:water to extract the 

metabolites, then lyophilized using a SpeedVac (Thermo), and re-suspended in 40 μl 

anhydrous pyridine. This solution was added to pre-prepared GC-MS autoinjector vials 

containing 80 μl N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) to 

derivatize polar metabolites. The samples were incubated at 70°C for 1 hour, then aliquots of 

1 μl were injected for analysis. Samples were analyzed using either an Agilent 6890 or an 

Agilent 7890 gas chromatograph coupled to an Agilent 5973N or 5975C Mass Selective 

Detector, respectively. The observed distributions of mass isotopologues were corrected for 

natural abundance39.

Metabolomic analysis

HILIC chromatographic separation of metabolites was achieved using a Millipore 

(Burlington, MA) ZIC-pHILIC column (5μm, 2.1 × 150mm) with a binary solvent system of 

10mM ammonium acetate in water, pH 9.8 (solvent A) and acetonitrile (solvent B) with a 

constant flow rate of 0.25 ml/minute. For gradient separation, the column was equilibrated 

with 90% Solvent B. After injection, the gradient proceeded as follows: 0–15 minutes linear 

ramp from 90% B to 30% B; 15–18 minutes isocratic flow of 30% B; 18–19 minutes linear 

ramp from 30% B to 90% B; 19–27 column regeneration with isocratic flow of 90% B. 

Metabolites were measured with a Thermo Scientific (Bremen, Germany) QExactive HF-X 

hybrid quadrupole orbitrap high resolution mass spectrometer (HRMS) coupled to a 

Vanquish UHPLC. HRMS data was acquired with two separate acquisition methods. 

Individual samples were acquired with an HRMS full scan (precursor ion only) method 

switching between positive and negative polarities. For ddHRMS/MS methods, precursor 

ion scans were acquired at a resolving power of 60,000 FWHM with a mass range of 80–

1200 Daltons. The AGC target value was set to 1×106 with a maximum injection time of 100 

ms. Pooled samples were generated from an equal mixture of all individual samples and 

analyzed using individual positive- and negative-polarity data-dependent high resolution 

tandem mass spectrometry (ddHRMS/MS) acquisition methods for high-confidence 

metabolite ID. Product ion spectra were acquired at a resolving power of 15,000 FWHM 

without a fixed mass range. The AGC target value was set to 2×105 with a maximum 

injection time of 150 ms. Data dependent parameters were set to acquire the top 10 ions with 

a dynamic exclusion of 30 seconds and a mass tolerance of 5 ppm. Isotope exclusion was 

turned on and a stepped normalized collision energy (NCE) applied with values of 30, 50, 

and 70. Settings remained the same in both polarities.

Metabolite identities were confirmed in three ways: 1) precursor ion m/z was matched 

within 5 ppm of theoretical mass predicted by the chemical formula; 2) fragment ion spectra 

were matched within a 5 ppm tolerance to known metabolite fragments; 3) the retention time 
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of metabolites was within 5% of the retention time of a purified standard run with the same 

chromatographic method. Metabolites were relatively quantitated by integrating the 

chromatographic peak area of the precursor ion searched within a 5 ppm tolerance.

GSH/GSSG analysis by LC-MS/MS

For analysis of the glutathione (GSH) to oxidized glutathione (GSSG) ratio by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), subcutaneous tumor fragments 

weighing 5–15 mg were homogenized using an electronic tissue disruptor (Qiagen) in ice-

cold 80:20 methanol:water (vol:vol), with 0.1% formic acid to prevent spontaneous 

oxidation40, followed by with three freeze-thaw cycles in liquid nitrogen. The supernatant 

was collected after a 10 min centrifugation at 13,000xg at 4°C then lyophilized. Lyophilized 

samples were reconstituted in 100μl of 0.1% formic acid in water, vortexed, and analyzed by 

LC–MS/MS. GSH/GSSG analysis was performed using a SCIEX 6500+ Q-Trap mass 

spectrometer coupled to a Shimadzu LC-20A UHPLC system. Chromatographic separation 

was carried out with a Waters HSS T3 column and a binary solvent gradient of water with 

0.1% formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B). The 

following gradient was used for separation: 0–3 minutes, isocratic flow of 0% B; 3–8 

minutes, 0–100% B; 8–13 minutes, isocratic flow of 100% B; 13–13.1 minutes, 100–0% B; 

13.1–18 minutes, isocratic flow of 0% B. The flow rate was held constant at 0.2 ml/minute. 

The MS was operated in MRM mode monitoring the following transitions for GSH, GSSH 

and their respective internal standards in positive mode: GSH 308/162; GSSG 613/355; GSH 

internal standard (ISTD) 311/165; GSSG ISTD 619/165. Transitions and source parameters 

were optimized by infusion prior to analysis. GSH/GSSG ratios were calculated by first 

determining the molar values of GSH and GSSG individually using a standard curve and the 

addition of internal standards. Data are reported as the ratio of calculated molar values.

13C tracing analysis for glycolytic and pentose phosphate pathway metabolites

The theoretical masses of 13C isotopes of glycolytic and pentose phosphate metabolites were 

calculated and added to a library of predicted isotopes. These masses were then searched 

with a 5 ppm tolerance and integrated only if the peak apex showed less than 1% difference 

in retention time from the [U-12C] monoisotopic mass in the same chromatogram. After 

analysis of the raw data, theoretical natural abundance was calculated. Natural isotope 

abundances were corrected using a customized R script, which could be found at the GitHub 

repository (https://github.com/wencgu/nac). The script was written by adapting the AccuCor 

algorithm41.

NAD+/NADH analysis by LC-MS/MS

Analysis of NAD+/NADH levels was performed on 5–15 mg tumor specimens. Tissues were 

homogenized manually with a pestle in ice-cold 80:20 methanol:water (vol:vol). After 

thorough homogenization, samples were spun at 13,000xg for 15 minutes at 4°C. Samples 

were then transferred to a fresh conical tube and spun for an additional 10 minutes at 

13,000xg at 4°C. The supernatant was placed directly into autosampler vials for analysis by 

LC/MS. NAD+/NADH measurements were carried out on a Thermo Scientific (Bremen, 

Germany) QExactive HF-X hybrid quadrupole orbitrap high resolution mass spectrometer 

(HRMS) coupled to a Vanquish UHPLC. Chromatographic separation of metabolites was 
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achieved using a Millipore (Burlington, MA) ZIC-pHILIC column (5μm, 2.1 × 150mm) 

with a binary solvent system of 10mM ammonium acetate in water, pH 9.8 (solvent A) and 

acetonitrile (solvent B) with a constant flow rate of 0.25 ml/minute. For gradient separation, 

the column was equilibrated with 90% Solvent B. After injection, the gradient proceeded as 

follows: 0–15 minutes linear ramp from 90% B to 30% B; 15–18 minutes isocratic flow of 

30% B; 18–19 minutes linear ramp from 30% B to 90% B; 19–27 minutes of column 

regeneration with isocratic flow of 90% B. HRMS data were acquired with two different 

methods. Pooled samples were generated from an equal mixture of all individual samples 

and were analyzed using individual positive- and negative-polarity data-dependent high 

resolution tandem mass spectrometry (ddHRMS/MS) for high-confidence metabolite ID. 

Individual conditions were acquired with an HRMS full scan (precursor ion only) switching 

between positive and negative polarities. For ddHRMS/MS methods, precursor ion scans 

were acquired at a resolving power of 60,000 FWHM, with a mass range of 80–1200 

Daltons. The Automated Gate Control (AGC) target value was set to 106, with a maximum 

injection time of 100 ms. Product ion spectra were acquired at a resolving power of 15,000 

FWHM without a fixed mass range. The AGC target value was set to 2×105 with a 

maximum injection time of 150 ms. Data dependent parameters were set to acquire the top 

10 ions with a dynamic exclusion of 30 seconds and a mass tolerance of 5 ppm. Isotope 

exclusion was turned on and the normalized collision energy was set to a constant value of 

30. Settings remained the same in both polarities. Polarity-switching HRMS full scan data 

were acquired with a resolving power of 60,000 FWHM and a mass range of 80–1200 

Daltons; the AGC target was set to 106 and a maximum injection time of 100 ms. NAD+/

NADH ratios were determined by integrating the extracted ion chromatograms (XICs) for 

NAD+ in positive mode (m/z = 664.1164) and NADH in negative mode (m/z = 664.1175). 

Fragmentation spectra from pooled samples were used for structural confirmation of NAD+ 

and NADH.

NADPH/NADP+ measurement

Subcutaneous tumors were surgically excised as quickly as possible after killing the mice 

then melanoma cells were mechanically dissociated and NADPH and NADP+ were 

measured using the NADPH/NADP Glo-Assay (Promega) following the manufactures 

instructions. Standard curves were generated using purified NADP+ (N-5755, Sigma-

Aldrich) and NADPH (N-6705, Sigma-Aldrich) prepared in the same buffers used for the 

experimental samples. The absolute amounts of NADP+ and NADPH in each sample was 

then determined using these standard curves. Luminescence was measured using a using a 

FLUOstar Omega plate reader (BMG Labtech). Values were normalized to tissue mass.

Assays for ROS levels and intracellular pH

Subcutaneous tumors were surgically excised as quickly as possible after euthanizing the 

mice then melanoma cells were mechanically dissociated in 700 μl of staining medium. 

Single-cell suspensions were obtained by passing the dissociated cell suspensions through a 

40 μm cell strainer. To analyze ROS levels, equal numbers of dissociated cells from each 

treatment were stained for 30 min at 37°C with 5 mM CellROX Green or CellROX DeepRed 

(Life Technologies) in HBSS-free (Ca2+ and Mg2+-free) and DAPI (to distinguish live from 

dead cells). The cells were then washed and analyzed by flow cytometry using either a 
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FACS Fusion or a FACS Fortessa (BD Biosciences) to assess ROS levels in live human 

melanoma cells (positive for human HLA and dsRed and negative for DAPI and mouse 

CD45/CD31/Ter119).

To assess intracellular pH, equal numbers of dissociated cells from each treatment were 

stained with a pH-dependent ratiometric dye, Seminaphthorhodaflouor-1 (Acetoxymethyl 

Ester) (SNARF1)42 in HBSS-free, and DAPI. We generated standard curves by incubating 

dissociated melanoma cells with pH 5.5, pH 6.5, or pH 7.5 buffers in the presence of 10 mM 

valinomycin and nigercin (ionophores that allowed the cytoplasm to equilibrate with 

extracellular pH; Intracellular pH Calibration Buffer Kit, Life Technologies). SNARF1 

fluorescence was measured by flow cytometry as described above then converted to pH 

values using the standard curves.

Western blot analysis

We used HCC15 cell lines as positive and negative controls for MCT1 and MCT4 expression 

(previously described17). The identity of the HCC15 cells was confirmed using DNA 

fingerprinting and they were confirmed to be mycoplasma free using the e-Myco kit 

(Bulldog bio). MCF7 cell lines were used as a positive control for MCT2. MCF7 cell lines 

were obtained from, and authenticated by, ATCC and confirmed to be mycoplasma free 

using the e-Myco kit (Bulldog bio). Melanomas were excised and quickly snap frozen in 

liquid nitrogen. Tumor lysates were prepared in Kontes tubes with disposable pestles using 

RIPA Buffer (Cell Signaling Technology) supplemented with phenylmethylsulphonyl 

fluoride (Sigma), and protease and phosphatase inhibitor cocktail (Roche). The 

bicinchoninic acid protein assay (Thermo) was used to quantify protein concentrations. 

Equal amounts of protein (10–20 μg) were loaded into each lane and separated on 4–20% 

polyacrylamide tris glycine SDS gels (BioRad), then transferred to polyvinylidene difluoride 

membranes (BioRad). The membranes were blocked for 1 hour at room temperature with 

5% milk in TBS supplemented with 0.1% Tween20 (TBST) and then incubated with primary 

antibodies overnight at 4°C. After washing, then incubating with horseradish peroxidase 

conjugated secondary antibody (Cell Signaling Technology), signals were developed using 

SuperSignal West (Thermo Fisher). Blots were sometimes stripped using Restore stripping 

buffer (Thermo Fisher) and restained with other primary antibodies. The following 

antibodies were used for western blots: anti-MCT1 (AB3538P, Millipore), anti-MCT2 

(LN2021159, LabNed), anti-MCT4 (AB3316P, Millipore), anti-CD147 (ab64616, Abcam), 

anti-LDHA (C4B5, Cell Signaling Technologies), anti-LDHB (ab53292, Abcam), anti-

IKKα (D3W6N, Cell Signaling Technology), anti-IKKβ (D30C6, Cell Signaling 

Technology), anti-Vimentin (D21H3, Cell Signaling Technology), anti-Tubulin (ab52866, 

Abcam) and anti-β-Actin (D6A8, Cell Signaling Technologies).

Immunofluorescence staining of frozen tissue sections

Tissues were fixed in 4% paraformaldehyde overnight at 4°C, washed in PBS, and 

cryoprotected in 30% sucrose overnight. Tissues were then frozen in OCT (Fisher). Sections 

(10 μm) were cut using a cryostat, washed 3 times in PBS for 5 min each, and blocked in 5% 

donkey serum (JacksonImmuno) in PBS for 1 hour at room temperature. Sections were then 

stained with primary antibodies overnight: anti-MCT1 (HPA003324, Sigma, 1:500) and anti-
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S100 (Z0311, Dako, 1:500). The next day, sections were washed 3 times in PBS for 5 min 

each and stained with secondary antibodies: Alexa Fluor 488-AffiniPure F(ab’)2 Fragment 

Donkey anti-Rabbit IgG, Cy3-AffiniPure F(ab’)2 Fragment Donkey anti-Rat IgG 

(JacksonImmuno) at 1:250 for 1 hour in the dark at room temperature. Sections were washed 

3 times in PBS for 5 min each then stained with DAPI (1:1000) and mounted with 

Flouromount-G (SouthernBiotech) for confocal imaging.

Statistical methods

Generally, multiple melanomas from different patients were tested in multiple independent 

experiments performed on different days. Mice were allocated to experiments randomly and 

samples processed in an arbitrary order, but formal randomization techniques were not used. 

Prior to analyzing the statistical significance of differences among treatments, we tested 

whether data were normally distributed and whether variance was similar among treatments. 

To test for normality, we performed the Shapiro–Wilk tests when 3≤n<20 or D’Agostino 

Omnibus tests when n≥20. To test whether variability significantly differed among 

treatments we performed F-tests (for experiments with two treatments) or Levene’s median 

tests (for experiments with more than two treatments). When the data significantly deviated 

from normality (p < 0.01) or variability significantly differed among treatments (p < 0.05), 

we log2-transformed the data and tested again for normality and variability. If the 

transformed data no longer significantly deviated from normality and equal variability, we 

performed parametric tests on the transformed data. If log2-transformation was not possible 

or the transformed data still significantly deviated from normality or equal variability, we 

performed non-parametric tests on the non-transformed data.

All of the statistical tests we used were two-sided, where applicable. To assess the statistical 

significance of a difference between two treatments, we used Student’s t-tests/paired t-tests 

(when a parametric test was appropriate), Welch’s t-tests (when data were normally 

distributed but not equally variable), or Mann-Whitney tests/Wilcoxon tests (when a non-

parametric test was appropriate). When it was possible to perform a one-sided or a two-sided 

statistical test we always performed two-sided tests. Multiple t-tests (parametric or non-

parametric) were followed by Holm-Sidak’s multiple comparisons adjustment. To assess the 

statistical significance of differences between more than two treatments, we used one-way or 

two-way ANOVAs (when a parametric test was appropriate) followed by Holm-Sidak’s 

multiple comparisons adjustment or Kruskal-Wallis tests (when a non-parametric test was 

appropriate) followed by Dunn’s multiple comparisons adjustment. To assess the statistical 

significance of differences between time-course data, we used repeated-measures two-way 

ANOVAs (when a parametric test was appropriate and there were no missing data points) or 

mixed-effects analyses (when a parametric test was appropriate and there were missing data 

points) followed by Dunnett’s multiple comparisons adjustment, or nparLD43, a statistical 

tool for the analysis of non-parametric longitudinal data, followed by the Benjamini-

Hochberg method for multiple comparisons adjustment. To assess the statistical significance 

of overall differences between percentages of tumors formed by different treatments and cell 

doses in all melanomas, we used multiple linear regressions. To assess the statistical 

significance of differences in overall survival of TCGA SKCM patients, we used Mantel-

Cox’s log-rank tests. All statistical analyses were performed with Graphpad Prism 8.1 or R 
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3.5.1 with the stats, fBasics, car, and nparLD packages. All data represent mean ± standard 

deviation.

Samples sizes were not pre-determined based on statistical power calculations but were 

based on our experience with these assays. For assays in which variability is commonly 

high, we typically used n>10. For assays in which variability is commonly low, we typically 

used n<10. No data were excluded; however, mice sometimes died during experiments, 

presumably due to the growth of metastatic tumors. In those instances, data that had already 

been collected on the mice in interim analyses were included (such as subcutaneous tumor 

growth measurements over time) even if it was not possible to perform the end-point 

analysis of metastatic disease burden (due to the premature death of the mice).

During all isotope tracing experiments, the data were analyzed in a manner blinded to 

sample identity or treatment. A.T. performed all of the infusions, collected tumor specimens, 

and performed mass spectrometry, then passed the de-identified data files to B.F. and A.S., 

who analyzed the isotope tracing patterns. After the patterns had been analyzed for 

individual mice, the samples were re-identified so the results could be interpreted.

Data availability

The Source Data files contain the numeric data for all figures and extended data figures. 

Data are available from the corresponding author upon request.

Extended Data
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Extended Data Figure 1. Plasma enrichment of isotopically-labelled metabolites after infusion 
into xenografted mice. Related to Figure 1.
a, Summary of the melanomas used in this study and their spontaneous metastatic behavior 

after subcutaneous transplantation into NSG mice. Melanomas were characterized as 

inefficient or efficient metastasizers. Before subcutaneous tumors grew to 2.5 cm in diameter 

(when the mice were killed per approved protocol), inefficient metastasizers rarely formed 

macrometastases or micrometastases beyond the lung whereas efficient metastasizers 

commonly formed macrometastases as well as micrometastases in multiple organs (the data 

reflect results from 1 to 5 independent experiments per melanoma). Some of these data have 

been published previously24. b-g, Isotope tracing was performed in NSG mice 

subcutaneously xenografted with efficiently metastasizing melanomas from four patients 

(M405, M481, M487, and UT10) and inefficiently metastasizing melanomas from nine 

patients (M715, UM17, UM22, UM43, UM47, M498, M528, M597 and M610). The 

number of tumors/mice analyzed per treatment is indicated in each panel. b, Glutamine m+5 

as a fraction of total plasma glutamine in mice infused with [U-13C]glutamine (14 

independent experiments). c, Isotope enrichment in subcutaneous tumors after 

[U-13C]glutamine infusion (14 independent experiments). d, Glucose m+6 as a fraction of 

total plasma glucose in mice infused with [U-13C]glucose (20 independent experiments). e, 

Plasma glucose and lactate concentrations before and after infusion. f, Lactate m+3 as a 

Tasdogan et al. Page 17

Nature. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fraction of total plasma lactate in mice infused with [U-13C]lactate (23 independent 

experiments). g, Lactate m+1 as a fraction of total plasma lactate in mice infused with 

[2-2H]lactate (three independent experiments). h, Expected isotope labelling after 

[2-2H]lactate infusion. i, Western blot analysis of lactate dehydrogenase A and B in 

subcutaneous tumors from NSG mice xenografted with efficiently (M405, M481, and UT10) 

or inefficiently (UM17, UM43, and UM47) metastasizing melanomas (representative of four 

independent experiments). All data represent mean ± s.d. Statistical significance was 

assessed using Mann-Whitney tests (c) and t-tests at 180 or 300 minutes when tumors were 

harvested for analysis (b, d and f-g) or paired t-tests (e).
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Extended Data Figure 2. Efficient metastasizers express higher levels of MCT1 than inefficient 
metastasizers. Related to Figure 2.
a, Quantification of MCT1 relative to Actin bands from the western blot in Figure 2a 

comparing efficient versus inefficient metastasizers. b, Quantification of MCT4 relative to 

Actin bands from the western blot in Figure 2c comparing efficient versus inefficient 

metastasizers. c-d, Quantification of mean fluorescence intensities for MCT1 staining in the 

flow cytometry plots comparing efficient (Fig. 2e) and inefficient (Fig. 2d) metastasizers. 

HCC15 cells and MCT1-deficient HCC15 cells were positive and negative controls (c). e-f, 
Immunofluorescence staining for MCT1 (green) in sections from subcutaneous tumors from 

inefficiently (e, UM47) or efficiently (f, M405) metastasizing melanomas. An adjacent 

section was stained with an antibody against S100b (a melanoma marker, green). Images are 

representative of three independent experiments per melanoma. g,h Immunofluorescence 

staining for MCT1 (green) in sections from subcutaneous tumors from inefficient (g, M498, 

M610, and M597) and efficient (h, M481, UT10, and M405) metastasizers. In each case, an 

adjacent section was stained with an antibody against S100b (a melanoma marker, green). 

Images are representative of results from two independent experiments per melanoma. i-j, 
While efficient metastasizers often exhibited cell surface staining (j), inefficient 

metastasizers typically exhibited diffuse cytoplasmic staining (i). Images are representative 
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of results from two independent experiments per melanoma. All data represent mean ± s.d.. 

Statistical significance was assessed using Student’s t-tests (a-b and d).
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Extended Data Figure 3. MCT1 inhibition impairs metastasis without altering MCT1, CD147, 
CD98, or β1-Integrin expression levels. Related to Figure 2.
a-c, Western blot analysis of MCT1 (a), MCT4 (b) and CD147 (c) in subcutaneous tumours 

versus metastatic liver (liv), kidney (kid), and pancreas (pan) nodules from NSG mice 

transplanted with three melanomas. d-g, Flow cytometry histograms of anti-MCT1 (d, e), or 

anti-CD147 (f, g) staining in melanoma cells from subcutaneous tumors or metastatic 

nodules from mice transplanted with M405 (d, f) or M481 (e, g) melanomas. h-o, Flow 

cytometry histograms and mean fluorescence intensities of anti-MCT1 (h, i), anti-CD147 (j, 
k), anti-CD98 (l, m), or anti-β1-Integrin (n-o) staining in melanoma cells from subcutaneous 

tumors treated with DMSO (control; black) or AZD3965 (MCT1 inhibitor; blue). The 

number of tumors/mice analyzed in each treatment is indicated within the bars in each panel 

(2 to 3 experiments). In all flow cytometric analyses, human melanoma cells were 

distinguished from mouse cells based on positivity for HLA-ABC and DsRed and negativity 

for mouse CD31/CD45/Ter119 staining (see Extended Data Figure 9e and 9f for gating 

strategy). p-u, Western blot analysis of IKKα (p-r) and IKKβ (s-u) in subcutaneous tumors 

from NSG mice treated with DMSO or AZD3965. All data represent mean ± s.d. Statistical 

significance was assessed with two-way ANOVAs (i, k, m, and o).
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Extended Data Figure 4. MCT1 inhibition with AZD3965 impairs metastasis without altering 
markers of epithelial to mesenchymal transition (EMT). Related to Figure 2.
Flow cytometry histograms of anti-E-cadherin (a) and anti-N-cadherin (b) staining in 

melanoma cells from subcutaneous tumors of mice treated with DMSO (control) or 

AZD3965. Human keratinocytes were included as a control in each case as they are known 

to include subpopulations of E-cadherin and N-cadherin positive cells. In xenografts, human 

melanoma cells were distinguished from mouse cells based on positivity for HLA-ABC and 

DsRed and negativity for mouse CD31/CD45/Ter119 staining (Extended Data Figure 9e and 

9f for gating strategy). The data are representative of 2–3 mice analyzed in two independent 

experiments. c, Western blot analysis of vimentin in subcutaneous tumors from NSG mice 

treated with DMSO or AZD3965.
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Extended Data Figure 5. Representative images of the bioluminescence analysis of visceral 
organs to determine metastatic disease burden at endpoint. Related to Figures 2, 3 and 5.
a-e, Visceral organs were surgically removed from each mouse at endpoint and imaged to 

identify macro and micrometastases and to determine bioluminescence signal intensity. Each 

melanoma was tagged with constitutive luciferase expression.
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Extended Data Figure 6. shRNA mediated knockdown of MCT1 inhibits melanoma metastasis in 
vivo. Related to Figure 2.
a, Western blot analysis of MCT1 in subcutaneous tumors from mice xenografted with 

efficiently metastasizing melanomas transfected with scrambled control shRNA or shRNA1 

or shRNA2 against MCT1. HCC15 cells were used as a positive control and MCT1-deficient 

HCC15 cells were used as a negative control (representative of 2 independent experiments). 

b, Western blot analysis of MCT4 in subcutaneous tumors from mice xenografted with 

efficiently metastasizing melanomas transfected with scrambled control shRNA or shRNA1 

or shRNA2 against MCT4. HCC15 cells were used as a positive control and MCT4-deficient 

HCC15 cells were used as a negative control. c-e, Growth of subcutaneous tumors (c) in 

mice transplanted with melanomas transfected with scrambled control shRNA or shRNA1 or 

shRNA2 against MCT1. The number of mice analyzed in each treatment is indicated in each 

panel (one experiment per melanoma). The frequency of circulating melanoma cells in the 

blood (d) and metastatic disease burden based on bioluminescence imaging (e) in the same 

mice. f, Western blot analysis of MCT1 in subcutaneous tumors transfected with scrambled 

control shRNA or shRNA1 or shRNA2 against MCT1, with (OE) or without an shRNA-

insensitive MCT1 cDNA. g-h, Growth of subcutaneous tumors (g) and metastatic disease 

burden at endpoint (h) in mice transplanted with melanomas transfected with scrambled 

control shRNA or shRNA1 or shRNA2 against MCT1 and an shRNA-insensitive MCT1 
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cDNA. i, Fold change in mean fluorescence intensity for CellRox DeepRed staining (ROS) 

in xenografted melanoma cells with scrambled control shRNA or shRNA1 or shRNA2 

against MCT1 treated with AZD3965 or DMSO. All data represent mean ± s.d.. Statistical 

significance was assessed using nparLD followed by Benjamiani-Hochberg’s multiple 

comparisons adjustment (c), log2 one-way ANOVAs with Holm-Sidak’s multiple 

comparisons adjustment (d-e and h), mixed-effects analysis followed by Dunnett’s multiple 

comparisons adjustment (g), or log2 two-way ANOVA with Sidak’s multiple comparisons 

adjustment (i).
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Extended Data Figure 7. CRISPR deletion of MCT1 from mouse melanoma cells impairs 
metastasis while MCT1 over-expression in patient-derived xenografts increases metastasis. 
Related to Figure 2.
a, Western blot analysis of MCT1 in wild-type parental YUMM1.7 melanoma cells as well 

as two lines from which MCT1 had been deleted using CRISPR. b-d, Growth of 

subcutaneous tumors (b), total metastatic disease burden at endpoint by bioluminescence 

imaging of visceral organs (c) and CellRox DeepRed staining of subcutaneous tumor cells 

(d). The number of mice analyzed in each treatment is indicated in each panel (one 

experiment; note that one mouse died in the KO#2 treatment before endpoint analysis). e, 

Western blot analysis of MCT1 in an inefficiently metastasizing melanoma (UM47) 

expressing MCT1 cDNA. f-g, Growth of subcutaneous tumors (f) and total metastatic 

disease burden at endpoint by bioluminescence imaging of visceral organs (g) from mice 

transplanted with these melanomas (one experiment; note that two mice died in the control 

treatment before endpoint analysis). All data represent mean ± s.d.. Statistical significance 

was assessed using one-way ANOVA followed by Dunnett’s multiple comparison 

adjustment (b: day 25) or log2 one-way ANOVAs followed by Dunnett’s multiple 

comparisons adjustment (c-d), t-test (f: day 90) or log2 t-test (g).
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Extended Data Figure 8. MCT1 inhibition does not impair the migration of melanoma cells in 
culture but appears to reduce metastatic disease burden by killing metastasizing melanoma cells 
in vivo. Related to Figure 2.
a, Migration in transwell invasion assays of three melanomas treated with DMSO (control) 

or AZD3965 (MCT1 inhibitor), including representative images (left) and counts (right) of 

the cells that migrated across the insert after 24 hours (one experiment with two to three 

replicate cultures per melanoma). b-c, Effect of acute treatment with AZD3965 (7 days) on 

the diameter of subcutaneous tumors, the frequency of circulating melanoma cells in the 

blood, and metastatic disease burden in mice with established M481 (b) or M405 (c) 

melanomas. Treatment was initiated when the subcutaneous tumors reached 2 cm in 

diameter (one experiment per melanoma with three mice per treatment). d, Efficiently 

metastasizing melanoma cells (M405) were subcutaneously transplanted into mice, allowed 

to spontaneously metastasize, then the primary tumors were resected to prolong survival and 

to allow the metastatic tumors that had formed prior to primary tumor resection to grow 

larger. Mice were treated with AZD3965 for the duration of the experiment, only prior to 

primary tumor resection, or only after primary tumor resection. e, Analysis of total 

metastatic disease burden at endpoint showing that metastatic disease burden was reduced 

when AZD3965 treatment was performed prior to primary tumor resection, during the time 

when melanoma cells were spontaneously metastasizing, but before metastatic tumors were 
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established. The number of mice per treatment is shown in the panel (two independent 

experiments). All data represent mean ± s.d.. Statistical significance was assessed using two-

way ANOVAs followed by Dunnett’s multiple comparison’s adjustment (a), t-tests (b-c) or 

Kruskal-Wallis test followed by Dunn’s multiple comparison’s adjustment (e).
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Extended Data Figure 9. Increased MCT1 expression in melanomas is associated with 
significantly worse patient survival. Related to Figure 2.
a-d, Kaplan-Meier overall survival curves of melanoma patients stratified based on MCT1 
(a), MCT2 (b), MCT4 (c), and CD147 (d) expression level within tumor specimens. Data 

were from the SKCM cohort in TCGA (https://portal.gdc.cancer.gov/projects/TCGA-

SKCM). Each panel compares the top third of patients with the highest expression levels 

versus the bottom third of patients with the lowest expression levels. Ticks represent 

censored values. e-f, Flow cytometry plots showing the gating strategies used to identify 

human melanoma cells in subcutaneous tumors (e) or the blood (f) of xenografted mice. 

Cells were gated on forward versus side scatter (FSC-A vs. SSC-A) to exclude red blood 

cells and clumps of cells. Human melanoma cells were selected by including cells that 

stained positively for DsRed (stably expressed in all melanoma lines) and HLA and 

excluding cells that stained positively for the mouse hematopoietic and endothelial markers 

CD45, CD31, or Ter119. The statistical significance of the differences in overall survival (a-
d) were assessed using the Mantel-Cox log-rank test.
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Extended Data Figure 10. MCT1 inhibition reduces the levels of pentose phosphate pathway, but 
not glycolytic, metabolites. Related to Figures 3–5.
a, Glutathione (GSH) to oxidized glutathione (GSSG) ratios in melanoma cells from mice 

treated with AZD3965 or DMSO (two independent experiments per melanoma). b, 

Quantitative analysis of NADPH and NADP+ in melanoma cells from mice treated with 

AZD3965 or DMSO (one or two experiments per melanoma). Liver cells were included as a 

control, with a high NADPH/NADP+ ratio. c, Expected isotope labelled species after 

[1,2-13C]glucose infusion. d, Glucose m+2 as a fraction of total plasma glucose in mice 

xenografted with efficiently metastasizing melanomas (M405, M481, and UT10), treated 

with DMSO or AZD3965, and infused with [1,2-13C]glucose. e, Glucose m+6 as a fraction 

of total plasma glucose in mice infused with [U-13C]glucose. The number of mice per 

treatment is indicated in each panel (two independent experiments). f-i, LC-MS 

measurement of the levels of glycolytic (f, h) and oxidative pentose phosphate pathway (g, i) 
metabolites in subcutaneous tumor cells from mice xenografted with melanomas treated 

with DMSO (control) or AZD3965 (MCT1 inhibitor) for 7 days. j, Flow cytometrically 

isolated MCT1high or MCT1−/low melanoma cells were subcutaneously transplanted into 

NSG mice, using 10 or 100 cells per injection. All injections formed tumors. Rate of growth 

of the tumors initiated with 10-cell injections. All data represent mean ± s.d.. Statistical 

significance was assessed using t-tests (a), repeated measures two-way ANOVAs (b), t-test 
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(e: 180 min), log2 two-way ANOVAs (f and h), log2 t-tests (g: M405 and UT10), Mann-

Whitney test (g: M481 and i: M481), Welch’s t-tests (i: M405 and UT10) or using nparLD 

test (d and j).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Efficiently metastasizing melanomas exhibit enhanced lactate uptake in vivo.
Isotope tracing in primary subcutaneous tumors xenografted in NSG mice with efficiently 

(M405, M481, M487, and UT10) and inefficiently (M715, UM17, UM22, UM43, UM47, 

M498, M528, M597 and M610) metastasizing melanomas. The number of mice/tumors per 

treatment is indicated in each panel. a-b, Glucose m+6 as a fraction of the glucose pool (a) 

and enrichment of other metabolites normalized to m+6 glucose (b) in subcutaneous tumors 

after [U-13C]glucose infusion. c, 3-phosphoglycerate (3PG) m+3 fraction in subcutaneous 

tumors and lactate m+3 fraction in the plasma of mice infused with [U-13C]glucose (20 

experiments). d, Tumor lactate concentration (3 experiments). e, Enrichment of metabolites 

normalized to 3PG m+3 in subcutaneous tumors after [U-13C]lactate infusion (23 

experiments). f Isotope labelling after [2-2H]lactate infusion (3 experiments). Data represent 

mean ± s.d. Statistical significance was assessed using t-tests (a and f), paired t-tests (c), 

log2 t-tests to compare efficient versus inefficient melanomas or Wilcoxon tests to compare 

metabolites (b and e). Multiple comparisons were adjusted using the Holm-Sidak’s method 

(b, c, e, and f).
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Figure 2. MCT1 inhibition selectively impairs metastasis in human and mouse melanomas.
a-c, Western blot analysis of MCT1 (a), MCT2 (b), and MCT4 (c) in 3 efficiently (M405, 

M481, and UT10) and 4 inefficiently (M498, M528, M597 and M610) metastasizing 

xenografted melanomas. Positive and negative controls for MCT1 and MCT4 were HCC15 

cells and MCT1 or MCT4 deficient HCC15 cells. MCF7 cells were a positive control for 

MCT2. The data are representative of 4 (MCT1), 2 (MCT2), and 2 (MCT4) experiments. d-
e, Flow cytometric analysis of MCT1 surface expression in inefficiently (d) and efficiently 

(e) metastasizing melanomas. f, Enrichment of lactate m+3 normalized to 3PG m+3 in 

xenografted tumors after treatment with the MCT1 inhibitor, AZD3965, or DMSO control 

and [U-13C]lactate infusion (2 experiments per melanoma). The number of mice per 

treatment is indicated in each panel. g-i, Growth of subcutaneous tumors (g) in mice treated 

with AZD3965 (AZD) or DMSO control as well as the frequency of circulating melanoma 

cells in the blood (h) and metastatic disease burden based on bioluminescence imaging (i). 
Data in h and i reflect 1 (UT10) or 2 experiments per melanoma, but only one representative 

experiment per melanoma is shown in g. j-k, Growth of subcutaneous tumors (j) and 

metastatic disease burden at endpoint by bioluminescence imaging (k) in mice transplanted 

with YUMM1.7, YUMM3.3, or YUMM5.2 mouse melanomas and treated with AZD3965 

(AZD) or DMSO control (two experiments per melanoma). Data represent mean ± s.d. 
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Statistical significance was assessed using t-tests (f), nparLD (g), mixed effects analysis (j) 
or Mann-Whitney tests (h-i and k).
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Figure 3. MCT1 inhibition causes oxidative stress in melanoma cells.
a-c, Representative flow cytometry histograms of ROS levels (a) and fold change in mean 

fluorescence intensity (b, c) in melanoma cells from mice treated with AZD3965 (AZD, 

blue) or DMSO control (black) (two experiments per melanoma). The number of tumors/

mice analyzed per treatment is indicated in each panel. d–f, Growth of subcutaneous tumors 

(d) in xenografted mice treated with DMSO, AZD3965, N-acetyl-cysteine (NAC), or 

AZD3965+NAC as well as the frequency of circulating melanoma cells in the blood (e) and 

metastatic disease burden based on bioluminescence imaging at endpoint (f). Data in e and f 
reflect 3 experiments per melanoma, but only one representative experiment per melanoma 

is shown in d. Data represent mean ± s.d. Statistical significance was assessed using log2 t-

tests (b), Mann-Whitney tests (c), , nparLD followed by Benjamini-Hochberg’s multiple 

comparisons adjustment (d), and log2 one-way ANOVAs with Holm-Sidak’s multiple 

comparisons adjustment (e-f).
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Figure 4. MCT1 inhibition reduces flux through the oxidative branch of the pentose phosphate 
pathway relative to glycolysis.
a, Glucose m+2 as a fraction of total glucose in xenografted tumors after [1,2-13C]glucose 

infusion (6 experiments). The number of tumors/mice per treatment is indicated in each 

panel. b, Lactate m+1/lactate m+2 ratio in subcutaneous tumors from the same mice (two 

experiments per melanoma). c,d, Intracellular pH (c) and NAD+/NADH ratio (d) in 

dissociated melanoma cells from subcutaneous tumors (one experiment per melanoma). e-j, 
Fractional enrichment in upper (e, f) and lower (g, h) glycolytic as well as pentose 

phosphate pathway (i, j) metabolites 30, 60, or 180 minutes after [U-13C]glucose infusion (2 

experiments). Data represent mean ± s.d. Statistical significance was assessed using t-tests 

(a), nparLD (c), t-tests (b-d) or repeated measures two-way ANOVAs (e-j).
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Figure 5. Heterogeneous MCT1 expression among melanoma cells from the same tumor.
a-d, Flow cytometric analysis of anti-MCT1 staining in melanoma cells from subcutaneous 

tumors (a,c) or circulating melanoma cells (b,d) from the same mice xenografted with M405 

(a-b) or M481 (c-d) (Extended Data Fig. 9e and 9f show the gating strategies to identify 

human melanoma cells; the data are representative of 3 experiments). e, Flow cytometrically 

isolated MCT1high or MCT1−/low melanoma cells were intravenously transplanted into NSG 

mice, using 100 or 1000 cells per injection. The panel shows the percentage of injections 

that formed metastatic tumors (1–2 experiments per melanoma). The number of mice 

analyzed per treatment is indicated in each panel. f, Metastatic disease burden in the visceral 

organs of mice that survived to endpoint after injection with 100 cells (M405 and M481) or 

1000 cells (UT10) based on bioluminescence signal intensity. Data represent mean ± s.d. 

Statistical significance was assessed using multiple linear regression (e) or Mann-Whitney 

tests (f).
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