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High-throughput gene expression profiling has recently emerged as a promising technique that provides insight into cancer
subtype classification and improved prediction of prognoses. Immune/inflammatory-related mRNAs may potentially enrich
genes to allow researchers to better illustrate cancer microenvironments. Oral cavity squamous cell carcinoma (OC-SCC) exhibits
high morbidity and poor prognosis compared to that of other types of head and neck squamous cell carcinoma (HNSCC), and
these differences may be partially due to differences within the tumormicroenvironments. Based on this, we designed an immune-
related signature to improve the prognostic prediction of OC-SCC. A cohort of 314 OC-SCC samples possessing whole genome
expression data that were sourced from -e Cancer Genome Atlas (TCGA) database was included for discovery. -e GSE41613
database was used for validation. A risk score was established using immune/inflammatory signatures acquired from the training
dataset. Principal components analysis, GO analysis, and gene set enrichment analysis were used to explore the bioinformatic
implications. When grouped by the dichotomized risk score based on the signature, this classifier could successfully discriminate
patients with distinct prognoses within the training and validation cohorts (P< 0.05 in both cohorts) and within different
clinicopathological subgroups. Similar somatic mutation patterns were observed between high and low risk score groups, and
different copy number variation patterns were also identified. Further bioinformatic analyses suggested that the lower risk score
group was significantly correlated with immune/inflammatory-related biological processes, while the higher risk score group was
highly associated with cell cycle-related processes. -e analysis indicated that the risk score was a robust predictor of patient
survival, and its functional annotation was well established. -erefore, this bioinformatic-based immune-related signature
suggested that the microenvironment of OC-SCC could distinguish among patients with different underlying biological processes
and clinical outcomes, and the use of this signature may shed light on future OC-SCC classification and therapeutic design.

1. Introduction

Oral cavity squamous cell carcinoma (OC-SCC) is the most
commonmalignancy of the head and neck region (excluding
nonmelanoma skin cancer). -ere has also been a recent
dramatic rise in the incidence of oropharyngeal squamous
cell carcinoma (OP-SCC) [1]. Anatomically, the mouth and
oropharynx are separate areas that are adjacent to each other

but do not overlap. -ere are differences in the associated
mortality, etiology, risk factors, and even the biomarkers of
squamous cell carcinomas located within these two major
sites.

Many risk factors can contribute to OC-SCC. Tobacco is
classified as a group 1 carcinogen for OC-SCC. Currently,
tobacco smokers exhibit a 3.43 fold relative risk for OC-SCC
compared to that of nonsmokers [2], and they possess a fully
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adjusted HR of 1.7 [3]. Alcohol has been established as an
independent risk factor, and studies of nonsmokers have
demonstrated a strong correlation and dose-response re-
lationship between alcohol consumption and OC-SCC [4].
Additionally, the combined effect of smoking and alcohol
consumption was greater if the relationship was multipli-
cative [5]. HPV, as a major etiological factor, contributes
disproportionally to the formation and prognosis of squa-
mous cell carcinoma formation at different sites within the
head and neck region [6]. Specifically, the high-risk genotype
HPV-16 accounts for the vast majority (about 90% to 95%)
of HPV-positive OP-SCC, while the HPV type is more
variable in OC-SCC [7, 8]. Additionally, a far more favorable
outcome exists for HPV positive compared to that for HPV-
negative OP-SCC [9].

-e above three major risk factors may contribute to
carcinogenesis through different biological processes or
pathways [10–12]; however, the dysregulation of immune or
inflammatory responses is mutually shared among the
carcinogenic mechanisms. Moderate alcohol consumption
or alcohol abuse can suppress multiple arms of the immune
response [13, 14]. Cigarette smoke exposure significantly
affects the immune system, impairing the ability of the host
to produce appropriate immune and inflammatory re-
sponses, ultimately leading to smoking-related pathologies
[15]. -ese concepts are consistent with the notion that head
and neck cancer is an intrinsically immune-suppressing
disease [16]. For HPV-positive SCC, more intense PD-L1+,
CD4+, and CD8+ T-cell infiltration correlates with a better
outcome [17]. Increasing evidence supports the idea that
evoked immune or inflammatory responses may elicit an-
titumor effects concerning OC-SCC development [18, 19].

Our current study aimed to develop a key gene signature
that is representative of immune and inflammatory re-
sponses that could be correlated with patient prognosis, and
we incorporated a bioinformatics-based approach associated
with clinical covariates to achieve our aim. Following this
principle, we performed a combined analysis to identify a
robust gene signature, and we established a risk score sys-
tem. Further bioinformatic analyses revealed that the risk
score exhibited excellent prognostic value for stratifying
patients irrespective of mutation or copy number variation
(CNV) patterns, and this risk score was highly associated
with cell-cycle processes.

2. Materials and Methods

2.1. Datasets. Whole genome mRNA expression RNA-seq
(20101 genes) data, somatic mutation data, copy number
variation data, and all corresponding clinical information
from the TCGA-HNSC dataset [20] (http://cancergenome.
nih.gov/) were downloaded for use as the training cohort.
-e following dataset was obtained for validation: GSE41613
(23520 genes) [21] (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc�GSE41613). -e training dataset com-
prised 314 OC-SCC patients while the validation dataset
comprised 97 OC-SCC patients. -e patient characteristics
are summarised in Table S1. Two gene sets (immune re-
sponse, M14329 and inflammatory response, M13657) [22]

were extracted from the Molecular Signatures Database v6.1
(http://http://software.broadinstitute.org/gsea/msigdb/
index.jsp) and were combined to integrate the immune/
inflammatory-related gene set.

2.2. Statistical Analysis. Overall survival time (OS) was
defined as the interval from the date of diagnosis until
death or until the last follow-up. -e prognostic value for
patients possessing high or low expression of a certain gene
or score (higher or lower than the median value) was
calculated using the Kaplan–Meier method with the two-
sided log-rank test by package “survival” of R. Univariate
and multivariate COX regression analysis was also per-
formed using package “survival” of R. Chi-squared test and
Fisher’s exact test were used to compare the frequencies
between groups. A two-tailed Student’s t-test was per-
formed to compare two groups of numerical values.
Analysis of variance (ANOVA) was used to analyze the
differences among group means. -e median absolute
deviation (MAD) calculated in R. Pearson correlation
analysis was used to evaluate the association between two
variables and was calculated by R function “cor.test.” -e
statistical analysis was performed using the software of R
version 3.4 for Windows. -e statistical significance was
established at the level of P< 0.05.

2.3. Bioinformatic Analysis. -e R “Limma” package, a
package that can perform the differential expression analyses
of RNA sequencing (RNA-seq) data [23], was used to
identify differentially expressed genes (DEGs) based on a
threshold of false discovery rate (FDR) of less than 0.05. -e
packages “gaia,” “maftool,” and “circlize” were used to
generate mutation and CNV plots [24]. -e R “TCGAbio-
links” package was employed to investigate relevant bi-
ological implications [25]. -e biological phenotype was
further verified by gene set enrichment analysis (GSEA) [22].
Normalized enrichment score (NES) and false discovery rate
were used to determine the statistical significance. -e R
“ESTIMATE” package that was fitted for our data was used
to calculate ImmuneScore, StromalScore, and tumor purity
[26].

3. Results

3.1. Different Immune/Inflammatory Phenotypes of OC-SCC
Tumor. -e gene expression and clinical data for 314 pa-
tients were obtained from the TCGA database (Table S1).
Previous research defined four RNA subtypes of the TCGA
cohort, including atypical, basal, classical, and mesenchymal
[20]. -e combined gene set that was representative of
immune/inflammatory response (1224 genes) was used to
illustrate the immune microenvironment of the OC-SCC
tumor. Principal components analysis based on the 1224
genes revealed a different distribution pattern regarding OC-
SCC tumor subtypes. A mutually exclusive pattern was
observed within the mesenchymal, basal, and classical
subtypes, while the atypical subtype lacked a clear distri-
bution pattern (Figure 1(a)). As clinical differences between
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the four tumor subtypes were previously established, we
sought to construct a gene signature to further explore the
immune phenotype of OC-SCC tumors.

3.2. Identification of an Immune/Inflammatory Signature for
Prognosis Prediction in OC-SCC. Taking into account the
differential distribution of immune/inflammatory genes
among OC-SCC subtypes, we sought to identify the gene or
group of genes that were of significant prognostic value. As
the PCA exhibited a heterogeneous expression pattern
among OC-SCC patients, genes that were homogeneously

expressed (MAD≤ 1) were excluded from further analysis.
Univariate Cox regression analysis was used to explore the
prognostic value of the resulting genes. Eighteen genes
(CD27, CD79B, CMA1, CCR4, CCR7, CNR2, CTLA4,
CTSG, GZMM, IL16, MASP1, SAA1, CCL11, TNFAIP3,
BATF, IL19, PGLYRP4, and TREML1) were identified to be
associated with prognosis in OC-SCC patients (Figures 1(b)
and 2(a)).

Next, the risk score method was employed based on
gene expression levels (coefficient of each gene was the
beta value in the univariate Cox regression model of each
gene; Table S2), and the associations between TCGA
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Figure 1: Different immune/inflammatory patterns of OC-SCC subtypes and the workflow of the signature establishment. (a) Principal
components analysis of immune/inflammatory genes among four subtypes of OC-SCC. (b) Workflow of the signature establishment.
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results and two functional gene sets were explored. A
strong correlation was identified between the risk score
and the ssGSEA score in the immune/inflammatory re-
sponse gene set (R � − 0.693, P< 0.0001; Figure S1A). -e
resulting 18 genes were also mutually correlated, and this
supported the integrity of the signature genes (Figure S1B
and S1C). Patients were divided into high-risk and low-
risk groups based on the median cutoff value of the risk
score. -is classifier could stratify patients according to
distinct prognosis within the training cohort (median
OS � 804 vs 2166 days; P � 1.13e − 05; Figure 2(b)) and
within the validation cohort (P � 0.0162; Figure 2(c)).

3.3.Distribution andPrognostic Value of the Risk Score among
Subgroups of OC-SCC. -e patients within the training
cohort were further stratified based on several clinico-
pathological factors, including age, gender, stage, RNA
subtype, and methylation subtype. We found that in patients
classified at a higher stage, the classical and hypomethylated
subtypes exhibited a higher risk score (Figure S2A). Based on
the median cutoff value of risk score in the training cohort,
the patients were divided into either a high- or low-risk

group within each subgroup to query the prognostic value. A
nearly universal result was achieved among most of the
subgroups (Figure S2(B–J)), demonstrating that an elevated
risk score was strongly correlated with poor prognosis and
vice versa. Similar results were observed for the validation
GSE41613 cohort (Figure S3). Univariate and multivariate
Cox regression analyses also indicated that the risk score
provided an independent prognostic factor after adjusting
for other clinical covariates (Table 1). Of note, tobacco use,
alcohol consumption, and HPV infection, when assessed as
initiating risk factors for OC-SCC, did not provide signif-
icant HR value in either univariate or multivariate Cox
analyses. We further explored the relationship between
tobacco use, alcohol consumption, or HPV infection and the
risk score, and we found that there were no significant
differences.

3.4. Mutation and CNV Patterns of Different Subgroups of the
Risk Score. To further investigate the impact of the risk score
at the DNA level, TCGA cases possessing available somatic
mutation and copy number variation (CNV) information
were analyzed. Based on the increasing risk score, cases were,
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Figure 2: Overview of the eighteen-gene-based risk score and its prognostic value across different cohorts. (a) Heatmap depicting the gene
expression values of the eighteen genes comprising the signature of the training cohort. Columns representing each sample that were sorted
by increasing value of the risk score. Rows representing the expression value of each gene. (b) Kaplan–Meier survival analyses based on the
median cutoff of the risk score within the training dataset. (c) Kaplan–Meier survival analyses based on the median cutoff of the risk scores
within the validation dataset.
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respectively, divided into four subgroups, and the most
representative subgroups (lower quantile risk score group,
n� 78 and higher quantile risk score group, n� 78) were
selected.

An analysis of the 20 most frequently mutated genes
within either subgroup was performed (Figure 3). Well-
known mutated genes such as TP53, a somatic mutation
detected in 60–80% of OSCC [27], were a genome guardian
and played a pivotal role in regulating the cell cycle, cellular
differentiation, DNA repair, and apoptosis and showed no
significant mutation difference.-ere was also no significant
difference regarding FAT1 mutation, which played a role in
regulating the migration and invasion of OSCC cells through
the localization of β-catenin [28]. Only frequent mutations
in NSD1 (P � 0.034) were significantly enriched in cases
with higher risk score. Subsequently, CNV data were in-
vestigated, and our results revealed similar overall variant
counts between OC-SCC at both lower and higher risk
scores (mean 108.2 variants vs 111.6 variants; P � 0.8713).
-ere were some differences in the gene-level CNV land-
scape; however, the frequently deleted genomic regions were
located at the 9p21.3 region encompassing the CDKN2A/
CDKN2B (mean deletion − 0.002 vs − 0.138, P � 0.015). -e
7p11.2 region encompassing EGFR (mean amplification
0.083 vs 0.212, P � 0.016) was frequently amplified for cases
with higher risk scores (Figure 3).

3.5. High Risk Score OC-SCC Exhibited Cell-Cycle-Related
Gene Function While Low Risk Score Exhibited Immune/In-
flammatory Responses. To further explore the prognostic
value, similar patterns of mutation, and the CNV of the risk
score, GO analysis was performed to assess the functional
aspects. Pearson correlation score (R) was calculated for each
gene within the training cohort. GO results based on 1355
negatively correlated (R< − 0.4) genes suggested that these
genes were highly enriched in immune/inflammatory re-
sponses (Figure 4(a)). Additionally, GO results based on
1632 positively correlated (R> 0.2) genes suggested that
these genes were highly enriched in cell-cycle-related pro-
cesses (Figure 4(b)).We next performed gene set enrichment
analysis for further validation. GSEA revealed that a lower
risk score was associated with processes or pathways closely
related to immune/inflammatory responses (Figure 4(c)),

and a higher risk score was highly correlated with cell-cycle-
related processes (Figure 4(d)).

3.6. Association between the Risk Score and Tumor Purity.
It is established that OC-SCC tissues contain abundant
nontumor cells within their microenvironment.-us, tumor
purity could reflect the tumor and nontumor compartments
of the OC-SCC tissue. As analyzed above, the risk score was
closely associated with immune/inflammatory responses.
Based on this, we further explored the correlation between
tumor purity and the risk score. -e risk score exhibited a
high negative correlation with ImmuneScore and Stromal-
Score and a positive correlation with tumor purity (Fig-
ure 5). -e results obtained using the validation cohort
GSE41613 were in accordance with those obtained using the
training cohort (Figure S4). -ese results further validated
the idea that the risk score provided a robust predictor of
OC-SCC immune/inflammatory responses; however, the
dichotomized median value of either of the purity-related
scores was unable to achieve a significant prognostic value.

4. Discussion

As the most common malignancy of the head and neck, OS-
SCC is diagnosed using histopathological criteria and is
staged using the TNM system [1]. Several studies have
provided high-resolution images of the OC-SCC molecular
landscape, and these images revealed significant changes that
may contribute to the pathogenesis and biology of this
disease [20]. Risk factors such as tobacco use, alcohol
consumption, and HPV infection have been proposed as
initiating risk factors for OC-SCC [29–31]; however, there is
little consensus on how immune/inflammatory responses
could affect OS-SCC subtypes. -e development of mean-
ingful signatures to determine the immune status of patients
provides an attractive therapeutic approach to this disease,
as these signatures not only promise to be powerful prog-
nostic biomarkers, but if properly applied, they also stratify
patients to increase the likelihood of positive outcomes in
response to immunotherapy. In our study, we demonstrated
that the four subtypes of OC-SCC represent distinct im-
mune/inflammatory phenotypes, and based on this, we
established a gene signature that could stratify patients to
provide different prognoses.

For our signature, we investigated the DNA level sce-
nario and discovered similar mutational and CNV patterns
that were present in either high or low risk score groups.-is
result of the mutated genes suggested that it was the in-
flammatory responses and microenvironment that mainly
contribute to the different prognosis rather than well-known
tumorigenesis progresses. Only frequent mutations in NSD1
were significantly enriched in cases with higher risk scores. It
was reported that NSD1 was more mutated in laryngeal and
pharyngeal squamous cell carcinoma (L/P-SCC) than in
OC-SCC [32], and given the role of NSD1 as a chromatin
modifier, these mutations could contribute to cancer for-
mation through a combination of rare germline variants and
somatic loss-of-heterozygosity (LOH) [33].

Table 1: COX regression analysis of the risk score and other
characteristics in the TCGA OC-SCC cohort.

Variables

Univariate
Cox

regression

Multivariate
Cox

regression
HR P HR P

Risk score (high vs low) 2.09 1.7e − 05 1.99 0.0002
Age (>60 vs ≤60) 1.15 0.3963 1.31 0.1580
Gender (female vs male) 1.08 0.6698 1.10 0.6357
Tobacco history (yes vs no) 1.29 0.2099 1.27 0.2740
Alcohol history (yes vs no) 1.07 0.6958 1.01 0.9507
HPV status (positive vs negative) 0.88 0.7502 0.86 0.7138
Stage (III/IV vs I/II) 2.23 0.0006 2.10 0.0023
HR: hazard ratio.
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Aneuploidy, also known as somatic copy number al-
terations, is widespread in human cancers and has been
proposed to drive tumorigenesis. Aneuploidy was pre-
viously demonstrated to correlate with tumor cell pro-
liferation and reduced immune processes [33]. In our
study, overall copy number variant counts in high or low
risk score cases were not significantly different. -is
suggested that our signature could infer immune/in-
flammatory responses irrespective of aneuploidy differ-
ence; however, some key genes did exhibit different
variation patterns. -e deletion of CDKN2A, a tumor
suppressor gene that functions in G1 cell cycle control, was
associated with poor prognosis and low survival rate in
OC-SCC [34], and EGFR amplification was shown to be
associated with advanced clinical stage in OC-SCC pa-
tients [35]. -e result of the aneuploidy difference re-
garding CDKN2A and EGFR was in accordance with the
worse prognosis higher risk score represented.

We performed GO and GSEA analyses to further
validate the functional annotation of our signature. -e

results of these analyses indicated that a lower risk score
was correlated with immune/inflammatory responses,
and a higher risk score was associated with cell-cycle-
related processes. -ese results could partially explain
that patients possessing a higher risk score demonstrated
a worse prognosis, and patients with more active im-
mune/inflammatory responses exhibited a better out-
come. -e high correlation between the risk score and the
tumor purity also suggested the presence of more immune
cell infiltration in lower risk score cases. We also per-
formed ssGSEA analysis to evaluate the relationship
between our risk score and the tumor purity as defined by
expression data. ImmuneScore, StromalScore, ESTI-
MATE score, and tumor purity were all significantly
correlated with the risk score, and of these scores, the
ImmuneScore exhibited the highest correlation. Of note,
different from other cancer types such as glioma [36] and
colon cancer [37], the purity-related scores or purity
alone were unable to distinguish among different prog-
nostic patient groups [38].
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Figure 3: Different mutation and copy number variation patterns of the risk score. (a, b) An analysis of the 20 most mutated genes of either
subgroup ((a), lower risk score; (b), higher risk score) was performed. Columns are sorted by samples with increasing risk score. (a)-e sum
of mutations in each of the sample categories is indicated by the legend; (b) the sum of the mutations in each gene is indicated by the legend.
(c, d) -e overall recurrent copy number variation (CNV) profile in order of increasing risk score ((c), lower risk score; (d), higher risk
score).
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Figure 4: Continued.
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Figure 4: Biological annotation of the risk score. (a) GO results based on 1355 negatively correlated (R< − 0.4) genes. (b) GO results based
on 1632 positively correlated (R> 0.2) genes. (c) GSEA results of the lower risk score. (d) GSEA results of the higher risk score.
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Figure 5: Continued.
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5. Conclusion

Taken together, we identified and validated an eighteen-
gene-based immune/inflammatory signature that
exhibited independent prognostic significance for pa-
tients with OC-SCC and reflected the overall intensity of
immune/inflammatory responses within the tumor mi-
croenvironment. Our study offers new insights regarding
the OC-SCC immune microenvironment and immune-
related therapy for this disease. Evaluating this signature
may help to elucidate the complex role of tumor im-
mune/inflammatory responses in this disease and will
provide new insight into clinical management and drug
design.
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