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TUTORIAL

Quantitative Systems Pharmacology and Physiologically-
Based Pharmacokinetic Modeling With mrgsolve: A 
Hands-On Tutorial

Ahmed Elmokadem1, Matthew M. Riggs1 and Kyle T. Baron1,*

mrgsolve is an open-source R package available on the Comprehensive R Archive Network. It combines R and C++ coding for 
simulation from hierarchical, ordinary differential equation–based models. Its efficient simulation engine and integration into 
a parallelizable, R-based workflow makes mrgsolve a convenient tool both for simple and complex models and thus is ideal 
for physiologically-based pharmacokinetic (PBPK) and quantitative systems pharmacology (QSP) model. This tutorial will first 
introduce the basics of the mrgsolve simulation workflow, including model specification, the introduction of interventions 
(dosing events) into the simulation, and simulated results postprocessing. An applied simulation example is then presented 
using a PBPK model for voriconazole, including a model validation step against adult and pediatric data sets. A final simulation 
example is then presented using a previously published QSP model for mitogen-activated protein kinase signaling in colorectal 
cancer, illustrating population simulation of different combination therapies.

MRGSOLVE STRUCTURE

mrgsolve is distributed as an R package that is freely avail-
able on the Comprehensive R Archive Network (CRAN; 
https​://cran.r-proje​ct.org/web/packa​ges/mrgso​lve/index.
html). The mrgsolve package uses Livermore Solver for 
Ordinary Differential Equations, an ordinary differential 
equation (ODE) solver from the ODEPACK1 library, which is 
interfaced with R through the Rcpp2 package. C++ classes 
were developed to abstract solver setup, data sets and re-
cords, and pharmacokinetic (PK) dosing events. S4 classes 
and methods were created to represent the model in R as 
an updatable object. The modeler creates a model spec-
ification file consisting of R and C++ code that is parsed, 
compiled, and dynamically loaded into the R session. Input 
data are passed in, and simulated data are returned as R 
objects, so disk access is never required during the sim-
ulation cycle after compiling. The resulting computational 
efficiency facilitates model exploration and application both 
during model development and decision-making phases of 
a drug development program. mrgsolve features include the 
following:

•	 NM-TRAN-like input data sets3

•	 Bolus, infusion, compartment on/off, and reset 
functionality

•	 Bioavailability, absorption lag, steady-state, interdose in-
terval, additional doses, model event times

•	 Multivariate normal random effects simulated using 
RcppArmadillo4

•	 Compatible with parameter estimation and design pack-
ages in R (nlme,5 saemix,6 PopED,7 PFIM8)

•	 Integration with data summary (dplyr9) and plotting  
(ggplot,9 lattice10) packages

•	 Parallelization with existing R infrastructure (mclapply11) 
or Sun Grid Engine (qapply12)

•	 Compatible with output from many different model esti-
mation platforms

•	 Easily integrated with Shiny13 to create interactive model- 
visualization applications

In addition to its release on CRAN, active development 
of mrgsolve is documented on GitHub (https​://github.com/
metru​mrese​archg​roup/mrgso​lve), with input and contribu-
tions encouraged and welcomed from the pharmacometrics 
modeling and simulation community.

MODELING AND SIMULATION WORKFLOW

The general modeling and simulation workflow includes an 
integration of mrgsolve with other packages available in R 
to script, in a traceable and reproducible manner, custom-
ized data handling, model development and simulation, 
summarization, and visualization (Figure  1). The model 
code and script to fully implement and reproduce a simple 
example is available in the associated GitHub repository 
(https​://github.com/metru​mrese​archg​roup/cptpsp-tutor​ial-
2019). The two main pieces of the mrgsolve component of 
this workflow, model specification and simulation, are dis-
cussed in more detail in the next sections.

Model specification
The mrgsolve model specification file contains a descrip-
tion of the model components in different blocks. It takes 
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a mixture of C++ and R syntax. The primary components 
include blocks for: model parameters ([PARAM]), state 
variables ([INIT], [CMT]), the ODEs ([ODE]), and outputs 
([TABLE], [CAPTURE]). Each of these blocks is described 
in more detail and summarized (Table  1) in the next 
sections.

Parameters. The parameter block [PARAM] is used to list 
an updatable set of name–value pairs. Although the name 
“parameter” may have a certain connotation in the modeling 
world, in mrgsolve a “parameter” could be any category of 
numeric data: covariates (e.g., WT, AGE, SEX), flags, and 
other numeric data that we commonly call “parameter” (e.g., 
CL or VC).

Although there may be multiple [PARAM]blocks in a 
model, once compiled they become condensed to a single 
parameter list stored in the model object. The names and 
values of all parameters must be declared for the model to 
be compiled. For example: 

[PARAM] CL = 1, VC = 20, KA = 1.2

KM = 25, VMAX = 400, FLAG = 1, WT = 80

SEX = 0, N = sqrt(25)

Notably, although a default value for each parameter must 
be declared for compilation at model compile time, the value 
of any parameter may be updated without recompiling the 

model using either the param()function during simulation 
execution or through an input data set.

State variables. Similar to the parameter list, the model state 
variables or compartments list is a series of name–value pairs 
that define the number, names, and initial conditions of each 
state variable (compartment) in the model. Compartments are 
declared in one of two code blocks: [INIT] or [CMT]. Nominal 
initial values must be supplied for each compartment. The 
main difference between [INIT] and [CMT] is that [CMT] 
assumes a default initial value of 0 for each compartment; 
thus only compartment names are entered. When using 
[INIT], both names and values must be explicitly stated for 
each compartment. The initial values for each compartment 
can be queried with the init() function. For example: 

[CMT] GUT CENT RESP
or

[INIT] GUT = 0, CENT = 0, RESP = 25

ODEs. The [ODE] block is where the ordinary differential 
equations are defined. For each compartment, the value 
of the differential equation needs to be assigned to dxdt_
CMT, where CMT is the name of the compartment. The 
dxdt_ equation may be a function of model parameters (via 
[PARAM]), the current value of any compartment (CMT), or 
any user-derived variable. For example: 

Figure 1  mrgsolve modeling and simulation workflow.
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[CMT] GUT CENT

[ODE]

dxdt _ GUT = -KA*GUT;

dxdt _ CENT = KA*GUT - KE*CENT;

Because the [ODE] block is written in C++, a semicolon 
is required at the end of each statement.

It is important to make sure that there is a dxdt_ ex-
pression defined for every compartment listed in [CMT] or 
[INIT], even if it is dxdt_CMT = 0. The [ODE] function 
is called repeatedly (at each solver step) during a simula-
tion run. For computational efficiency it is recommended 
that any calculations that do not rely on recalculation 
at each step be included outside of [ODE], e.g., in the 
[MAIN] block where derived quantities also can be calcu-
lated (Table 1). Notably, any calculation that depends on 
an amount in a compartment and determines the dxdt_ 
expression in a model must be written in [ODE]. For 
example: 

[CMT] CENT RESP

[PARAM] VC = 100, KE = 0.2, KOUT = 2, KIN = 100

[ODE]

double CP = CENT/VC;

double INH = CP/(IMAX+CP);

dxdt _ CENT = -KE*CENT;

dxdt _ RESP = KIN*(1 - INH) - RESP*KOUT;

Note that in the [ODE] block new C++ variables must be 
declared as double with the semicolon at the end of each line.

Outputs. When a simulation is run in mrgsolve, the time 
progression of the state variables (compartments) at each 
specified time point is returned by default. Any other 
variable of interest can be returned using the [CAPTURE] 
block that will add additional columns to the default output 
capturing these variables. Often users need to interact with 
parameters, compartment values, and other user-defined 
variables after the system advances to the next time to 
generate new variables. The block [TABLE] can be used 
for this purpose and the newly generated variables can be 
subsequently captured in [CAPTURE]. Example: 

[TABLE] double CP = CENT/VC;

[CAPTURE] CP

The [TABLE] block also uses C++ syntax, so new vari-
ables must be declared (double) and statements must end 
with semicolons. For convenience, the user can simply use 
the capture type declaration in [TABLE], and this vari-
able would automatically be integrated in the output without 
the need for a [CAPTURE] block. Example: 

[TABLE] capture CP = CENT/VC;

Following is a complete example of a model specifica-
tion file code for a one-compartment PK model with oral 
absorption: 

Table 1  mrgsolve code blocks description

Code block Syntax Comments

[PROB] Text Used to make notes about the model with no restrictions on the text entered.

[PARAM] R Used to define the parameter list in the model.

[CMT] Text Used to declare the names of all compartments in the model. Initial values are assumed to be 0.

[INIT] Text Used to declare the names and initial values of all compartments in the model.

[ODE] C++ Used to define model differential equations.

[TABLE] C++ Used to interact with parameter, compartment values, and other user-defined variables after the system advances to the 
next time.

[MAIN] C++ This code block has two main purposes:
•	 Derive new algebraic relationships between parameters, random, effects and other derived variables
•	 Set the initial conditions for model compartments
For users who are familiar with NONMEM, [MAIN] is similar to $PK.
The MAIN function gets called just prior to advancing the system from the current time to the next time for each record in 

the data set. [MAIN] also gets called several times before starting the problem and just prior to simulating each indi-
vidual in the population. Finally, it gets called every time the model initial conditions are queried with init().

[GLOBAL] C++ This block is for writing C++ code that is outside of [MAIN], [ODE] and [TABLE]. There is no artificial limit on what sort of 
C++ code can go in [GLOBAL]; however, there are two more common uses:

•	 Write #define preprocessor statements
•	 Define global variables, usually variables other than double, bool or int 

[PREAMBLE] C++ This block is called once in two different settings:
•	 Immediately prior to starting the simulation run
•	 Immediately prior to calling [MAIN] when calculating initial conditions
[PREAMBLE] is a function that allows you to set up your C++ environment. It is only called one time during the simulation 

run (right at the start). The code in this block is typically used to configure or initialize C++ variables or data structures 
that were declared in [GLOBAL].

[OMEGA] Text Used to enter variance/covariance matrices for subject-level random effects drawn from multivariate normal distribution. 
All random effects are assumed to have a mean of 0.

[SIGMA] Text Use this block to enter variance/covariance matrices for within-subject random effects drawn from multivariate normal 
distribution. All random effects are assumed to have a mean of 0.
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[PARAM] CL=0.02, VC=0.5, KA=0.9

[CMT] GUT CENT

[ODE]

dxdt _ GUT = -KA*GUT;

dxdt _ CENT = KA*GUT - (CL/VC)*CENT;

[TABLE] capture CP = CENT/VC;

This complete model example is saved as model/pk1.
cpp in the associated GitHub repository (https​://github.com/
metru​mrese​archg​roup/cptpsp-tutor​ial-2019). Additional ref-
erences include a summary of the model blocks (Table 1) 
and the mrgsolve user guide: https​://mrgso​lve.github.io/
user_guide/​index.html.

Creating a model object
Prior to simulation, a model object is created to contain the 
mrgsolve model using the mread()function. This function will 
read, parse, compile, and load the model to create a model 
object to be used for running simulations. As an example, 
the following code snippet will read in the one-compartment 
model pk1 saved in the relative path ../model: 

library(mrgsolve)

mod <- mread("pk1", "../model")

To get information about the model, type mod in the R 
console: 

To review the model parameter values, the user can use 
the param() function as: 

Note that the param() function can be used to explore 
model parameter values as above or to update those values 
with new values as mentioned previously. For example, if 
the user wants to update the CL value, the command to be 
used is: param(mod, CL = 2).

Setting an intervention
Setting an intervention, similar to a dosing event, can be 
done by creating an event object using the ev() function: 

evnt <- ev(amt = 100, ii = 24, addl = 9)

This command creates the evnt object that defines a dose 
(amt) of 100 to be taken every day (ii; interdose interval) for 
10 days (addl; nine additional doses). Intentional similari-
ties between mrgsolve and NONMEM (ICON Development 
Solutions, Gaithersburg, MD) annotations were purposeful 
and allow, for example, the use of NM-TRAN formatted data 
as input into the simulations. By default, the dose will go 
into compartment 1, which is the first compartment to be 
declared in the [INIT] or [CMT] blocks. In this example, 
that is the gut compartment GUT. To specify a different com-
partment, the user can use the ev() function cmt argument 
with the specific compartment number or name.

Simulating
The created model and event objects are passed to the 
mrgsim()function to run the simulation. The code below 
takes advantage of the magrittr14 syntax %>% (available 
as part of the tidyverse suite9; installation and loading of 
the required packages is also documented and scripted 
through code; see mrgsolveIntro _ script.R in the 
GitHub repository) to pass the model mod and the event 
evnt objects into the mrgsim() function for simulation:

out <- mod %>% ev(evnt) %>% mrgsim(end = 
480, delta = 0.1)

The simulation output (a data frame of simulated values) 
is saved to the object out. Two elements of the simulation 
time grid—end and delta—are illustrated in the example 
code. These define the output end time and the interval be-
tween output time points, respectively. Other elements are 
start that defines the start time and add that defines any 
arbitrary vector of additional times to simulate. For an exam-
ple of the simulation output, head(out)returns: 

Note that the output captures the values for the two 
model compartments GUT and CENT as well as the cap-
tured plasma concentration CP. The same out object can 
be used to plot simulation results (Figure 1) with the func-
tion plot(out).

---- mrgsolve model object (unix) ----
project: /model
source:        pk1.cpp
shared object: pk1-so-19a57a5032b 

time:          start: 0 end: 24 delta: 1
add: <none>
tscale: 1

compartments:  GUT CENT [2]

parameters:    CL VC KA [3]

omega:         0x0 

sigma:         0x0 

solver:        atol: 1e-08 rtol: 1e-08
maxsteps: 
  5000 hmin: 0 ahmax: 0

param(mod)
Model parameters (N=3):
name value . name value
CL   1     | VC   20   
KA   1     | .    .   

ID time       GUT      CENT        CP
1  1  0.0   0.00000  0.000000 0.0000000
2  1  0.0 100.00000  0.000000 0.0000000
3  1  0.1  90.48374  9.492112 0.4746056
4  1  0.2  81.87308 18.033587 0.9016794
5  1  0.3  74.08182 25.715128 1.2857564
6  1  0.4  67.03200 32.618803 1.6309401

https://github.com/metrumresearchgroup/cptpsp-tutorial-2019
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https://mrgsolve.github.io/user_guide/index.html
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Additional details and examples are available on the mrg-
solve GitHub page (https​://github.com/metru​mrese​archg​roup/
mrgsolve) and vignettes (https​://mrgso​lve.github.io/vigne​ttes/).

PBPK APPLICATION: VORICONAZOLE

Advancements in computation capabilities have contributed 
to an increased use of PBPK models in recent years. These 
are typically mamillary models, with individual compartments 
representing different tissues and organs in the body. The PK 
of the drug of interest is described via a series of ODEs with 
the rates controlled by physiological properties of the species 
(e.g., organ volumes and blood flows) and the physicochemi-
cal properties of the drug (e.g., lipophilicity, unbound fraction, 
and pKa). Being based on first principles makes PBPK mod-
els particularly useful in running simulations when there are 
little or no clinical data available as in the case of special pop-
ulations such as neonates, children, and pregnant women.

Implementation of a previously developed voriconazole 
PBPK model15 in mrgsolve is used as a demonstration. The 
PBPK model was developed by Zane and Thakker15 with the 
intent of providing a mechanistic explanation for the differ-
ence in voriconazole PK between adults and children. The 
PBPK model structure (Figure 2) included assumptions that 
the compartments were well stirred and that the transfer of 
drug between these compartments was flow limited. The 
generic flow-limited ODEs were adapted from the previously 
described mass balance differential equations16–18 as follows:

Eqs.  1–5 represent the generic ODEs for noneliminating, 
eliminating, arterial, venous, and lung compartments, respec-
tively, where AT is the amount of drug in tissue T; QT is the blood 
flow to that tissue; CA and CV are the drug concentrations in the 
arterial and venous blood compartments, respectively; KpT is 
the tissue:plasma partition coefficient; BP is the blood:plasma 
concentration ratio; CLT is the tissue clearance; and fu is the 
unbound fraction of drug. The specific organ subscript nota-
tions follow the same notations in Figure 2.

The parameters required to populate the aforementioned 
equations were collected as follows: (i) physiological param-
eters including organ volumes (needed to calculate drug 
concentrations) and organ blood flows for the typical 30-year-
old adult male and 5-year-old male child were collected from 
the International Commission on Radiological Protection 
Publication 89,19 (ii) Kp values for each tissue were computed 
using the Poulin and Theil calculation method with inputs of 
drug physicochemical properties (logP, pKa, fu, and BP15,20) 
and the different tissue fractional composition (water, neutral, 
and phospholipids) to calculate Kp values as follows20: 

where Eqs.  6 and 7 were used to calculate Kp values for 
nonadipose and adipose tissues, respectively. Po:w is the 
n-octanol:buffer partition coefficient of the nonionized spe-
cies and D∗

o:w
 is the olive oil:buffer partition coefficient of both 

the nonionized and ionized species at pH 7.4. fnl, fph and fw 
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Figure 2  Voriconazole physiologically-based pharmacokinetic 
(PBPK) model structure. The full PBPK model structure where 
Q represents the blood flows, CL represents clearance, and the 
subscripts Ad, Bo, Br, Gu, He, Ki, Li, Lu, Mu, Sp, and Re refer to 
adipose, bone, brain, gut, heart, kidneys, liver, lungs, muscle, 
spleen, and rest of the body compartments, respectively. Ha, 
hepatic artery.

https://github.com/metrumresearchgroup/mrgsolve
https://github.com/metrumresearchgroup/mrgsolve
https://mrgsolve.github.io/vignettes/
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are the fractional volumes of neutral lipids, phospholipids, 
and water, respectively. fu is the unbound fraction of drug. The 
subscripts t and p indicate tissue and plasma, respectively.

To calculate the in vivo hepatic clearance (CLLi) for 
voriconazole, in vitro hepatic metabolism data21 were used 
as follows:

where CLLi,mic is the in vitro microsomal clearance, fu,mic is 
the free fraction of the drug in the in vitro microsomal sys-
tem, MPPGL is the mg microsomal proteins per gram liver, 
WLi is liver weight, Vmax,Li,mic and Km,Li,mic are the hepatic 
maximum rate of clearance and Michaelis-Menten constant 
estimated from the in vitro system, respectively.

PBPK model building in mrgsolve
Two files were created to build the PBPK model: a model 
specification file for the ODE-based model and an R script 
file to compile the model and run simulations. In the asso-
ciated GitHub repository (https​://github.com/metru​mrese​
archg​roup/cptpsp-tutor​ial-2019), these files can be found 
under model/voriPBPK.cpp and script/voriPBPK _
script.R, respectively. In the model specification file, the 
main blocks needed to define the model were [PARAM], 
[CMT], [MAIN], [ODE], and [TABLE] blocks; typically 
a user will start with the [CMT] and [ODE] blocks and 
then walk back to populating the necessary components 
as parameters and derived parameters required to run the 
ODEs. Model compartments for the current example were 
declared according to Figure 3: 

The ODEs were declared in the [ODE] block as: 

(8)CLLi=
CLLi,mic

fu,mic

⋅MPPGL ⋅WLi

(9)CLLi,mic=

Vmax,Li,mic

Km,Li,mic

Figure 3  Model validation against observed data. Voriconazole plasma concentration-time profiles for 4 mg/kg intravenous infusion 
dosing for adults (a) and children (b). The plots show the observed data (black dots) and the corresponding predictions from the adult 
and pediatric models (black lines). Error bars represent standard deviation.

[CMT] 
ADIPOSE BONE BRAIN GUT GUTLUMEN HEART
KIDNEY
LIVER LUNG MUSCLE REST SPLEEN ART VEN

[ODE] 
dxdt_GUTLUMEN = -ka*GUTLUMEN;
dxdt_GUT = ka*GUTLUMEN + Qgu*(Carterial -
Cgut/(Kpgu/BP)); 
dxdt_ADIPOSE = Qad*(Carterial - Cadipose/
(Kpad/BP));
dxdt_BRAIN = Qbr*(Carterial - Cbrain/
(Kpbr/BP));
dxdt_HEART = Qhe*(Carterial - Cheart/
(Kphe/BP));
dxdt_KIDNEY = Qki*(Carterial - Ckidney/
(Kpki/BP)) -

CL_Ki*(fup*Ckidney/(Kpki/BP));
dxdt_LIVER = Qgu*(Cgut/(Kpgu/BP)) + 
Qsp*(Cspleen/(Kpsp/BP)) +

Qha*(Carterial) - Qli*(Cliver/(Kpli/BP)) -
CL_Li*(fup*Cliver/(Kpli/BP));  

dxdt_LUNG = Qlu*(Cvenous - Clung/
(Kplu/BP));
dxdt_MUSCLE = Qmu*(Carterial - Cmuscle/
(Kpmu/BP));
dxdt_SPLEEN = Qsp*(Carterial - Cspleen/
(Kpsp/BP));

https://github.com/metrumresearchgroup/cptpsp-tutorial-2019
https://github.com/metrumresearchgroup/cptpsp-tutorial-2019
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Voriconazole concentrations in different tissues were 
also declared in the [ODE] block because they were de-
pendent on the state variables governed by the previous 
ODEs. For example, the muscle drug concentration was 
declared as:

double Cmuscle = MUSCLE/Vmu;

Organ volumes, blood flows, body weight, voriconazole 
absorption rate constant, unbound fraction, in vitro 
hepatic metabolism parameters, calculated Kp, and 
blood:plasma concentration ratio BP were directly de-
clared in the [PARAM] block (see voriPBPK.cpp in the 
GitHub repository).

In the [MAIN] block, derived parameters included arterial 
and venous blood volumes, blood flow to the liver, volume 
and blood flow to the rest of the body compartment, and in 
vivo hepatic clearance as follows: 

Finally, in the [TABLE] block, voriconazole plasma con-
centration can be captured to be part of the output as: 

[TABLE] capture CP = Cvenous/BP;

Model validation
After model building, the following step would be to use 
the associated R script voriPBPK _ script.R to com-
pile the model and run simulations for model validation 
against the observed data. The script starts by cleaning 
up the working space and loading the necessary libraries. 
Then the adult model was compiled using the mread() 
function as follows: 

modA <- mread("../model/voriPBPK")

This command compiles the adult model and saves it as 
modA object. The param() function was used to generate 
the pediatric model. First, a pedPhys object was created 
that was a named list of the curated pediatric physiological 
parameters19 and then a new pediatric model was gener-
ated by updating the adult model as follows: 

modP <- param(modA, pedPhys)

Note that the updated parameter object needs to be a 
named list with the same parameter names as declared in 
the [PARAM] block.

Similarly, the Kp values can be updated to reflect the 
calculated values using the Poulin and Theil method as 
previously described.20 To make this calculation pro-
cess seamless and easily applicable to drugs other than 
voriconazole, an R script (calcKp_PT.R) was created that 
contains the function calcKp_PT(). This function takes 
any drug’s physicochemical properties and returns a named 
list that can be directly used to update the PBPK model ob-
ject. The function also needs fractional tissue composition 
data as another input. These data were digitized from the 
Poulin and Theil publication20 and saved as data/tissue_
comp_PT.csv. For voriconazole, the Kp updating was done 
by first reading in the tissue composition data, sourcing the 
calcKp_PT() function, calculating the Kp values, and sav-
ing them as a named list Kp, then finally updating the model 
objects: 

tissueComp <- read.csv("../data/tissue _ comp _ PT.csv") 

# tissue composition

source("calcKp _ PT.R")

Kp <- calcKp _ PT(logP=2.56, pKa=1.76, fup=0.42, BP=1, 

type=3, dat=tissueComp)

modA <- param(modA, Kp)

modP <- param(modP, Kp)

where the calcKp_PT() argument type was set to 3 for 
monoprotic base (see calcKp_PT.R for more details).

Next, simulations can be run to validate the model 
predictions against the digitized observed data from the 
Zane and Thakker publication15 (digitization was done 
using webplotdigitizer: https​://autom​eris.io/WebPl​otDig​
itize​r/). The following two sets of clinical data were used 
for validation: (i) an adult 4  mg/kg intravenous infusion 
dose infused over an hour twice a day for a week and (ii) a 
pediatric 4 mg/kg intravenous infusion dose infused with 
a rate of 3 mg/kg/hour twice a day for a week. Steady-
state simulations were run for both populations under the 

[MAIN] 
double Vve = 0.705*Vbl; //venous
blood volume
double Var = 0.295*Vbl; //arterial 
blood volume
double Vre = WEIGHT -

(Vli+Vki+Vsp+Vhe+Vlu+Vbo+Vbr+Vmu+Vad+
VguWall+Vbl);
//volume of
rest of the body compartment 
double Qli = Qgu + Qsp + Qha;  
//hepatic blood flow
double Qre = Qlu - (Qli + Qki + Qbo + 
Qhe + Qmu + Qad + Qbr);

//rest of the body blood flow 
double CL_Li = ((VmaxH/KmH)*MPPGL*Vli*1000
*60*1e-6)
/ fumic;

//(L/hr) hepatic clearance 

dxdt_VEN = Qad*(Cadipose/(Kpad/BP)) + Qbr*
(Cbrain/Kpbr/BP)) +
Qhe*(Cheart/(Kphe/BP)) + Qki*(Ckidney/

(Kpki/BP))+ Qli*(Cliver/(Kpli/BP)) + 
Qmu*(Cmuscle/(Kpmu/BP)) + Qbo*(Cbone/

(Kpbo/BP))+ Qre*(Crest/(Kpre/BP)) - 
Qlu*Cvenous;
dxdt_ART = Qlu*(Clung/(Kplu/BP) -
Carterial);

dxdt_BONE = Qbo*(Carterial - Cbone/
(Kpbo/BP));
dxdt_REST = Qre*(Carterial - Crest/
(Kpre/BP));

https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
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same conditions as the observed data, and the simulation 
objects simA (for adults) and simP (for children) were cre-
ated as follows: 

In the previous simulations, the function ev() was used 
to set the dosing events for the simulations as previously 
described. The simulation results were then plotted against 
the observed data and were shown to match well with the 
latter (Figure 3). As mentioned previously, the workflow in 
R could also be utilized to wrap the model objects within 
other R functions to run sensitivity analyses to pinpoint the 
most influential parameters (e.g., FME22 and sensitivity23 

package functions) or to further tune the model predictions 
via parameter optimization.

QSP APPLICATION: MITOGEN-ACTIVATED PROTEIN 
KINASE

Using the same approach, a QSP application is demon-
strated in mrgsolve using the mitogen-activated 
protein kinase (MAPK) model published by Kirouac 
et al.24 (Figure 4). The authors were interested in the clini-
cal responses to therapy in colorectal cancer caused by a 
V600E/K mutation in the cytosolic kinase BRAF, which ren-
ders the kinase constitutively active and hence activates 
the downstream MEK and extracellular-signal-regulated 
kinase (ERK) signaling. BRAF and MEK inhibitors were 
found to be effective in V600E mutant melanoma, but 
these agents showed only a moderate effect in colorectal 
cancer. The purpose of the QSP model was to build a sig-
naling cascade for MAPK (Figure 4) to assess the effect 
of introducing an ERK inhibitor as a monotherapy or in 
combination regimens with other agents on tumor size in 
colorectal cancer.24

QSP model building in mrgsolve
A mrgsolve model file was generated programmatically 
from the Systems Biology Markup Language file attached 
to the Kirouac et al. publication. The translation code was 
written in R and utilized an R interface to libSBML as linked 
from https​://sbml.org. The translated model specifica-
tion file model/mapkQSP.cpp in the associated GitHub 

Figure 4  MAPK quantitative systems pharmacology model signaling network. Gray, red, and yellow nodes represent MAPK signaling 
pathway, regulatory feedback, and alternative signaling pathway components. Image was reproduced from24 under a Creative Commons 
Attribution 4.0 International License. DUSP, dual-specificity phosphatase; EGFR, epidermal growth factor receptor; ERK, extracellular-
signal-regulated kinase; FOXO, forkhead box protein; MAPK, mitogen-activated protein kinase; PI3k, phosphatidylinositol-3-Kinase; 
RTK, receptor tyrosine kinase.

## Adult

simA <-

modA %>% 

ev(cmt="VEN", amt=4*73, rate=4*73, ii=12,
addl=13, ss=1) %>%

mrgsim(delta = 0.1, end = 12)

## Child

simP <-

modP %>% 

ev(cmt="VEN", amt=4*19, rate=3*19, ii=12,
addl=13, ss=1) %>%
mrgsim(delta = 0.1, end = 12) 

https://sbml.org
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repository contained the usual mrgsolve blocks [INIT], 
[PARAM], [ODE], and [TABLE], where the model com-
partments with their initial conditions, parameters, ODEs, 
and outputs were declared. A new [GLOBAL] block (see 
Table 1) was added to the specification file to define a 
Hill equation that would be used in the [ODE] block as 
follows: 

The virtual population of 1,000 randomly sampled 
parameter values included as a supplement file in the 
Kirouac et al. publication was saved as data/s10vpop _
pk.RDS. One set of these parameter values was used as 
a placeholder in the specification file [PARAM] block. For 
more details about the model structure and parameter 
values, please refer to mapkQSP.cpp in the associated 
GitHub repository.

Comparing different therapeutic combinations
The model was then used to compare the responses to 
different regimens of mono and combination drug ther-
apies with and without an ERK inhibitor. The proposed 
drugs were the BRAF inhibitor vemurafenib (VEMU), the 
MEK inhibitor cobimetinib (COBI), the epidermal growth 
factor receptor antibody cetuximab (CETUX), and the ERK 
inhibitor GDC-0994 (GDC). The clinical dosing regimens 
for COBI and GDC were daily dosing of 60 and 400 mg, 
respectively, with 21/7-day on/off cycles, whereas for 
VEMU and CETUX the dosing was continuous 960 and 
450  mg twice daily and weekly, respectively.24 These 
dosing regimens were implemented in the mapkQSP _
script.R as follows: 

# ERK inhibitor - GCD-994 (GDC) - Compartment 12

dataG <- ev(cmt = 12, amt = 400, ii = 1, addl = 20)

dataG <- seq(dataG, wait = 6, dataG)

# MEK inhibitor - cobimetinib (COBI) - Compartment 10

dataCO <- mutate(dataG, cmt=10, amt=60)

# EGFR inhibitor - cetuximab (CETUX) - Compartment 7

dataCE <- ev(cmt=7, amt=450, ii=7, addl=7)

# BRAF inhibitor - vemurafanib (VEMU) - Compartment 8

dataV <- ev(cmt=8, amt=960, ii=0.5, addl=120)

Two functions were created, (comb() and sim()), to 
combine dosing regimens and simulate, a data frame was 
then created to encompass all 16 possible combinations of 
the four drugs of interest, and finally the simulations were 
run given the full virtual population as follows: 

[GLOBAL]
double HillEQ(double x, double k, double
tau) {

double a = pow(std::max(x,0.0),k);

return a/(pow(tau,k) + a);
}

# regimen combine function
comb <- function(...) {

x <- lapply(list(...), as.data.frame)
bind_rows(x) %>% arrange(time)

}
# simulation function
sim <- function(Data,Vp,Mod) {

Mod %>%
ev(as.ev(Data)) %>%
mrgsim(idata=Vp, end=-1, add = 56) %>%
filter(time==56) 

}
# create dataframe with all scenarios
sims <-

tribble(
~label, ~object, 
"No Treatment",        data0,
"CETUX",               dataCE, 

"VEMU",                dataV,
"COBI",                dataCO, 
"GDC",                 dataG,
"CETUX+VEMU",          comb(dataCE,
     dataV), 
"CETUX+COBI",          comb(dataCE,
     dataCO), 
"CETUX+GDC",           comb(dataCE, 
     dataG),
"VEMU+COBI",           comb(dataV,
     dataG), 
"VEMU+GDC",            comb(dataV,
     dataG),
"COBI+GDC",            comb(dataCO,
     dataG),
"CETUX+VEMU+COBI",     comb(dataCE,
     dataV,dataCO), 
"CETUX+VEMU+GDC",      comb(dataCE,
     dataV,dataG), 
"CETUX+COBI+GDC",      comb(dataCE,
     dataCO,dataG),
"VEMU+COBI+GDC",       comb(dataV,
     dataCO,dataG),
"CETUX+VEMU+COBI+GDC", comb(dataCE,dataV,
     dataCO,dataG)
) %>% mutate(object = map
(object,as.data.frame))

# simulate
sims <- mutate(sims, out = parallel:

:mclapply(object,
sim, Vp =vp, Mod = mod))
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The end time for all simulations was 56 days (8 weeks) be-
cause this is the time when the tumor size response is assessed.24

The results for all simulations were summarized in 
Figure 5, which was used as model verification as a repro-
duction of figure 6B from Kirouac et al.24 The figure depicts 
the noticeable impact of the ERK inhibitor GDC on tumor 
size either as a mono or combination therapy (red boxplots). 
The overall response rate (ORR) to GDC as a monotherapy 
or as a GDC + COBI combination therapy was quantified 
in the full virtual population vs. a subset of the population 
where tumor size was strongly dependent on MAPK signal-
ing (represented by higher WOR parameter values). In the  
R/mrgsolve workflow, this was done as follows: 

Results traceably, and in an open-source platform, repro-
duced the previously predicted ORR in the full population 
(14% and 35.2% for GDC and GDC+COBI, respectively), 
and a more significant ORR on the MAPK-dependent sub-
population (28.7% and 70.5% for GDC and GDC+COBI, 
respectively) with the combination therapy approximating 
the ORR reached with BRAFV600E mutation melanoma pa-
tients (~70%).24 Complete reproduction of this example in 
mrgsolve is available in the following vignette: https​://github.

Figure 5  Effect of different drug combinations on tumor size. Normalized tumor size at week 8 is plotted against each of the 16 
corresponding drug combinations. Gray dots and overlaid boxplots represent simulated tumor sizes with combinations containing 
GDC highlighted in red. Horizontal black line represents tumor size reduction of 30%. CETUX, cetuximab; COBI, cobimetinib; GDC, 
GDC-0994; VEMU, vemurafenib.

## ORR in full population: GDC +/- COBI
sms %>%

filter(label %in% c("GDC", "COBI+GDC"))
%>%
group_by(label) %>%
summarise(orr = mean(TUMOR < 0.7)) ## ORR
in select patients:

GDC +/- COBI
vp_select <- filter(vp, wOR > median(wOR))

re_run <-
sims %>%
select(label,object) %>%
filter(label %in% c("GDC", "COBI+GDC")) %>%
mutate(out = parallel::mclapply(object,sim,
Vp = vp_select,Mod
= mod)) %>%
select(label, out) %>% 
unnest()
re_run %>%
group_by(label) %>%
summarise(orr = mean(TUMOR < 0.7)) 

https://github.com/metrumresearchgroup/pbpk-qsp-mrgsolve/blob/master/docs/mapk_inhibitors_in_colorectal_cancer.md#translation
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com/metru​mrese​archg​roup/pbpk-qsp-mrgso​lve/blob/maste​
r/docs/mapk_inhib​itors_in_color​ectal_cancer.md#trans​lation

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Supplementary Materials. mrgsolve model code for physiological-
ly-based pharmacokinetic and quantitative systems pharmacology 
example models.
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