Skip to main content
. 2019 Nov 21;19:293–303. doi: 10.1016/j.omtn.2019.11.014

Table 4.

Results of Feature Selection for the S_628 Dataset Using the RF and SVM Methods

Feature Subset RF
SVM
Acc (%) MCC Sn (%) Sp (%) Acc (%) MCC Sn (%) Sp (%)
BPB 62.58 0.25 63.69 61.46 63.06 0.27 52.87 73.25
Kmer (k = 2) 58.12 0.16 58.28 57.96 61.78 0.24 64.33 59.24
Kmer (k = 3) 60.35 0.21 62.10 58.60 61.78 0.24 66.56 57.01
Kmer (k = 4) 59.71 0.19 62.74 56.69 64.97 0.30 67.52 62.42
PC-PseDNC-General (2, 0.11) 58.76 0.18 61.78 55.73 61.15 0.22 64.01 58.28
NCP+ND 60.83 0.22 62.74 58.92 60.99 0.22 57.01 64.97
BPB+Kmer (k = 4) 64.01 0.28 64.33 63.69 68.15 0.36 66.56 69.75
BPB+PC-PseDNC-General (2, 0.11) 62.90 0.26 63.38 62.42 66.08 0.33 57.64 74.52
BPB+NCP+ND 62.74 0.26 65.61 59.87 61.78 0.24 56.37 67.20
BPB+PC-PseDNC-General (2, 0.11) + Kmer(4) 64.49 0.29 65.92 63.06 70.54a 0.41a 69.43a 71.66a
a

Performance with maximum accuracy.