Skip to main content
. 2019 Nov 21;19:293–303. doi: 10.1016/j.omtn.2019.11.014

Table 5.

Results of Feature Selection for the M_944 Dataset Using the RF and SVM Methods

Feature Subset RF
SVM
Acc (%) MCC Sn (%) Sp (%) Acc (%) MCC Sn (%) Sp (%)
BPB 68.54 0.37 69.28 67.80 71.40 0.43 75.00 67.80
Kmer(2) 52.22 0.04 54.45 50.00 56.78 0.14 61.65 51.91
Kmer(3) 55.51 0.11 57.42 53.60 59.22 0.18 60.81 57.63
Kmer(4) 56.04 0.12 58.05 54.03 58.37 0.17 59.96 56.78
PC-PseDNC-General (2, 0.1) 53.07 0.06 56.14 50.00 57.84 0.16 64.41 51.27
NCP+ND 67.58 0.35 70.34 64.83 68.01 0.36 69.49 66.53
BPB+Kmer(3) 67.37 0.35 71.61 63.14 72.46a 0.45a 75.85a 69.07a
BPB+PC-PseDNC-General (2, 0.1) 67.58 0.35 70.97 64.19 71.40 0.43 73.52 69.28
BPB+NCP+ND 68.43 0.37 71.82 65.04 68.11 0.36 69.70 66.53
BPB+PC-PseDNC-General (2, 0.11) + Kmer(3) 68.33 0.37 72.67 63.98 71.72 0.44 75.00 68.43
a

Performance with maximum accuracy.