
Genome analysis

Tibanna: software for scalable execution of

portable pipelines on the cloud

Soohyun Lee†, Jeremy Johnson†, Carl Vitzthum, Koray Kırlı,

Burak H. Alver* and Peter J. Park*

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: John Hancock

Received on October 10, 2018; revised on April 26, 2019; editorial decision on April 29, 2019; accepted on April 30, 2019

Abstract

Summary: We introduce Tibanna, an open-source software tool for automated execution of

bioinformatics pipelines on Amazon Web Services (AWS). Tibanna accepts reproducible and port-

able pipeline standards including Common Workflow Language (CWL), Workflow Description

Language (WDL) and Docker. It adopts a strategy of isolation and optimization of individual execu-

tions, combined with a serverless scheduling approach. Pipelines are executed and monitored

using local commands or the Python Application Programming Interface (API) and cloud configur-

ation is automatically handled. Tibanna is well suited for projects with a range of computational

requirements, including those with large and widely fluctuating loads. Notably, it has been used to

process terabytes of data for the 4D Nucleome (4DN) Network.

Availability and implementation: Source code is available on GitHub at https://github.com/4dn-

dcic/tibanna.

Contact: peter_park@hms.harvard.edu or burak_alver@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Efficient execution of data processing and analysis pipelines is

essential in many areas of research that involve large datasets.

However, integration of a pipeline with local computing infrastruc-

ture is often a painstaking process. The need for such integration

leads to redundant creation of seemingly identical pipelines, decreas-

ing reproducibility and efficiency.

Cloud platforms present a number of advantages for large-scale

data analysis, including scalability and efficient data sharing.

However, the frequent lack of separation between workflow

specifications and platform-specific configuration impedes transi-

tion to the cloud. Having to handle detailed aspects of the cloud

platform renders the advantages of cloud computing impractical for

many pipeline developers.

For effective separation of pipelines from platforms, pipelines

should be made portable and standardized, and all platform-specific

tasks must be delegated to a separate pipeline management tool. To

enable this framework, there have been efforts to create a standard

for portable pipelines. Common Workflow Language (CWL)

(https://www.commonwl.org/) and Workflow Description Language

(WDL) (https://software.broadinstitute.org/wdl/) describe the struc-

ture of a pipeline (e.g. steps, inputs and outputs), whereas Docker

and Singularity (Kurtzner et al., 2017) enable generation of portable

images of executable components and dependencies. Support for

standard pipeline languages is becoming more widely adopted.

In addition, Galaxy (Giardine et al., 2005), a GUI-based bioinfor-

matics analysis platform, is planned to support CWL in the near

future. Domain Specific Languages (DSLs) such as Nextflow

(Tommaso et al., 2017) or Snakemake (Köster and Rahmann, 2012)

provide better expressive power than CWL, but are bound to a sin-

gle pipeline manager.

At the Data Integration and Coordination Center (DCIC) for

the NIH-sponsored 4D Nucleome (4DN) Network (Dekker et al.,

2017), our aim is to efficiently process a large number of datasets

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4424

Bioinformatics, 35(21), 2019, 4424–4426

doi: 10.1093/bioinformatics/btz379

Advance Access Publication Date: 11 May 2019

Applications Note

https://github.com/4dn-dcic/tibanna
https://github.com/4dn-dcic/tibanna
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz379#supplementary-data
https://www.commonwl.org/
https://software.broadinstitute.org/wdl/
Deleted Text: ,
Deleted Text: &hx2009;
https://academic.oup.com/

from multiple experimental types submitted by member laborato-

ries. We therefore require a workflow management system that sup-

ports standardized and portable pipelines (CWL/WDL) on a public

platform. We chose Amazon Web Services (AWS), the most widely

used commercial cloud service. Additionally, the Network needs an

open-source implementation so the scientific community can easily

run the same standardized 4DN pipelines on its own data.

2 Results

We have developed and used Tibanna as an open-source pipeline

manager and automated cloud resource allocator for running

Docker-based pipelines on AWS. Tibanna integrates easily with

other systems through its Python API.

2.1 Overview
Tibanna creates an instance of an individually pre-configured virtual

machine (EC2) for each job (Fig. 1). The instance autonomously

fetches data and the pipeline, runs the pipeline, stores logs and out-

put files on the cloud and finally, terminates itself. Instead of de-

pending on a master server or queue, each job gets its own serverless

scheduler comprised of AWS Lambdas coordinated by the AWS

Step Function. The 4DN DCIC uses additional Lambdas to commu-

nicate with our Data Portal.

2.2 Execution unit
Tibanna runs a single execution unit, and dependencies can be man-

aged through its dependency feature. This allows one to decide and

manage execution units based on resource requirements and logical

grouping, and determine what intermediate files to keep for future

re-processing and curation. An execution unit may be a whole pipe-

line, a sub-pipeline or a single step, and these units are not defined

by the pipeline structure itself. We found that tools that attempt to

auto-determine execution units tend to make non-optimal choices

and are difficult to integrate with desired execution designs.

2.3 How to use Tibanna
Tibanna auto-configures cloud components and permissions with a

single command. Its only requirements are to provide input data on

the cloud and to prepare a publicly available pipeline in CWL or

WDL, along with a public Docker image. Each job is described as a

JSON file or a Python dictionary object, specifying the pipeline, in-

put files and parameters, and where the output should be collected.

Submission and monitoring of jobs is performed locally from the

command line or using the Python API. Logs can also be retrieved

similarly or through the AWS Web Console. A user with a private

key file can securely connect to running instances for more detailed

monitoring. An easy-to-follow documentation comes with the soft-

ware for more details.

2.4 Execution example
In addition to running pipelines for 4DN, Tibanna has been used by

external users to call transposon insertions from 1000 to 30� whole

genome sequencing datasets. 1000 jobs were simultaneously exe-

cuted, each running for 4–8 h on a spot instance with 16 cores and

32 GB memory and 250 GB disk size, costing about $1.6 per run.

2.5 Comparison to other tools
Tibanna offers several advantages compared to existing workflow

management tools (Supplementary Table S1), specifically for our

need to automatically execute and monitor various portable pipe-

lines in integration with a data portal.

Local CWL executors [e.g. Cwltool, Rabix (Kaushik, 2016) and

CWL-Airflow (Kotliar et al., 2018)] do not perform resource alloca-

tion. Snakemake recently started supporting local CWL executions

with cloud storage but also does not handle resource management

on AWS.

Tools that perform cloud resource allocation uses one of the

three approaches: AWS Batch, a resizable cluster, or individual

customization.

(1) AWS Batch AWS Batch (https://aws.amazon.com/batch/) is

an AWS service to run batch jobs, but it is not easy to be used direct-

ly with CWL/Docker, often exhibits a mysteriously long wait time

and lacks many functionalities. Examples of tools based on AWS

Batch include Nextflow, Funnel (https://ohsu-comp-bio.github.io/

funnel/) and Cromwell. Nextflow supports Docker, but using CWL

requires conversion to the Nextflow format and the converter is not

functional at this point.

Cromwell (https://software.broadinstitute.org/wdl/) was origin-

ally developed to run WDL on Google Cloud Platform (GCP), al-

though it now supports CWL and AWS through AWS Batch.

However, it leaves all the cloud configuration to the user, and due to

the lack of an API, a large-scale batch run requires a cumbersome

generation of many input JSON files and manual tracing of job IDs

for proper output matching. Monitoring functionality that is critical

for large-scale projects is not provided by either Cromwell or AWS

Batch. Funnel also requires users to build a custom Amazon

Machine Image (AMI).

(2) Resizable cluster StarCluster (http://star.mit.edu/cluster/docs/

latest), an older tool without CWL/Docker support, and Toil

(Vivian et al., 2017) work by creating a resizable cluster of EC2

instances of the same CPU and memory and an additional master in-

stance. They require extra work for configuring and managing clus-

ters. Nextflow also uses an auto-scalable cluster as an alternative.

Arvados (https://arvados.org/) supports CWL and Docker and

involves a cluster of dynamically allocated cloud instances where

jobs are dispatched by SLURM. However, the initial setup process is

quite complicated. Arvados also uses its own storage organization

which required additional development to access and is not compat-

ible with the file organizations used by our portal.

Fig 1 Tibanna. For each pipeline execution, Tibanna creates a workflow run

by launching a customized virtual machine (EC2), runs the pipeline and

destroys itself when finished. Scheduling is performed individually by server-

less components

Tibanna 4425

Deleted Text: T
Deleted Text: ,
Deleted Text: &hx223C;
Deleted Text: X
Deleted Text: -
Deleted Text: ours
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz379#supplementary-data
Deleted Text: (
https://aws.amazon.com/batch/
Deleted Text: ,
https://ohsu-comp-bio.github.io/funnel/
https://ohsu-comp-bio.github.io/funnel/
https://software.broadinstitute.org/wdl/
http://star.mit.edu/cluster/docs/latest
http://star.mit.edu/cluster/docs/latest
https://arvados.org/

(3) Individual customization Tibanna instead creates a specific

compute environment for an individual execution at launch, and

removes it when the job is done. This approach is also adopted by

Seven Bridges (https://www.sevenbridges.com/) and DNANexus

(https://www.dnanexus.com/), which, as commercial portal services,

also offer full automation but charge extra fees and do not easily in-

tegrate with other systems.

At 4DN DCIC, we receive datasets that vary in input file size,

with vastly different memory and storage requirements. For ex-

ample, the contact matrix generation sub-workflow of the 4DN Hi-

C data processing pipeline involves in-memory generation of a ma-

trix that represents non-zero interactions of all genomic locations.

As the size of input datasets (i.e. reads representing contacts) varies

>10-fold (up to 76 Gb), memory requirement also varies substan-

tially, thus necessitating machines with different memory sizes for

efficient computation. For this level of variability at the execution

level, individual customization makes better use of the elastic com-

pute environment of the cloud compared to cluster allocation.

3 Conclusion

Tibanna is a pipeline management system for the AWS cloud.

Tibanna has been used to process 4DN data. We believe Tibanna

will be useful for many other AWS projects.

Acknowledgements

We thank the members of the 4DN DCIC, the Park lab and the Avillach lab

at the Department of Biomedical Informatics at Harvard Medical School for

valuable feedback and the E. Alice Lee lab at Boston Children’s Hospital for

beta-testing Tibanna. We are especially thankful to Andy Schroeder, Peter

Kerpedjiev, Martin Owens and Chuck McCallum for code review/contribu-

tion, Shannon Ehmsen for preparing the figure, and Alon Galor, Dhawal Jain,

Su Wang, Geoff Nelson and Marc Rubenfield (Veritas Genetics) for com-

ments on the manuscript.

Funding

This work was supported by the National Institutes of Health Common Fund

4D Nucleome Program U01CA200059 awarded to PJP.

Conflict of Interest: none declared.

References

Dekker,J. et al. (2017) The 4D nucleome project. Nature, 549, 219–226.

Kaushik,G (2016) Rabix: an open-source workflow executor supporting

recomputability and interoperability of workflow descriptions. Pac. Symp.

Biocomput., 22, 154–165.

Giardine,B. et al. (2005) Galaxy: a platform for interactive large-scale genome

analysis. Genome Res., 15, 1451–1455.

Köster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics

workflow engine. Bioinformatics, 28, 2520–2522.

Kotliar,M. et al. (2018) CWL-Airflow: a lightweight pipeline manager sup-

porting Common Workflow Language. bioRxiv, 249243.

Kurtzner,G.M. et al. (2017) Singularity: scientific containers for mobility of

compute. PLoS ONE, 12, e0177459.

Tommaso,P.D. et al. (2017) Nextflow enables reproducible computational

workflows. Nat. Biotechnol., 35, 316–319.

Vivian,J. et al. (2017) Toil enables reproducible, open source, big biomedical

data analyses. Nat. Biotechnol., 35, 314–316.

4426 S.Lee et al.

https://www.sevenbridges.com/
https://www.dnanexus.com/
Deleted Text:
Deleted Text: ,

