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Abstract
Brain structural morphology differs with age. This study examined age-differences in surface-based morphometric
measures of cortical thickness, volume, and surface area in a well-defined sample of 8137 generally healthy UK Biobank
participants aged 45–79 years. We illustrate that the complexity of age-related brain morphological differences may be
related to the laminar organization and regional evolutionary history of the cortex, and age of about 60 is a break point for
increasing negative associations between age and brain morphology in Alzheimer’s disease (AD)-prone areas. We also
report novel relationships of age-related cortical differences with individual factors of sex, cognitive functions of fluid
intelligence, reaction time and prospective memory, cigarette smoking, alcohol consumption, sleep disruption, genetic
markers of apolipoprotein E, brain-derived neurotrophic factor, catechol-O-methyltransferase, and several genome-wide
association study loci for AD and further reveal joint effects of cognitive functions, lifestyle behaviors, and education on
age-related cortical differences. These findings provide one of the most extensive characterizations of age associations with
major brain morphological measures and improve our understanding of normal structural brain aging and its potential
modifiers.
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Introduction
Extant literature has demonstrated that the brain deteriorates
with age both in basic and higher order cognitive functions
(Reuter-Lorenz and Park 2010; Harada et al. 2013). Such age-
induced cognitive declines are likely partly caused by macro-
structural brain changes even in the absence of dementia or
other pathological conditions (Kaup et al. 2011; Persson et al.
2012; Leong et al. 2017). Thus, an accurate characterization of
how and where the brain macrostructure changes with age are
important for understanding normal brain aging and would
assist in identifying age-related neuropathology (Fjell and

Walhovd 2010). Magnetic resonance imaging (MRI) has been
widely applied to quantify the volume, thickness, and other
morphometrics of specific brain structures in vivo, yielding
anatomical insights into the human brain during aging.

Although it is clear that the brain atrophies with age and
the related aging process are regionally heterochronic, existing
findings are largely inconsistent in the characterization of the
trajectory and spatial distribution of age effects across the brain
(for a review, see (Fjell and Walhovd 2010; Kennedy and Raz
2015)). Previous MRI studies, with either a cross-sectional or
longitudinal design, commonly use cohorts of participants with
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a sample size being constrained by the expense and time of
imaging acquisition (at most around 1000 participants (Crivello
et al. 2014; Fjell et al. 2014)). Cohort effects and sampling bias
that exist in the limited study samples prevent these studies
from yielding true population-based findings; and a small sam-
ple size may not provide sufficient statistical power to detect
subtle age effects. Moreover, much of the previous neuroana-
tomical measures were obtained using volumetric methods
(Raz et al. 1997; 2005, 2010; Fjell et al. 2009; Ziegler et al. 2012;
Crivello et al. 2014). Cortical volume (CVo) geometrically is a
combination of cortical thickness (CTh) and cortical surface
area (CSA), which are driven by distinct cellular mechanisms
(Rakic 1988; Pontious et al. 2008) and differentially affected by
genetic factors (Panizzon et al. 2009; Winkler et al. 2010). Some
recent studies (Hogstrom et al. 2013; Zhao et al. 2013; Storsve
et al. 2014; Dotson et al. 2015) also have shown that CTh and
CSA were differentially affected by the aging process. Thus,
studies using a single type of structural measure would be
unable to provide a complete understanding of the mechanism
underlying age-related brain structural differences or changes,
as different measures may convey properties that are unique to
others.

Additionally, complete understanding of the neurobiologi-
cal, environmental, and genetic factors affecting the differential
cortical declines remains unclear. The neuropil (axons, den-
drites, and their collateral branches) accounts for the cortical
gray matter (GM) volume and can expand and contract in
response to multiple environmental changes (Kassem et al.
2013), and this may be crucial to the cortical atrophy observed
in brain aging. Twin-studies have revealed the high heritability
of brain structures (Toga and Thompson 2005; Peper et al. 2007;
Chiang et al. 2009) and that the relationships of brain morphol-
ogy with cognitive functions are substantially mediated by
genetic factors (Posthuma et al. 2002; Thompson et al. 2002;
Chiang et al. 2009). Identifying genetic influences on age-
related structural differences or changes will provide a better
understanding of the neurobiological mechanisms involved in
aging. These limitations in existing imaging studies suggest
that a statistically well-powered, system-level study is needed
to characterize the differential age trajectories of diverse brain
morphological measures and to investigate the impacts of vari-
ous potential environmental and genetic modifiers on the iden-
tified aging effects.

In this study, we assessed the age-related differences in
MRI-derived measures of CTh, CVo, and CSA across the cortex
in a large community-based sample of 8137 healthy middle-
aged to older adults from the UK Biobank resource (http://www.
ukbiobank.ac.uk). All MRI scans were collected on a maximally
homogeneous imaging platform and protocol (Miller et al. 2016;
Alfaro-Almagro et al. 2017). A surface-based morphometry
(SBM) framework (Salat et al. 2004) was utilized to detect brain
morphology–age associations and estimate the mean cross-
sectional trajectories at each cortical vertex. In contrast to
voxel-based approaches (Ziegler et al. 2012; Crivello et al. 2014),
SBM allows direct modeling of diverse morphological character-
istics of the cortex. The vertex-wise analyses are able to detect
even very small regions that exhibit age-related differences,
which might be neglected in region of interest (ROI)-based
methods (Raz et al. 2010; Lemaitre et al. 2012). Next, we ana-
lyzed the associations of cognitive functions (fluid intelligence,
reaction time, visual memory, and prospective memory), life-
style behaviors (cigarette smoking, alcohol consumption, and
sleep), sex, education as well as specific genetic factors with
age-related brain morphological differences. The target genetic

factors included the apolipoprotein E (APOE), brain-derived neu-
rotrophic factor (BDNF), catechol-O-methyltransferase (COMT),
KOLTHO, and the top 21 Alzheimer’s disease (AD)-risk/preven-
tive genes (Lambert et al. 2013) (in addition to APOE). These
genetic variants were selected because they have been the
most frequently linked to variations in age-sensitive cognitive
functions and/or neurodegeneration (Raz et al. 2009; Lambert
et al. 2013; Dubal et al. 2014; 2015; Stage et al. 2016), however,
their influences on age-related cortical differences or changes
are still unclear. Moreover, cognitive functions and environ-
mental factors are often interrelated in old adults (Hagger-
Johnson et al. 2013; Kyle et al. 2017; Piumatti et al. 2018).
Therefore, we further analyzed principal component analysis
(PCA)-derived combinations of the cognitive and lifestyle fac-
tors as well as education in order to determine if there exist
joint effects of these potential modifiers on age-related brain
morphological differences. This study provides the best pow-
ered and the most comprehensive characterization to date of
age-related brain structural differences and potential modifiers
in middle to older ages.

Materials and Methods
Participants

The UK Biobank enrolled about 500 000 community-dwelling
participants from across the United Kingdom, aged 40–69 years
at baseline recruitment, from 2006 to 2010 (http://www.
ukbiobank.ac.uk). Extensive health and lifestyle questionnaires,
physical and cognitive measures, biological samples, and geno-
typing data were collected. In 2014, the UK Biobank started an
imaging extension, aiming to collect head, heart, and body
imaging from 100 000 participants in the existing cohort. We
used brain MRI imaging data (UK Biobank data-field: 110) from
the recent release (Feb 2017) of 10 102 participants (http://
biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=110). Ethical approval
was obtained from the research ethics committee (REC refer-
ence 11/NW/0382). The present analyses were conducted under
UK Biobank application number 25 641. All participants pro-
vided informed consent to participate. Further information on
the consent procedure can be found at http://biobank.ctsu.ox.
ac.uk/crystal/field.cgi?id=200. This study discarded 169 partici-
pants whose raw MRI scans did not pass manual quality
assessment and other 19 participants due to failed image pro-
cessing. A total of 422 participants who reported a diagnosis of
neurological or psychiatric disorder at scanning (UK Biobank
data-field: 20 002) were excluded as well (excluded disorders are
listed in Supplementary Table S1). We further removed 1355
participants who did not have white British ancestry and/or did
not pass the sample quality control for the genetic data
(https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100313).

Demographic, Cognitive, and Lifestyle Information

This study utilized the demographic, cognitive, and lifestyle
information collected at the MRI assessment (2014+). Educational
qualifications (UK Biobank data-field: 6138) consisted of 8 catego-
ries: college or university degree/A levels or AS levels or equiva-
lent/CSEs or equivalent/O levels or GCSEs or equivalent/NVQ or
HND or HNC or equivalent/other professional qualifications, for
example, nursing, teaching/none of the above/prefer not to
answer. We collapsed the data into a binary variable indicating if
a participant held a college or university degree so as to charac-
terize the participants here. The self-reported sex (UK Biobank
data-field: 31) was compared against genetic sex (UK Biobank
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data-field: 22 001) to identify individuals with discordant sex
information.

The cognitive tests included fluid intelligence (UK Biobank
data-field: 100 027), reaction time (UK Biobank data-field: 100
032), visual memory (UK Biobank data-field: 100 030), and pro-
spective memory (UK Biobank data-field: 100 031), all of which
were administered via computerized touch screen interface.
The fluid intelligence task assessed the ability to solve 13 verbal
and numeric reasoning problems. Each problem had five possi-
ble response options. The dependent variable was the total
number of correct answers given (range 0–13) within a 2-min
period, with higher scores indicating better performance. The
reaction time task was delivered in the style of the card game,
“snap,” and requested participants to respond with a button
press when they detected the appearance of a matching pair of
symbols. The dependent variable was the mean response time
in milliseconds across 12 matching-pair trials. In the visual
memory task, 6 card pairs of symbols were presented on-
screen in a random pattern. Cards were then turned face down
on the screen, and participants were asked to locate as many
symbol pairs as possible in as few attempts as possible. The
dependent variable was the number of errors made during
pairs matching (range 0–146), which was log-transformed
because of skewed distribution and zero inflation [ln (x + 1)]. In
the prospective memory task, participants were asked to
remember to perform a preplanned instruction. Participants
were categorized depending on whether they completed the
task on first attempt or not. More details about the UK Biobank
cognitive tests are available in the study by Lyall et al. (2016).

The lifestyle behaviors we focused in this work were tobacco
smoking, alcohol consumption, and sleep. Information on cur-
rent and past smoking characteristics, including age at smok-
ing initiation (UK Biobank data-field: 3436 and 2867), number of
cigarettes smoked per day (UK Biobank data-field: 3456 and
2887), age when stopped smoking (ex-smokers only) (UK
Biobank data-field: 6194), was assessed using the touch screen
questionnaire. The smoking status of participants was classi-
fied as: current smokers, ex-smokers or lifetime nonsmokers
(UK Biobank data-field: 20 116). Duration of smoking was calcu-
lated from the age the participant started smoking and the date
of MRI assessment (or, among ex-smokers, the age when they
stopped smoking). The number of pack-years for ex-smokers
and current smokers was calculated by multiplying the number
of cigarettes smoked per day by the years of smoking and
divided by 20.

Alcohol consumption was measured using the question
“about how often do you drink alcohol?” Available responses
were “daily or almost daily,” “three of four times a week”, “once
or twice a week,” “one to three times a month”, “special occa-
sions only,” “never,” and “prefer not to answer” (UK Biobank
Data-Field 1558). Respondents who drank alcohol once a week
or more frequently were asked to record how many alcoholic
drinks they consumed on average each week from a list of
common alcoholic beverages (red and white wine, champagne,
beer and cider, spirits and liquors, fortified wine, and other
alcoholic drinks), or to respond “do not know” or “prefer not to
answer” (UK Biobank Data-Fields 1568, 1678, 1588, 1598, 1608,
and 5364). Volumes were specified when referring to beverages
(e.g., “there are six glasses in an average bottle of wine”; “there
are 25 standard measures in a normal sized bottle”). Respondents
who declared that they drank alcohol “one to three times a
month” or on “special occasions only” (henceforth monthly drin-
kers) were also asked to record how many drinks they consumed
on average each month (UK Biobank data-fields 4407, 4418, 4429,

4440, 4451, 4462). Alcohol consumption in grams per day was cal-
culated by multiplying the average number of alcoholic drinks
consumed each week/month by the average grams of alcohol
contained in each type of drink, determined using the UK Food
Standard Agency’s guidelines (Roe et al. 2015). The total was then
divided by 7 (or 30 for monthly drinkers) to provide mean daily
alcohol consumption. Alcohol consumption was positively skew
and log-transformed. The number of drink units consumed per
day/week were calculated from the daily alcohol consumptions in
grams (one drink unit contains ~8 g of pure alcohol in UK).
Because of the possible U-shaped relationship between alcohol
consumption and the neurological outcomes (Ruitenberg et al.
2002; Mukamal et al. 2003; Luchsinger et al. 2004; Stampfer et al.
2005), participants were classified into groups of abstainers (<1
unit/week), 1–<7 units/week, 7–<14units/week, 14– <21units/
week, 21–<30units/week, and >30 units/week as suggested in
recent studies (Topiwala et al. 2017).

Insomnia symptoms were assessed using the question “Do
you have trouble falling asleep at night or do you wake up in
the middle of the night?” Available responses were “never/
rarely,” “sometimes,” and “usually” (UK Biobank Data-Fields
1200). Participants were categorized as having frequent insom-
nia symptoms if they answered “usually” to this question,
while the remaining participants made up the control group
without frequent insomnia symptoms. Sleep duration was
recorded as the number of reported hours to the following
question: “About how many hours sleep do you get in every 24
hours (include naps)” (UK Biobank Data-Fields 1160). Given pre-
viously established U-shape relationships with health and cog-
nition (Lo et al. 2016), we categorized sleep duration into short
(<7 h), normal (7–9 h), and long (>9 h) based on recent guidelines
(Watson et al. 2015).

Genetic Data and Processing

All UK Biobank participants were genotyped using the
Affymetrix UK BiLEVE Axiom array (on an initial ~50 000 partici-
pants) and the Affymetrix UK Biobank Axiom array (on the
remaining ~450 000 participants) were genotyped using the
Affymetrix UK Biobank Axiom array. The two single-nucleotide
polymorphism (SNP) arrays are very similar with over 95% com-
mon marker content. In total, about 800 000 markers were gen-
otyped for each participant. The UK Biobank team first imputed
the genotyping data using the Haplotype Reference Consortium
(HRC) reference panel and then imputed the SNPs not in the
HRC panel using a combined UK10K + 1000 Genomes panel.
The imputation process produced a dataset with >92 million
autosomal SNPs. Detailed information and documentation on
the genotyping, imputation, and QC are available at http://
www.ukbiobank.ac.uk/scientists-3/genetic-data/. We excluded
the subjects who were identified to have discordant sex infor-
mation or were outliers in heterozygosity and missing rates, or
had a relatedness corresponding to third-degree relatives or
closer, or do not have a white British ancestry. The target SNPs
were extracted from the imputed arrays, which all had an
imputation information score >0.96. APOE ε4 allele status was
determined by combining allelic results from the APOE SNPS
rs429358 and rs7412. The combination of these 2 SNPs result in
cysteine-to-arginine amino acid substitutions in APOE at posi-
tions 130 and 176. The E2 allele is represented by the Cys–Cys
combination, ε3 by the Cys130–Arg176 combination, and ε4 by
the Arg–Arg combination (Ghebranious et al. 2005). The haplo-
type KL-VS that increases klotho secretion (Dubal et al. 2014)
were defined by segregating 2 variants in the KLOTHO gene,
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rs9536314 (F352V) and rs9527025 (C370S), which were in per-
fect linkage disequilibrium in all samples genotyped (Pearson’s
r = 1).

MRI Acquisition and Processing

Details of the MRI acquisition is described in the UK Biobank
Brain Imaging Documentation (http://biobank.ctsu.ox.ac.uk/
crystal/refer.cgi?id=1977) and in a protocol form (http://
biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367). Briefly, all par-
ticipants were scanned using a single standard Siemens Skyra
3 T scanner with a standard Siemens 32-channel RF receive
head coil. The T1-weighted structural MRI volumes were
acquired using a 3D magnetization-prepared rapid gradient-
echo (MPRAGE) sequence, with 1mm isotropic resolution, a
field-of-view (FOV) of 208mm, and a 256 × 256 matrix. All
released brain MRI images were defaced to protect study partic-
ipant anonymity. Careful manual quality assessment was con-
ducted for the whole imaging dataset by the UK Biobank team
to identify images that were corrupted, missing, or otherwise
unusable (Alfaro-Almagro et al. 2017).

All MR images were processed for reconstructing cortical
surfaces and extracting morphological phenotypes using the
FreeSurfer (v6.0) software package (http://surfer.nmr.mgh.
harvard.edu/). The FreeSurfer processing was implemented on
the LONI pipeline system for high-performance parallel com-
puting (http://pipeline.loni.usc.edu). To obtain a comprehensive
description for age-related differences in brain morphology,

this work included 3 vertex-wise imaging measures acquired
based on a cortical surface model (each hemispheric surface
was consisted of 163 842 vertices) (Fischl and Dale 2000): CTh,
CVo, and CSA. Prior to statistical analysis, the surface-based
data were smoothed on the tessellated surfaces using a
Gaussian kernel with the full-width half-maximum of 20mm
to increase the signal-to-noise ratio and to reduce the impact
of misregistration. More information about the FreeSurfer proces-
sing and neuroimaging measures is given in the Supplementary
Material.

Statistical Analyses

To determine the complex (linear and nonlinear) relationships
between age and brain morphological measures, linear mixed-
effects regression models were constructed at each cortical sur-
face vertex with a step-down model selection procedure testing
for cubic, quadratic, and linear age effects. Such method has
been commonly used in previous studies of complex brain
structural trajectories in neurodevelopment (Shaw et al. 2008)
and aging (Terribilli et al. 2011; Pfefferbaum et al. 2013). The full
model for the morphological measure (CTh, CVo, or CSA) Ti at a
cortical point i is

β β β= + + + +T intercept Age Age Age e ,i i1 2
2

3
3

where e is the residual error, and the intercept and β terms are
the fixed effects. If the cubic age effect was not significant, the
cubic term was removed and we stepped down to the quadratic

Table 1 Sample characteristics

Variable M (SD), min–max if applicable N

Demographics
Age at MRI in years 62.69 (7.44), 45.17–79.37 8137
Gender, male (%) 3882 (47.71%) 8137
Obtained college degree, yes (%) 3629 (45.02%) 8061
Ethnicity, white British ancestry (%) 8137 (100%) 8137

Cognitive tests
Fluid intelligence score 6.96 (2.09), 1–13 7775
Prospective memory, successful N (%) 7311 (90.59%) 8070
Raw reaction time in milliseconds, median (IQR) 566 (125), 351–1684 8046
Log-transformed reaction time 6.36 (0.17), 5.86–7.42 8046
Raw visual memory errors, median (IQR) 3 (4), 0–27 8084
Log-transformed visual memory errors 1.29 (0.64), 0–3.33 8084

Life behaviors
Smoking status, current/previous/never 320/2802/4942 8064
Pack-years of smoking 19.01 (14.71), 0.25–132.5 2005
Alcohol drinking status, weekly/monthly/nondrinkers 5898/1402/199 7499
Raw daily alcohol intake in grams, median (IQR) 12.46 (18.98), 0–161.18 7499
Log-transformed daily alcohol intake 2.45 (1.06), 0–5.088 7499
Alcohol consumption levels, <1/1-<7/7-<14/14-<21/21-<30/
>30 units/week

604/2041/1789/1181/ 841/1043 7499

Sleep duration in hours 7.17 (1.04), 2–15 8070
Sleep duration levels, >7/7–9/ >9 h 1883/6087/100 8070
Insomnia symptoms, frequent/infrequent 2405/5673 8078

APOE
APOE genotype frequencies, N (%) ε2/ε2: 48 (0.59%), ε2/ε3: 1006 (12.36%),

ε2/ε4: 192 (2.36%), ε3/ε3: 4810 (59.11%),
ε3/ε4: 1896 (23.30%), ε4/ε4: 185 (2.27%)

8137

KLOTHO
KL-VS genotype frequencies, N (%) noncarriers: 5733 (70.46%), heterozygotes:

2193 (27%), homozygotes: 207 (2.54%)
8137

Note: M = mean; SD = standard deviation; min = minimum; max = maximum; IQR = interquartile range.
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model, and so on. The analyses were repeated controlling for
sex and intracranial volume (ICV) as covariates. We further per-
formed segmented regression analyses (Muggeo 2003; 2016) at
the vertices that showed nonlinear age effects in order to sta-
tistically determine the existence of break points and their
locations in the estimated mean cross-sectional age trajecto-
ries. Given a linear regression model, the segmented approach
estimates a new model having broken-line relationships that
are defined by the slope parameters and the break points where
the linear relationship changes.

To examine the effects of potential modifiers on the age-
related cortical differences, we repeated the linear mixed-
effects regression analyses and assessed the interactions
between age (or nonlinear age term) and cognitive functions,
lifestyle behaviors, and genetic factors as well as sex and edu-
cation. To assess potential joint effects of the behavioral and
environmental factors, we conducted a PCA on the multivariate
data of the cognitive, lifestyle variables, and education to
extract new variables representing linear combinations of
them. Instead of using the standard PCA that uses all the vari-
ables to produce each principal component (PC) regardless if a
variable is a noise, we utilized a group-sparse block PCA
method (Shen and Huang 2008; Journée et al. 2010; Chavent
and Chavent 2017), which excludes ineffective variables from
the PCA model with sparseness modeling. Additionally, prior to
PCA, dummy coding was applied to categorical variables such
as education, prospective memory test result, smoking status,
alcohol drinker status, and insomnia status. The grouping
strategy ensured that all dummy variables from the same cate-
gorical variable will be retained or excluded in the PCA model
simultaneously. After PCA, the first 10 PCs that together
explained over 95% of variance among the original multivariate

data were selected, and the associations of these new variables
with age-related brain structural differences were examined
adjusting for age, sex, and ICV.

A false discovery rate (FDR) of q < 0.05 was applied to control
for the multiple comparisons across all 327 684 brain surface ver-
tices for each whole-brain test. A Bonferroni correction was fur-
ther applied to adjust for the multiple whole-brain comparisons
for linear/nonlinear age effects and different interactions on mor-
phological measures, resulting in a critical threshold of q < 0.05/
291 = 1.72E-4 (total number of whole-brain tests = 291). Results
from the more lenient exploratory threshold q < 0.05 (but > 1.72E-
4) were also reported here. The rationale for complementing the
conservative q < 1.72E-4 results with results from this more
lenient exploratory threshold is that further adjusting for the
whole-brain tests might lead to false negatives, and the cost of a
false negative could be missing out an important discovery
(McDonald 2014). All the whole-brain analyses were conducted
using our NeuroimagingPheWAS Matlab toolbox (http://bd2k.
ini.usc.edu/tools/neuroimaging-phewas/), which is developed
based on the free SurfStat package (http://www.math.mcgill.
ca/keith/surfstat/). The break point analysis was performed
using the package “Segmented” in R (Muggeo 2008) (https://
cran.r-project.org/web/packages/segmented/index.html). The
group-sparse block PCA was implemented using the package
“sparse PCA” in R (https://github.com/chavent/sparsePCA).

Results
Sample Characteristics

The current sample of 8 137 participants is a group of generally
healthy middle-aged and older adults (range 45.17–79.37 years,

Table 2 Summary of SNPs of the studied genetic factors

SNP Chromosome Gene Major/minor alleles MAF Imputation Info Score

rs429358 19 APOE T/C 0.154 1
rs7412 19 APOE C/T 0.080 1
Val158Met (rs4680) 22 COMT G(Val)/A(Met) 0.492 1
Val66Met (rs6265) 11 BDNF G(Val)/A(Met) 0.187 1
F352V (rs9536314) 13 KLOTHO T/G 0.160 1
C370S (rs9527025) 13 KLOTHO G/C 0.160 1
GWAS-defined AD-associated loci PAF Type
rs6656401 1 CR1 G/A 0.172 0.999 Risk
rs6733839 2 BIN1 C/T 0.391 0.963 Risk
rs35349669 2 INPP5D C/T 0.483 0.997 Risk
rs190982 5 MEF2C A/G 0.391 0.967 Preventive
rs10948363 6 CD2AP A/G 0.271 0.999 Risk
rs9271192 6 HLA-DRB5–HLA-DRB1 A/C 0.274 0.999 Risk
rs11771145 7 EPHA1 G/A 0.351 1 Preventive
rs2718058 7 NME8 A/G 0.363 0.994 Preventive
rs1476679 7 ZCWPW1 T/C 0.302 0.997 Preventive
rs9331896 8 CLU T/C 0.412 0.990 Preventive
rs28834970 8 PTK2B T/C 0.365 0.996 Risk
rs983392 11 MS4A6A A/G 0.401 0.994 Preventive
rs10792832 11 PICALM G/A 0.366 0.999 Preventive
rs11218343 11 SORL1 T/C 0.040 0.992 Preventive
rs10838725 11 CELF1 T/C 0.300 0.999 Risk
rs10498633 14 SLC24A4-RIN3 G/T 0.227 1 Preventive
rs17125944 14 FERMT2 T/C 0.092 0.992 Risk
rs8093731 18 DSG2 C/T 0.020 1 Preventive
rs4147929 19 ABCA7 G/A 0.174 0.998 Risk
rs3865444 19 CD33 C/A 0.314 1 Preventive
rs7274581 20 CASS4 T/C 0.086 0.986 Preventive

Age-Related Brain Differences and Modifiers Zhao et al. | 4173

http://bd2k.ini.usc.edu/tools/neuroimaging-phewas/
http://bd2k.ini.usc.edu/tools/neuroimaging-phewas/
http://www.math.mcgill.ca/keith/surfstat/
http://www.math.mcgill.ca/keith/surfstat/
https://cran.r-project.org/web/packages/segmented/index.html
https://cran.r-project.org/web/packages/segmented/index.html
https://github.com/chavent/sparsePCA


Figure 1. Quadratic age effects on cortical thickness (CTh) (A), volume (CVo) (B), and surface area (CSA) (C) throughout the cerebral cortex. Color bar represents F-sta-

tistics. Areas in blue-cyan represent patterns at the exploratory level of q < 0.05, areas in red-yellow represent patterns at the conservative level of q < 1.72E-4. Fitted

quadratic trajectories are depicted for vertices with maximum F-statistics in clusters (x-axis = age (years), y-axis = cortical morphological measures adjusted for sex

and intracranial volume).
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Figure 2. Linear age effects on CTh (A), CVo (B), and CSA (C) throughout the

cerebral cortex. Color bar represents F-statistics. Areas in blue-cyan represent

patterns at the exploratory level of q < 0.05, areas in red-yellow represent pat-

terns at the conservative level of q < 1.72E-4.

Figure 3. Estimated break points (at the exploratory level of q < 0.05) for the

associations between age and CTh (A), CVo (B), and CSA (C) in the regions show-

ing a quadratic age effect. The results at the conservative level of q < 1.72E-4

are shown in Supplementary Fig. S1.
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mean age = 62.69 ± 7.44 years) and consisted of 3882 males
(47.71%). Table 1 further describes the statistics of basic demo-
graphic variables, cognitive tests, lifestyle behaviors, and geno-
types of the APOE and the haplotype KL-VS of KLOTHO. The
SNPs of the target genetic factors are summarized in Table 2.

Complex Age Effects on Cortical Morphology

The linear and nonlinear age effects at each vertex for the three
structural measures—CTh, CVo, and CSA are illustrated in
Figures 1 and 2. At the exploratory level of q < 0.05, quadratic
age effects were found in several limbic/paralimbic areas,
including the medial orbitofrontal cortex (mOFC), the medial
temporal cortex (mTC), and the cingulate cortex, for all mea-
sures. Extra quadratic age effects were observed in the lateral
temporal cortex (LTC) and occipital regions for CVo and CSA,
and in the dorsolateral prefrontal cortex (DLPFC) for CSA.
Especially, the quadratic age effects in the left mTC and the
bilateral temporal poles for CTh, and in the left mTC and the
left lateral occipital cortex (LOC) for CVo survived the conserva-
tive correction for multiple comparisons at q < 1.72E-4. The
break point analysis using segmented regression showed that
the mean cross-sectional age trajectories in the regions with
quadratic age effects changed in slope at age of 60.12 ± 3.16
years for CTh, 59.19 ± 2.68 years for CVo, and 59.16 ± 3.01 years
for CSA (at the exploratory level of q < 0.05) (Fig. 3). The exis-
tence of the break points for the left mTC and posterior cingu-
late cortex (PCC) and the bilateral temporal poles for CTh, and for
the bilateral mTC for CVo survived the conservative correction for
multiple comparisons at q < 1.72E-4 as well (Supplementary
Fig. S1). Figure 4 presents the annualized changes across the mid-
dle to old adult age range computed from the fitted linear regres-
sion models at each vertex for the structural measures. Negative
associations between age and cortical morphology (at the explor-
atory level of q < 0.05) were found across most of the cortical
areas, most pronouncedly in the prefrontal cortex (PFC) and LTC
for all measures, additionally in the inferior parietal cortex (IPC)
for CTh and in the inferior temporal cortex (ITC) and OFC for CVo
and CSA. Most of these linear age effects also survived the conser-
vative correction at q < 1.72E-4, except those in the superior parts
of the left precentral gyrus (PreCG) and postcentral gyrus (PostCG)
and the superior and inferior parietal cortex for CSA (Fig. 2). No
cubic age effect on any of the measures were found across the
cortex.

Potential Modifiers of Age-Related Cortical Differences

Demographics
At the exploratory level of q < 0.05, sex effects on the age-
differences in CTh were detected in the DLPFC, central motor
cortex (CMC), cingulate cortex, bilateral lingual gyri (LING), the
left lateral orbitofrontal cortex (LOFC), and the right ITC and
posterior insula (Fig. 5A). In these areas, males showed greater
negative associations between age and cortical morphology
than females. Such sexual dimorphisms largely expanded to
most of the cortical mantle for CVo and CSA (at the exploratory
level of q < 0.05), except the bilateral triangular parts of the
inferior frontal gyri (IFG), insula, the bilateral temporal poles
(TPO), the left intraparietal cortex (iPC) and posterior middle
temporal cortices (MTC), the right superior temporal cortex
(STC), the upper portion of the precuneus, and the anterior
parahippocampus (Fig. 5B,C). The sex effects in the bilateral
PreCG and lower PoCG, the left LTC, anterior PFC and medial

Figure 4. Annualized changes in CTh (A), CVo (B), and CSA (C), computed from

the fitted generalized linear regression models with sex and intracranial vol-

ume as confounding factors. Only effects that survived FDR correction for mul-

tiple comparisons at the 0.05 level are displayed. Green-lime reflects decreases

and pink-red reflects increases.

4176 Cerebral Cortex, 2019, Vol. 29, No. 10



Figure 5. Sex effects on age-related differences in CTh (A), CVo (B), and CSA (C). Color bar represents F-statistics. Areas in blue-cyan represent patterns at the explor-

atory level of q < 0.05, areas in red-yellow represent patterns at the conservative level of q < 1.72E-4. Fitted age trajectories for males (blue lines) and females (red

lines) are depicted for vertices with maximum F-statistics in clusters (x-axis = age (years), y-axis = cortical morphological measures adjusted for intracranial volume).
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Figure 6. Associations between cognitive performance and age-related cortical morphological differences. Grayscale bar represents F-statistics. Areas in black-

lightgray represent associations at the exploratory level of q < 0.05. (A) Associations between reaction time (RT) and age-related CTh differences. Because RT were
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prefrontal cortex (mPFC), the bilateral PCC, paracentral lobules
(PCL), mTC and LING, and the right angular gyrus (ANG) for
CVo, and in a small region at the left LTC for CSA also survived
the conservative correction at q < 1.72E-4. We observed no
association between education qualifications and age-related
cortical differences for all measures.

Cognitive Functions
Negative associations between age and cognitive functions in
the studied sample were detected using all the cognitive tests
(Supplementary Fig. S2). The performance of the cognitive tests
was also found to be correlated with brain morphology in mul-
tiple prefrontal and temporal regions (Supplementary Figs S3–
S6). Associations of cognitive functions with age-related corti-
cal differences identified at the exploratory level of q < 0.05
were illustrated in Figure 6. The nonlinearity of CTh–age rela-
tionship was found to vary with the variation in reaction time
in the right anterior cingulate cortex (ACC), caudal MTC, and
anterior PFC (Fig. 6A). A similar pattern was seen for prospec-
tive memory in the right ACC (Fig. 6B). Decreased fluid intelli-
gence score was associated with a greater negative association
between age and CVo/CSA in the left STC (Fig. 6C). None of
these effects of cognitive functions on age-related cortical dif-
ferences survived the conservative correction at q < 1.72E-4. No
association of visual memory performance with age-related
cortical differences was detected.

Smoking
Current and ex-smokers showed a widespread cortical morpho-
metric reduction (pronounced for CTh and CVo) relative to
those who had never smoked (Supplementary Figs S7–S9).
Current smokers also showed smaller CVo in the left parahip-
pocampus and ITC compared with ex-smokers (Supplementary
Fig. S8C). Within current and ex-smokers (n = 2005), we found
negative widespread correlations of pack-years with cortical
morphology (Supplementary Fig. S10). Assessing associations
of smoking status with age-related cortical differences found a
greater negative association between age and CVo in current
smokers compared with those who had never smoked (at the
exploratory level of q < 0.05), in the IFG, ACC, and middle cingu-
late cortex (MCC), the left subcentral cortex (SCC), the right
LOC, the right precuneus, and parahippocampus (Fig. 7). These
effects of smoking status on age-related CVo differences did
not survive the conservative correction at q < 1.72E-4. No smok-
ing status effects were found on age-related differences in CTh
and CSA. In smokers, the number of cigarettes smoked per day
was not associated with age-related cortical differences, no
matter if duration of smoking was adjusted.

Alcohol Consumption
In the sample consisted of both abstainers and alcohol drinkers,
a U-shaped relationship of alcohol consumption with CTh and
CVo was found in widespread brain regions (Supplementary
Fig. S11). These results still remained when abstainers were
excluded. At the exploratory level of q < 0.05, compared with

abstainers, individuals consuming >30 drinks/week showed a
greater negative association between age and CVo in the CMC,
pre-motor cortex (PMC), mTC, rostral ACC, and occipital cor-
tex, and the left LOFC and STC, and the right MCC and tempor-
oparietal junction (TPJ) (Fig. 8B). Some of these patterns, for
example, in the STC and mTC, were consistent also for CTh
and CSA (Fig. 8A,C). Increased negative CVo–age associations
in the left parahippocampus and the right superior frontal
gyrus (SFG) were also observed in individuals consuming
14–21 and 21–30 drinks/week, respectively (at the exploratory
level of q < 0.05) (Supplementary Fig. S12). None of the alcohol
consumption effects on age-related cortical differences sur-
vived the conservative correction at q < 1.72E-4.

Sleep
Associations of insomnia status with age-related morphological
differences identified at the exploratory level of q < 0.05 are
illustrated in Figure 9. Frequent insomnia symptoms were asso-
ciated with an inverted U-shaped CVo–age relationship in the
mPFC, IFG, SFG, LING, the left STC, the right CMC, PMC, superior
parietal cortex (SPC), rolandic operculum (ROL), precuneus, pos-
terior parahippocampus, and anterior insula (Fig. 9B). Most of
these patterns were consistently observed for CSA, except the
ones in the LING and the right precuneus, parahippocampus,
anterior insula, and SPC (Fig. 9C). A CTh effect was found in the
left LING (Fig. 9A). These effects of insomnia status on age-
related cortical differences did not survive the conservative cor-
rection at q < 1.72E-4. No effects of sleep duration on age-
related morphological differences were found, neither using
the raw continuous nor the categorized (short: <7 h, average:
7–9 h, long: >9 h) measures.

Genetics
In the whole sample, no genetic association with age-related
cortical differences was found, except between the BDNF
Val66Met SNP (rs6265) and age-related CSA difference in the
left SMG (at the exploratory level of q < 0.05) (Supplementary
Fig. S13). Previous cognitive data have reported that effects of
potential genetic modifiers for brain aging, for example, APOE,
may be more pronounced at older ages (Schiepers et al. 2012;
Davies et al. 2015; Marioni et al. 2016). Therefore, we repeated
the analyses dividing the current sample into an older subsam-
ple ( >60 years, n = 5273) and a younger subsample (≤60 years,
n = 2864). In the older subsample, associations (at the explor-
atory level of q < 0.05) were found between APOE and age-
related CTh differences in the right mTC and PCC (Fig. 10A);
between the BDNF Val66Met SNP (rs6265) and CVo differences
in the left CMC, DLPFC, PCL, and the left parahippocampus and
SMG (Fig. 10B); between the COMT Val158Met SNP (rs4680) and
age-related CTh differences in the right DLPFC, CMC, parietal,
MCC, and PCC (Fig. 10C); between the AD GWAS loci CASS4
(rs7274581) and age-related CSA differences in the right PoCG
(Fig. 10D); and between the AD GWAS loci CD2AP (rs10948363)
and age-related CSA differences in the right DLPFC, mPFC, OFC,
and posterior MCC, and PreCG (Fig. 10E). In the younger

positively skewed, the variables were transformed with a log transform. Fitted age trajectories for average RT (mean(RT) = 576ms) (dashed lines), long RT (mean(RT)

+ SD(RT) = 681ms) (solid lines), and short RT (mean(RT) − SD(RT) = 487ms) (circle, solid lines) are depicted for vertices with maximum F-statistics in clusters (x-axis =

age (years), y-axis = CTh adjusted for sex and intracranial volume). (B) Associations between prospective memory performance and age-related CTh differences.

Fitted age trajectories for participants who completed the task on first attempt (solid line) and failed (dashed line) are depicted for the vertex with maximum F-statis-

tic in the cluster. (C) Associations between fluid intelligence score (FIS) and age-related differences in cortical volume (CVo) (top panel) and CSA (bottom panel). Fitted

age trajectories for average FIS (mean(FIS) = 7) (dashed lines), high FIS (mean(FIS) + SD(FIS) = 9) (solid lines), and low FIS (mean(FIS) − SD(FIS) = 5) (circle, solid lines)

are depicted for vertices with maximum F-statistics in clusters.
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subsample, age-related CTh differences were associated with
the AD GWAS loci MEF2C (rs190982) in the left DLPFC, LOFC,
SCC, iPC, LTC, TPO and fusiform regions, and the right STC and
IFG (at the exploratory level of q < 0.05) (Fig. 11A); and with the
AD GWAS loci DSG2 (rs8093731) in the left occipital cortex (at
the exploratory level of q < 0.05) (Fig. 11B). None of these
genetic effects on age-related cortical differences survived the
conservative correction at q < 1.72E-4. No association of the
KLOTHO gene (haplotype KL-VS) with age-related cortical differ-
ences was found in the whole sample or subsamples.

Joint Effects of Cognitive, Lifestyle Variables, and Education
The loadings of the first 10 PCs that were derived by the group-
sparse block PCA and together explained over 95% of variance
among the original multivariate data are presented in Table 3.
Analyzing the interactions between these PCs and age on corti-
cal morphemtrics, the third PC (notated as PC3) showed diffuse
associations with age-related CTh differences in the bilateral
central sulci, the left STC, the right ITC, LING and ventromedial
prefrontal cortex (vmPFC) (at the exploratory level of q < 0.05)
(Fig. 12A); and the fifth PC (PC5) was associated with age-
related CVo differences in the right precuneus (at the explor-
atory level of q < 0.05) (Fig. 12B). In these patterns, lower PC3
and PC5 scores were correlated with a greater negative

association between age and cortical morphology. PC3 was a
combined variable of insomnia status (|loading| = 0.59), alcohol
drinker status (|loading| = 0.31), sleep duration (|loading| = 0.24),
alcohol consumption (|loading| = 0.16), prospective memory (|
loading| = 0.1), and education, smoking status and pack-years
of smoking (|loading| < 0.1), and explained 12.58% of variance in
the multivariate data; PC5 was a combination of prospective
memory (|loading| = 0.51), education (|loading| = 0.47), and fluid
intelligence, smoking status, pack-years of smoking and alco-
hol drinker status (|loading| < 0.10), and explained 10.55% of
variance. The PC3 and PC5 effects did not survive the conserva-
tive correction at q < 1.72E-4. No associations of the other PCs
with age-related morphological differences were found.

Discussion
This study adds to our understanding of age-related differences
in brain morphology in healthy middle-aged and older adults.
The distribution of linear and nonlinear associations between
age and brain morphology across the brain was found to be
related to the laminar organization and evolutionary history of
the cortex. Age of about 60 years was found to be a break point
for increasing negative associations between age and brain
morphology in the AD-prone areas. Further, individual effects
of sex, cognitive functions, lifestyle behaviors, specific genetic

Figure 7. Differences between current smokers and lifetime nonsmokers in age-related CVo differences. Grayscale bar represents F-statistics. Areas in black-lightgray

represent patterns at the exploratory level of q < 0.05. Fitted age trajectories for lifetime nonsmokers (dashed lines) and current smokers (solid lines) are depicted for

vertices with maximum F-statistics in clusters (x-axis = age (years), y-axis = CVo adjusted for sex and intracranial volume).
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Figure 8. Differences between heavy alcohol drinkers ( >30 standard drinks/week) and abstainers in age-related differences in CTh (A), CVo (B), and CSA (C). Grayscale

bar represents F-statistics. Areas in black-lightgray represent patterns at the exploratory level of q < 0.05. Fitted age trajectories for abstainers (dashed lines) and hea-

vy drinkers (solid lines) are depicted for vertices with maximum F-statistics in clusters (x-axis = age (years), y-axis = cortical morphological measures adjusted for sex

and intracranial volume).
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Figure 9. Associations between insomnia status and age-related differences in CTh (A), CVo (B), and CSA (C). Grayscale bar represents F-statistics. Areas in black-

lightgray represent patterns at the exploratory level of q < 0.05. Fitted age trajectories for individual with frequent insomnia symptoms (dashed lines) and without fre-

quent insomnia symptoms (solid lines) are depicted for vertices with maximum F-statistics in clusters (x-axis = age (years), y-axis = cortical morphological measures

adjusted for sex and intracranial volume).
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factors and combined effects of the cognitive, lifestyle vari-
ables, and education on age-related cortical differences were
identified systematically.

Complex Cortical Morphology–Age Associations Align
with Laminar Cortical Organization

The current large cross-sectional SBM study revealed remark-
able quadratic age effects in several limbic/paralimbic areas
(mOFC, mTC, ACC, and PCC) consistently for CTh, CVo, and
CSA (Fig. 1). Especially, the quadratic age effects in the left mTC
for CTh and CVo survived the conservative correction for multi-
ple comparisons at q < 1.72E-4. The limbic/paralimbic system is
typically defined as the allocortex (3–4 cell layers) cytoarchitec-
turally (Zilles et al. 2015). In most of the remaining cortical
mantle that are six-layered neocortex, only linear age effects
were detected most pronouncedly in the PFC and LTC for all
measures (Figs 2 and 4 and Supplementary Fig. S14) (at both
exploratory level of q < 0.05 and conservative level of q < 1.72E-4).
We also observed spared cortical structures with age especially in
the central sulcus and surrounding areas for CVo and CSA (Figs 2
and 4). These findings are well in line with the cross-sectional
(Ziegler et al. 2012; Fjell et al. 2014) and longitudinal data (Storsve
et al. 2014) from recent cortical morphometry studies, as well as
with the predominant vulnerability of prefrontal and temporal
white matter (WM) to the deleterious effects of aging reported by
previous WM volume studies (Gunning-Dixon et al. 2009; Salat
et al. 2009; Fjell and Walhovd 2010). The neurobiological basis
for differential cortical changes in normal aging remain unclear.
Previous neuroimaging studies have revealed a parallel between
basic types of the cortex and the patterns of cortical development
during childhood through early adulthood: nonlinear developmen-
tal trajectories were mainly located in neocortex areas (Gogtay
et al. 2004; Lenroot et al. 2007; Shaw et al. 2008), whereas linear
growth trajectories predominantly were located in the allocortex
structures (Shaw et al. 2008). Our findings, together with the exist-
ing morphometry data (Ziegler et al. 2012; Fjell et al. 2014; Storsve
et al. 2014), show that the patterns of age-related cortical differ-
ences or changes in normal aging also align closely with the lami-
nar organization of the cortex: the neocortex largely follows a
linear trajectory, while allocortex mainly follows a curvilinear
path. Such alignment in aging appears to follow the inverse of
neurodevelopment (Pfefferbaum et al. 2013). The allocortex
and neocortex are the 2 broad cortical types identified by com-
parisons of cortical organizations across several species, that
is, allocortex areas are homogenous in all mammalian brains
and thus likely evolved in early mammals, whereas many of
neocortex areas are unique to primates indicating a later evo-
lution (Striedter 2006). Therefore, the combined findings in
normal neurodevelopment and aging suggest a possible evolu-
tionary program for the complexity of differential structural
brain changes across the life span.

Furthermore, in line with previous findings (Dickerson et al.
2009; Storsve et al. 2014), age-related CVo differences appear
largely related to CSA differences in temporal cortices as well
as in occipital areas, while CTh differences were partially
responsible for the late-life increased CVo–age association in
the fusiform (Figs 1 and 2). It has been suggested that CSA
increases might contribute to brain connectivity development
than CTh increases (Murre and Sturdy 1995), and that pruning
in childhood and adolescents is a prerequisite for optimal CSA
increases (White et al. 2010). Thus, age-related cortical shrink-
age is not a uniform process but rather is the result of separate
mechanisms of CTh and CSA changes in separate anatomical

regions (Storsve et al. 2014). This further highlights the need to
take multiple measures of cortical morphology into consider-
ation to obtain a better understanding of the neurobiological
processes that characterize normal aging.

Age of About 60 is the Break Point for Increasing
Negative Cortical Morphology–Age Association

The quadratic cross-sectional age trajectories estimated in the
current study suggest an increase in negative associations
between age and cortical morphological measures after around
60 years in the bilateral temporal cortices as well as in the left
PCC/precuneus (pronounced for CTh), occipital cortices (pro-
nounced for CVo and CSA), and DLPFC (pronounced for CSA)
(Fig. 1). We conducted a break point analysis using segmented
regression modeling (Muggeo 2003; 2016). The results confirmed
that the changes in the slopes of the associations between age
and brain morphology in the regions with a quadratic age effect
occurred at the age of around 60 years (60.12 ± 3.16 years for
CTh, 59.19 ± 2.68 years for CVo, and 59.16 ± 3.01 years for CSA)
(Fig. 3), especially the existence of the break points for the mTC
(for both CTh and CVo) and the left PCC (for CTh) survived the
conservative correction at q < 1.72E-4 (Supplementary Fig. S1).
A number of previous cross-sectional (Ziegler et al. 2012; Fjell
et al. 2014) and longitudinal (Storsve et al. 2014) structural MRI
studies have also reported increased negative associations
between age and brain morphology or accelerated cortical
declines after about 60 years in these areas, although few of
them statistically tested this observation. Some life span
diffusion-weighted magnetic resonance imaging (DWI) data
reported that diffusion tensor measures of WM (global frac-
tional anisotropy [FA], mean diffusivity [MD], and radial diffu-
sivity [RD]) peaked at around 30 years, followed by a small, yet
stable, decrease/increase until about 60 years with a subse-
quent accelerated decrease/increase (Westlye et al. 2010). In
line with this, another recent study on age-related WM differ-
ences in 3513 UK Biobank participants reported increased
adverse associations of age with MD and neurite orientation
dispersion and density imaging (NODDI) measures (intracellu-
lar volume fraction [ICVF], isotropic volume fraction [ISOVF],
and orientation dispersion [OD]) of most major WM tracts after
about 60 years. In addition, we found increased negative asso-
ciations between age and fluid intelligence and prospective
memory performance after around 60 years in the current sam-
ple (estimated break point for fluid intelligence = 63.85 years,
uncorrected P = 1.69E-8; estimated break point for proportion of
success in prospective memory = 60–65 years, uncorrected P =
0.038) (Supplementary Fig. S1). Merging these multimodal imag-
ing and cognitive data, we speculate that age of about 60 years
may be the break point for accelerated cortical declines in nor-
mal aging. Furthermore, temporal cortices, such as the entorhi-
nal cortex (EC), parahippocampus, LTC and fusiform, and the
PCC are known to be vulnerable in AD, and the pathological
atrophy likely appears years before clinical symptoms
(Davatzikos et al. 2009; Jack et al. 2010). It was suggested that
accelerating atrophy in these AD-prone areas may be caused by
undetected neurodegenerative diseases and is not a feature of
healthy aging (Burgmans et al. 2009). Nevertheless, a recent
study explicitly demonstrated that undetected AD could evi-
dence nonlinearity in EC only, rather in the other AD-
vulnerable regions (Fjell et al. 2014). Our cross-sectional analy-
ses detected increasing associations between age and cortical
morphology in all the AD-vulnerable temporal regions except
EC. Therefore, preclinical conditions should have been well
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Figure 10. Associations between genetic variants and age-related cortical morphological differences in the older subsample ( >60 years). Grayscale bar represents

F-statistics. Areas in black-lightgray represent patterns at the exploratory level of q < 0.05. (A) Associations between APOE ε4 (risk for Alzheimer’s disease [AD]) and

age-related CTh differences. Fitted age trajectories for 0 (solid lines), 1 (dashed lines), and 2 (circle, solid lines) ε4 alleles are depicted for vertices with maximum F-sta-

tistics in clusters (x-axis = age (years), y-axis = CTh adjusted for sex and intracranial volume). (B) Associations between BDNF Val66Met and age-related CVo
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excluded in the current study (see Methods and Supplementary
Table S2), and the observed nonlinearity could be related to
normal aging dynamics in the temporal cortices.

Greater Negative Cortical Morphology–Age Associations
in Males than Females

The role of sex in brain aging is still controversial. This study
observed greater negative CTh–age associations in the DLPFC,
mPFC, CMC, cingulate cortex, LING, ITC, and posterior insula, in
males compared with females at the exploratory level of q <
0.05 (Fig. 5A), in line with previous findings (Takahashi et al.
2011; Pfefferbaum et al. 2013). These patterns of sex differences
enlarged into more widespread cortical regions for CVo and
CSA, especially the patterns in the CMC, PFC, PCC, mTC, Moc,
the left LTC and the right ANG for CVo and the left LTC for CSA
survived the conservative correction at q < 1.72E-4 (Fig. 5B,C).
These greater negative cortical morphology–age associations in
males may be related to their more extended age-related reduc-
tion of brain metabolism than females (Malpetti et al. 2017) and
may yield a neuroanatomical basis for the faster age-related
cognitive declines in males (Gur and Gur 2002). The cause of
sex differences in brain atrophy with aging is still unclear.
Gonadal hormones may play a key role in the underlying
mechanism. For example, the level of testosterone that may
have neuroprotective properties steadily decreases with age in
healthy male adults (Holland et al. 2011). Therefore, including
sex hormones in future studies on sexual dimorphism is
warranted.

Better Cognitive Performance is Related to Reduced
Negative Cortical Morphology–Age Associations

Cognitive functions deteriorate with age (Reuter-Lorenz and
Park 2010; Harada et al. 2013) (Supplementary Fig. S2). To date,
there are few papers describing the effects of cognitive func-
tions on age-related cortical morphological differences in
healthy middle-aged and older adults. In this work, variations
in reaction time and prospective memory performance were
associated with a transformation of the U-shaped CTh–age
relationship in the right ACC at the exploratory level of q < 0.05
(Fig. 6A,B). Functional neuroimaging studies have revealed a
key role of the ACC for determining the processing time in reac-
tion time tasks (Naito et al. 2000) and the performance in pro-
spective memory tasks (Cona et al. 2015). The current
(Supplementary Figs S3 and S4) and previous (Righart et al.
2013) MRI data also showed significant structure–cognition rela-
tionships with reaction time and prospective memory response
in the ACC. It has been reported that cognitive exercise may
induce short-term structural changes in the aging brain (Engvig
et al. 2010) and that neurofeedback training in the ACC may
induce long-term cortical changes and produce significant
improvement in working memory and processing speed
(Cannon and Lubar 2011). These functional and structural find-
ings support the hypothesis that the increased CTh at late ages
in the ACC, which was consistently observed in the current
(Fig. 1) and previous studies (Thambisetty et al. 2010; Fjell et al.

2014; Storsve et al. 2014; Yang et al. 2016) is likely related to
neuroplasticity at older ages (Engvig et al. 2010). Additionally,
this study detected negative correlations of the fluid intelli-
gence score with the slopes of CVo/CSA–age associations at the
exploratory level of q < 0.05. Higher intelligence has been asso-
ciated with larger structural measures primarily in the prefron-
tal and temporal cortices in the current (Supplementary Fig. S5)
and previous works (Choi et al. 2008; Luders et al. 2009; Menary
et al. 2013; Karama et al. 2014). Interestingly, the fluid intelli-
gence effects on CVo/CSA–age associations were found only in
the STC (Fig. 6C) that is an essential structure involved in audi-
tory and language processing. This may be because that the
fluid intelligence task in the UK Biobank protocol requires read-
ing comprehension and verbal reasoning, in addition to induc-
tive and deductive logic capabilities (Lyall et al. 2016).
Therefore, the STC involved in language comprehension may
play a key role for determining the performance in this particu-
lar fluid intelligence test.

Unhealthy Lifestyles are Related to Greater Negative
Cortical Morphology–Age Associations

In the current UK Biobank cohort, we successfully reproduced
previous findings (Davatzikos et al. 2009; Jack et al. 2010;
Karama et al. 2015) of the diffuse negative impacts of chronic
cigarette smoking on brain structures in nondemented aging
adults (Supplementary Figs S7–S9) and of the diffuse dose-
dependent negative association between smoking and CTh in
old smokers (Supplementary Fig. S10). We further identified dif-
fuse increased negative associations between age and brain
morphology in current smokers compared to nonsmokers, at
the exploratory level of q < 0.05, pronouncedly in several AD-
prone areas (parahippocampus and PCC/precuneus) and corti-
cal components of brain reward system (BRS) that are known to
extend in substance use disorders (Fowler et al. 2007) (ACC and
PFC) as well as the left SCC and the right occipital cortices
(Fig. 7). These are consistent with the reported smoking-
induced increases in regional longitudinal brain atrophy rates
in a relatively small subsample of healthy elderly from the
ADNI cohort (Durazzo et al. 2012). Additionally, in ex-smokers,
the regions with greater negative CVo–age associations in cur-
rent smokers compared with nonsmokers showed a trend of
larger negative CVo–age associations than in nonsmokers
and smaller than in current smokers (uncorrected P<0.05)
(Supplementary Fig. S15), being supportive of the possible par-
tial recovery effect of smoking cessation (Karama et al. 2015).
Of note, none of these trends survived FDR correction. We also
found that the daily dosage of smoking did not affect the age-
related cortical differences in smokers, regardless of the dura-
tion of smoking. Considering the greater negative CVo–age
associations in smokers observed in the categorized analyses,
this suggests that chronic smoking of even a small amount per
day could be harmful to normal brain aging equivalently to a
large dosage.

It is known that alcohol consumption has a U-shaped rela-
tionship with the risk of dementia, cardiovascular disease
(Ruitenberg et al. 2002; Mukamal et al. 2003; Luchsinger et al.

differences. Fitted age trajectories for Val/Val (solid lines), Val/Met (dashed lines), and Met/Met genotypes (circle, solid lines) are depicted for vertices with maximum

F-statistic in clusters. (C) Associations between COMT Val158Met and age-related CTh differences. Fitted age trajectories for Val/Val (solid lines), Val/Met (dashed

lines), and Met/Met genotypes (circle, solid lines) are depicted for vertices with maximum F-statistics in clusters. (D) Associations of CASS4 rs7274581 (preventive for

AD) and age-related CSA differences. Fitted age trajectories for T/T (solid lines), C/T (dashed lines), and C/C genotypes (circle, solid lines) are depicted for vertices with

maximum F-statistics in clusters. (E) Associations between CD2AP rs10948363 (risk for AD) and age-related CSA differences. Fitted age trajectories for A/A (solid lines),

A/G (dashed lines), and G/G genotypes (circle, solid lines) are depicted for vertices with maximum F-statistics in clusters.
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2004; Bell et al. 2017), and cognitive functions (Mukamal et al.
2003; Stampfer et al. 2005; Piumatti et al. 2018), that is, com-
pared with abstinence, light-to-moderate alcohol consumption
is protective, whereas heavy consumption is harmful. Using
the SBM framework, we detected widespread patterns of such
U-shaped association of alcohol consumption with CTh and
CVo (Supplementary Fig. S11). This is especially consistent with
the recently reported U-shaped relationship of alcohol con-
sumption with the performance in the reaction time task in
the UK Biobank cohort (Piumatti et al. 2018). We further found

that, compared with abstinence, alcohol consumption of >30
drinks/week was related to an increased negative cortical mor-
phology–age association in multiple brain regions (at the
exploratory level of q < 0.05) (Fig. 8). The patterns in the left
parahippocampus and the right SFG were also observed in indi-
viduals consuming 14–21 and 21–30 drinks/week, respectively
(Supplementary Fig. S12). These findings evidence that heavy
alcohol use may be related to accelerated cortical decline in
normal aging. Trends of reduced negative cortical morphology–
age associations (uncorrected P < 0.05) relative to abstainers

Figure 11. Associations between genetic variants and age-related cortical morphological differences in the younger subsample (≤60 years). Grayscale bar represents

F-statistics. Areas in black-lightgray represent patterns at the exploratory level of q < 0.05. (A) Associations between MEF2C rs190982 (preventive for AD) and age-

related CTh differences. Fitted age trajectories for A/A (solid lines), A/G (dashed lines), and G/G (circle, solid lines) genotypes are depicted for vertices with maximum

F-statistics in clusters (x-axis = age (years), y-axis = CTh adjusted for sex and intracranial volume). (B) Associations between DSG2 rs8083731 (preventive for AD) and

age-related CTh differences. Fitted age trajectories for C/C (solid lines), C/T (dashed lines), and T/T genotypes (circle solid lines) are depicted for the vertex with maxi-

mum F-statistic in the cluster.
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were observed in the ACC, MCC, MTC, SMG, and insula (incon-
sistently between CTh, CVo, and CSA) in individuals consuming
1–21 drinks/week, which were not seen in individuals consum-
ing >21 drinks/week (Supplementary Figs S16–S18). With cau-
tion, this might imply a potential protective effect of light-to-
moderate drinking on age-related cortical decline in the specific
regions.

Sleep disruption has been suggested as a novel contributing
factor to age-related cognitive decline in elderly (Mander et al.
2013; Lo et al. 2014). This study showed that the relatively stable
negative CVo–age associations in normal sleepers was disrupted
into an inverted U-shaped relationship in multiple cortical
regions in participants with frequent insomnia symptoms (at the
exploratory level of q < 0.05) (Fig. 9B). These disruptions were
found to be mostly contributed by CSA (Fig. 9C) rather by CTh,
except in the left LING (Fig. 9A). Central nervous system hyper-
arousal represents a major pathophysiologic pathway in the
development and maintenance of insomnia (Riemann et al.
2010; Zhao et al. 2015). Such hyperarousal hypothesis might
account for the insomnia-related increase or preservation of
cortical structures in middle and early old ages. While, the
increased negative cortical morphology–age associations in
late old ages may reflect an expression of the cumulative
adverse influence of chronic insomnia in earlier life. Our find-
ings may provide a neuroanatomical basis for the insomnia-
related cognitive impairments observed in a recent UK
Biobank cognitive study (Kyle et al. 2017).

Genetic Effects are More Pronounced in Late Life

The current genetic association analysis was focused on APOE,
BDNF, COMT, KOLTHO, and 21 AD GWAS loci. The APOE, BDNF,
and COMT genes have been more frequently associated with
individual differences in age-sensitive cognitive domains than

other genes (Raz et al. 2009). The longevity gene KLOTHO is a
leading aging suppressor and has been related to enhanced
cognition and greater CVo in healthy elderly (Dubal et al. 2014;
Yokoyama et al. 2015). The 21 AD loci, in addition to APOE,
were identified by the largest GWAS in AD to date (Lambert
et al. 2013), many of them have been implicated in brain meta-
bolism and neurodegeneration (Stage et al. 2016). Nevertheless,
the influences of these genetic variants on age-related cortical
differences remain unclear. Using the whole sample, we found
only a regional effect of the BDNF gene for CSA (at the explor-
atory level of q < 0.05) (Supplementary Fig. S13), while more dis-
tributed genetic associations were detected in the subsample of
older participants ( >60 years) (Fig. 10). For example, the APOE
ε4 allele was associated with greater negative CTh–age associa-
tions in AD-prone areas (mTC and PCC) in the older subsample
(at the exploratory level of q < 0.05) rather in the younger ones
(Fig. 10A), consistently with previous findings of more pro-
nounced APOE associations with cognitive declines at older
ages (Schiepers et al. 2012; Davies et al. 2015; Marioni et al.
2016). Such phenomenon may be related to the age-related
gene expression change in the brain (Lu et al. 2004; Glass et al.
2013). The age-related gene expression change may also
account for the contrary directions of the BDNF Val66Met
effects reported in young and old samples, that is, Met allele is
vulnerable to brain atrophy and cognitive impairment in early
life (Egan et al. 2003; Pezawas et al. 2004), whereas Val allele is
vulnerable to cognitive declines (Harris et al. 2006) and AD
(Ventriglia et al. 2002) in late life. In line with this, we found, in
specific brain regions, BDNF Met allele was associated with
smaller CVo and CSA at ages younger than around 65 years,
while Val allele was associated with regional structural loss at
older ages (Fig. 10B and Supplementary Fig. S13). This theory
may also apply to the inversed COMT Val158Met effects on CTh
in younger and older groups observed here (Fig. 10C) and in

Table 3 Loadings of the first 10 PCs produced by the group-sparse block PCA

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Education
College degree −0.11 0.47 0.013 −0.029 0.47 −0.12 0.0026 −0.16
No college degree 0.11 −0.47 −0.013 0.029 −0.47 0.12 −0.0026 0.16
Fluid intelligence Score 0.32 −0.017 0.074 0.25 −0.014 0.035 −0.015 0.93
Prospective memory:
Completed on the first attempt 0.42 0.10 −0.18 0.51 −0.076 0.00053 −0.081
Not completed on the first attempt −0.42 −0.10 0.18 −0.51 0.076 −0.00053 0.081
Visual memory −0.081 −0.75 0.080 −0.51 0.25 0.24
Reaction time −0.13 −0.55 0.054 0.70 −0.42 0.11

Smoking status
Current 0.14 −0.010 −0.032 −0.026 0.13 0.94 −0.0063
Never −0.56 0.048 0.13 0.070 0.0089 −0.022 0.0051
Previous 0.52 −0.045 −0.12 −0.062 −0.058 −0.34 −0.0028

Pack-years of Smoking 0.54 −0.044 −0.12 -0.056 0.039
Alcohol drinker Status
Current 0.15 0.17 −0.31 0.54 −0.088 −0.018 −0.024
Never −0.15 −0.17 0.31 −0.54 0.088 0.018 0.024

Alcohol consumption 0.20 0.14 −0.16 0.22 −0.014
Insomnia:
Control −0.026 0.59 −0.35 −0.079 −0.15
Frequent symptom 0.026 −0.59 0.35 0.079 0.15

Sleep duration 0.24 −0.12 −0.034 0.49 0.85
Variance (%) 17.96 14.29 12.58 12.16 10.55 6.67 6.21 5.26 5.13 4.46
Cumulative variance (%) 17.96 32.25 44.83 57.00 67.54 74.22 80.42 85.69 90.81 95.27

Note: Empty cells have zero loadings.
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previous studies (Lee and Qiu 2016). In the older subsample, 2
AD GWAS loci, CD2AP (rs10948363) and CASS4 (rs7274581), were
associated with CSA differences over time (at the exploratory
level of q < 0.05). The CD2AP is a leading genetic risk factor for
AD (Cochran et al. 2015). Here, the minor allele G was linked to
increasing negative CSA–age associations after around 65 years
(Fig. 10E). The exact function of CASS4 is unknown, and the
reported associations of this gene with AD are inconsistent.
The observed preventive effects of the CASS4 SNP support its
preventive role for AD (Lambert et al. 2013) (Fig. 10D). In the
younger subsample (≤60 years), only 2 preventive AD GWAS

loci (Lambert et al. 2013), MEF2C (rs190982) and DSG2
(rs8093731), were found to show preventive effects on negative
CTh–age associations (at the exploratory level of q < 0.05)
(Fig. 11). We could speculate that AD risk factors (e.g., APOE and
CD2AP) may pronouncedly function in the brain at older ages
(>60 years), whereas preventive factors (e.g., MEF2C and DSG2)
may mainly express earlier. It is not surprising that we did not
detect any association of the KLOTHO gene with age-related
cortical differences. It was reported that KLOTHO effects on
brain structures seem to be relatively constant across the adult-
hood (Yokoyama et al. 2015).

Figure 12. Associations between the third principal component (PC3) and age-related CTh differences (A) and between the fifth principal component (PC5) and age-

related CVo differences (B). Grayscale bar represents F-statistics. Areas in black-lightgray represent associations at the exploratory level of q < 0.05. Fitted age trajecto-

ries for mean PC score (dashed lines), high PC score [mean(PC score) + SD(PC score)] (solid lines), and low PC score [mean(PC score) − SD(PC score)] (circle, solid lines)

are depicted for vertices with maximum F-statistics in clusters (x-axis = age (years), y-axis = cortical morphometric measure adjusted for sex and intracranial

volume).
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Joint Effects of Cognitive, Lifestyle Variables, and Education
The analyses on the first 10 PCs from the group-sparse block
PCA showed that PC3 and PC5 were, respectively, associated
with age-related CTh differences in the central sulci, the left
STC, the right ITC, LING and vmPFC, and age-related CVo dif-
ferences in the right precuneus (at the exploratory level of q <
0.05) (Fig. 12). Compared with the standard PCA, the sparse
PCA utilized in this work can offer data dimension reduction
with better statistical properties and interpretability, as it pro-
duces PCs using only effective variables (Hsu et al. 2014).
Consequently, the sparse PCs obtained here were linear com-
binations of subsets of the studied variables, and the loadings
presented the contribution of each variable to the PCs (Sill
et al. 2015) (Table 3). Therefore, the result for PC3 reflects a
joint effect predominantly determined by sleep factors (|load-
ing| > 0.2), alcohol drinking variables (|loading| > 0.15) and
prospective memory performance (|loading| = 0.1), and mar-
ginally determined by education and tobacco smoking vari-
ables (|loading| < 0.1). Lower PC3 score was correlated with
greater negative regional CTh–age associations (Fig. 12A).
Since increase in the variables with negative PC loadings and
decrease in the variables with positive loadings would con-
tribute to the decrease in PC score, the loadings vector of PC3
(Table 3) suggest that sleep disruption, chronic and larger
alcohol consumption and poor prospective memory perfor-
mance, together with moderate contributions of chronic and
larger tobacco consumption and lower education level, would
lead to a smaller PC3 score, thus would jointly predict a larger
negative CTh–age association in CMC, STC, ITC, LING, and
vmPFC. Such finding is largely consistent with the indepen-
dent tests (Figs 7–9 and Supplementary Figs S3 and S5).
Furthermore, PC5 was a combined variable primarily of pro-
spective memory performance and education (|loading| > 0.45),
to which fluid intelligence, smoking variables, and alcohol
drinker status marginally contributed as well (|loading| < 0.1).
The independent analyses only found an association between
prospective memory performance and the CTh–age relation-
ship in the right ACC at the exploratory level of q < 0.05
(Fig. 6B) and did not detect effect of education on age-related
cortical differences. Here, lower PC5 score was correlated with
a greater negative CVo–age association in the right precuneus
(Fig. 12B). This result revealed that poor prospective memory
performance and lower education level, together with periph-
eral contributions of lower fluid intelligence score, chronic
tobacco, and alcohol consumptions, which would result in a
reduced PC5 score, could jointly predict a greater negative
CVo–age association in the precuneus. These detected joint
effects further complement the independent tests for the
behavioral and environmental variables and provide a holistic
view into the relationships of these factors with age-related
cortical morphological differences in middle to older ages.

Limitations

The first limitation in this study is that the cross-sectional
nature of the current data prevented us from testing within-
individual age-changes in brain morphology. A longitudinal
approach with further data is desirable. Second, the age trajec-
tories were constructed using mixed-effect regression models.
Although this is a valid method, nonparametric smoothing has
been suggested as a better alternative as it may produce a more
robust life span trajectory description due to the locality of esti-
mation (Fjell et al. 2010). However, the interactions of various
variables of interest with linear and nonlinear age terms

assessed here cannot be examined using nonparametric mod-
els only except when the interaction involves a sign change.
Third, most of the results, except the majority of linear age
effects and a part of the quadratic age effects, age trajectory
break points and sex differences, only survived the exploratory
correction for multiple comparisons across the 327 684 cortical
surface vertices at q < 0.05, but not the further correction for
the multiple whole-brain comparisons. There is a chance that
these more lenient results are false positives, nevertheless, the
cost of the false positives is just the increased number of
whole-brain tests, which is far smaller than the number of
vertex-wise tests (219 vs. 327 684) (McDonald 2014). Fourth,
latent variables of the behavioral and environmental variables
were extracted as linear combinations with PCA modeling. It
is conceivable that these linear combinations could not
completely explain the joint associations of these factors
with age-related cortical differences. There may exist more
complex nonlinear combinations, which are desired to be
explored in the future, for example, using manifold learning
approaches (Lawrence 2012). Fifth, it has been widely reported
that the structure of one brain region often changes in a sta-
tistically correlated fashion with the changes in some other
regions (Alexander-Bloch et al. 2013). Such system-level
interregional relationships of the brain have been shown to
change with age in development (Zielinski et al. 2010) and
aging (Spreng and Turner 2013) or even cross the life span
(DuPre and Spreng 2017). It would be meaningful to identify
system-level components of age-related brain structural
differences or changes using intrinsic network analysis
approaches (Beckmann et al. 2005) in the future. Finally, sub-
cortical regions were not included here as this study was
based on a cortical surface model. It would also be a mean-
ingful future work to extend the current study to subcortical
regions for a more complete understanding of age-differences in
brain morphology.

Conclusions
This study quantified localized age-differences in multiple mor-
phometric metrics across the cortex using the large-scale, well-
defined UK Biobank brain imaging sample. Allocortex regions
(limbic/paralimbic areas), which have simple laminar architec-
ture and arise early in evolution, predominantly showed non-
linear age effects on all structural measures. In contrast, most
of 6-layered neocortex areas that evolve later than allocortex
only showed a linear age effect. Thus, the complexity of brain
structure–age relationships in normal aging may be related to
the laminar organization of the cortex and differentials in
regional evolutionary ages. This cross-sectional study also
revealed age of about 60 as a break point for increasing cortical
morphology–age associations in the AD-prone areas. We fur-
ther reported novel results of diverse associations of the poten-
tial modifiers with age-related cortical differences, including
the associations of better cognitive functions of fluid intelli-
gence, reaction time and prospective memory with reduced
negative cortical morphology–age relationships, the associa-
tions of cigarette smoking, excessive alcohol consumption and
sleep disruption with greater negative cortical morphology–age
relationships, the age-related variations in genetic influences
of the APOE, BDNF, COMT genes and several AD GWAS loci,
and the joint effects of cognitive, lifestyle variables, and educa-
tion. In sum, this study provides a population-based characteri-
zation of age-related brain structural differences in middle to
older ages, and a comprehensive description of how and to what
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extent the demographic, cognitive, lifestyle, and genetic factors
are associated with the age–brain structure relationships.
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