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Abstract

Motivation: Samples from clinical practices are often mixtures of different cell types. The high-

throughput data obtained from these samples are thus mixed signals. The cell mixture brings

complications to data analysis, and will lead to biased results if not properly accounted for.

Results: We develop a method to model the high-throughput data from mixed, heterogeneous

samples, and to detect differential signals. Our method allows flexible statistical inference for

detecting a variety of cell-type specific changes. Extensive simulation studies and analyses of two

real datasets demonstrate the favorable performance of our proposed method compared with

existing ones serving similar purpose.

Availability and implementation: The proposed method is implemented as an R package and is

freely available on GitHub (https://github.com/ziyili20/TOAST).

Contact: hao.wu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput technologies have revolutionized the genomics re-

search. The early applications of the technologies were largely on

cell lines, e.g. by the ENCODE consortium (ENCODE Project

Consortium, 2012). With the launch of the Precision Medicine

Initiative, they have been increasingly applied in larger-scale, popu-

lation level clinical studies in the hope of identifying diagnostic bio-

markers and therapeutic targets. The samples in these studies are

often complex and heterogeneous. For example, epigenome-wide as-

sociation studies (EWAS) profile the DNA methylation in blood

samples from a population. In cancer research from large consor-

tium, such as The Cancer Genome Atlas, genomics and epigenomics

signals are measured from solid tumor tissues. The Rush Memory

and Aging Project (Bennett et al., 2005) generates a variety of high-

throughput data from the postmortem brain samples.

These samples, such as blood, tumor or brain, are mixtures of

many different cell types. The sample mixing complicates data ana-

lysis because the experimental data from the high-throughput

experiments are weighted average of signals from multiple cell types.

In EWAS, the mixing proportions are reported to be confounded

with the experimental factor of interest (such as age). The confound-

ing results in many false positive loci if the cell compositions are not

properly accounted for (Jaffe and Irizarry, 2014). The need to ac-

count for sample mixing in the data analysis of complex tissues has

gained substantial interests recently, and inspired several methods

and software, mostly under the context of EWAS studies

(Houseman et al., 2012, 2014; Jaffe and Irizarry, 2014; Liu et al.,

2013; Monta~no et al., 2013; Zou et al., 2014).

One of the most fundamental question in high-throughput data

is the differential analysis, e.g. to detect differential expression (DE)

or differential methylation (DM) under distinct biological condi-

tions. In complex samples, it is very important to identify cell-type

specific changes. Brain tissue, as an example, has a number of dis-

tinct cell types, which present highly heterogeneous functions and

distinct (epi)genomic profiles (Urenjak et al., 1993). As an illustra-

tion, Supplementary Figure S1a shows the gene expression profiles

of primary brain cells from rat [data obtained from GSE19380

(Kuhn et al., 2011)], where dramatic differences can be observed
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across cell types. It has also been recognized that distinct cell types

get involved in disease pathogenesis and progression with different

levels and roles. For example, astrocytes become activated and

engaged in neuroinflammatory component, which is related with

neurodegeneration process (Itagaki et al., 1989; Maragakis and

Rothstein, 2006; Verkhratsky et al., 2010); oxidative damage of

microglia, on the other hand, is an important factor for the patho-

logical lesions of Alzheimer’s Disease (Kalaria, 1999). Therefore, in

analyzing data from complex samples, identifying cell-type specific

DE (csDE) and DM (csDM) are important for the understanding of

biological or clinical processes, and identifying effective biomarkers

for diagnoses and treatment.

There are a number of methods for canonical DE/DM analysis

(Anders and Huber, 2010; Feng et al., 2014; Ritchie et al., 2015;

Tusher et al., 2001; Wu et al., 2012). These methods, however, ig-

nore the cell type mixing, thus directly applying them to the complex

sample data will produce undesirable results, including DE/DM due

to the change of mixing proportions, or failure to detect DE/DM in

specific cell types that is masked in the mixed samples.

Supplementary Figure S1b shows the expressions from the mixed

samples of primary brain cells in rat. Compared to Supplementary

Figure S1a, the cell-type specific expressions are masked due to cell

mixing. For these data, the canonical DE/DM methods will have dif-

ficulty to distinguish the cell-type specific differences. It is possible

to experimentally profile the purified cell types through cell sorting-

based technology such as Fluorescent-Activated Cell Sorting (Basu

et al., 2010) or Magnetic-Activated Cell Sorting (Schmitz et al.,

1994). They are, however, laborious and expensive thus cannot be

applied to large-scale, population level studies.

Without cell sorting, several statistical methods have been pub-

lished for identifying cell-type specific effects in complex tissue data.

These methods usually start with known sample mixture propor-

tions. The in silico estimation of mixture proportions is another

problem of great interests. Existing methods include reference-based

(RB) (Abbas et al., 2009; Clarke et al., 2010; Erkkilä et al., 2010;

Gong et al., 2011; Houseman et al., 2012; Newman et al., 2015;

Shen-Orr et al., 2010; Teschendorff et al., 2017; Zhong et al.,

2013), and reference-free (RF) methods (Brunet et al., 2004;

Houseman et al., 2016; Kuhn et al., 2011; Repsilber et al., 2010).

Estimating mixture proportions is not the focus of this work, and

here we assume the proportions are available, as in the published

methods described below. With known mixture proportions, cell-

type specific significance analysis of microarrays (csSAM) first esti-

mates the pure tissue profiles by conducting deconvolution on cases

and controls separately, and then identifies csDE through permuta-

tion tests (Shen-Orr et al., 2010). The two-step approach (estimating

pure profiles and then testing for cell-type specific changes) results

in lower statistical efficiency and accuracy. Population-specific ex-

pression analysis relies heavily on cell-type specific marker genes

and use linear models to detect csDE (Kuhn et al., 2011). Other

methods including Cell-Specific expression quantitative trait loci

Analysis (Westra et al., 2015) and csDE detection (Monta~no et al.,

2013) also use linear model based framework as population-specific

expression analysis does. These methods are designed for specific

questions and lack of flexibility to be applied in more general

problems.

In this work, we provide a rigorous statistical framework, based

on linear model, for characterizing the high-throughput data from

mixed samples. Under our model parameterization, the method pro-

vides great flexibility for detecting csDE/csDM. A variety of cell-

type specific inferences can be drawn from testing different linear

combinations of the linear model coefficients. Our method, called

TOols for the Analysis of heterogeneouS Tissues (TOAST), is imple-

mented as an R package and is freely available on GitHub (https://

github.com/ziyili20/TOAST). We show in Supplementary Materials

(Section S6) that all current linear model based csDE/csDM methods

are simplified or special cases of TOAST.

2 Materials and methods

2.1 Data model
Assume data generated from the high-throughput experiments con-

tain measurements for G features (genes, CpG sites, etc.) and N

samples. Denote the measurement for the gth feature and ith sample

by Ygi. The proposed method is based on the assumption that we

have obtained the mixing proportions. The mixing proportions can

be experimentally measured (Basu et al., 2010; Schmitz et al.,

1994), or computationally estimated by a number of existing meth-

ods (Abbas et al., 2009; Brunet et al., 2004; Clarke et al., 2010;

Erkkilä et al., 2010; Gaujoux and Seoighe, 2010; Gong et al., 2011;

Houseman et al., 2012, 2016; Jaffe and Irizarry, 2014; Kuhn et al.,

2011; Newman et al., 2015; Repsilber et al., 2010; Shen-Orr et al.,

2010; Teschendorff et al., 2017). Assume there are K ‘pure’ cell

types in the mixture, and we have obtained the mixing proportions

hi ¼ ðhi1; hi2; . . . ; hiKÞ for sample i, (with constraint
P

k hik ¼ 1), our

method can perform a variety of differential analysis. Below we use

DE as example to illustrate the ideas, though ‘expression’ can be

replaced by other measurements such as DNA methylation and the

same logic follows.

For the gth gene in the ith sample, denote the underlying, unob-

served expression in the kth cell type as Xgik. For simplicity of notation,

we will drop the subscript g in following derivation. DE will be per-

formed one gene at a time (loop over g) in the same manner. Let Zi be

a vector for subject-specific covariates. In a simple two-group compari-

son without other covariates, Zi reduces to a scalar indicator of the

non-reference condition (Zi ¼ 0 for reference, and Zi¼ 1 otherwise).

Without making distributional assumption yet, we assume the

pure cell-type profile satisfies: E½Xik� ¼ lk þ Zi
Tbk: Here lk repre-

sents the baseline profile for cell type K, and bk are coefficients asso-

ciated with the covariates. The challenge is that Xik is not directly

observed. Instead, we observe signals that are mixtures of Xik’s. The

observed data, denoted by Yi, is weighted average of Xik’s. For sam-

ple i, given the proportions hi, we have

E½Yi; hi� ¼
X

k

hikE½Xik� ¼
X

k

ðhiklk þ hik � Zi
TbkÞ:

This is a typical linear model, with lk and bk as model parame-

ters. The design includes mixing proportion as main effects, and

mixing proportion by covariate interactions. Assume we have Y

from a total of N samples. Denote all observed data as

Y ¼ ½Y1;Y2; . . . ;YN �T , the observed data can be described as a linear

model: E½Y � ¼Wb, Where

W ¼

h11 h12 � � � h1K h11 � Z1
T h12 � Z1

T � � � h1K � Z1
T

h21 h22 � � � h2K h21 � Z2
T h22 � Z2

T � � � h2K � Z2
T

..

. ..
. ..

. ..
. ..

. ..
.

hN1 hN2 � � � hNK hN1 � ZN
T hN2 � ZN

T � � � hNK � ZN
T

2
6664

3
7775;

b ¼ ½ l1; l2; . . . ; lK; b1
T ; b2

T ; . . . ;bK
T �T :

This setup captures the essence of several existing methods in an ele-

gant classical linear model system. We show in Supplementary Materials

(Section S6) that all existing methods are special cases of our model.
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2.2 Statistical inference for differential analysis
The above parameterization allows great flexibility in hypothesis

testing for DE. Questions regarding a variety of expression changes

can be answered by testing linear combinations of the regression

coefficients. For example, in a simple two-group (normal versus dis-

ease) comparison setting, the covariate Zi reduces to an indicator,

and each bk is a scalar. In this case, we have:

1. Testing the difference in cell type k between two conditions is

H0 : bk ¼ 0;

2. Testing the difference between cell types p and q in normal

group is H0 : lp � lq ¼ 0.

3. Testing the difference between cell types p and q in disease group

is H0 : lp þ bp � lq � bq ¼ 0.

4. One can even test the higher order changes, e.g. the difference of

the changes between cell type p and cell type q in two condi-

tions: H0 : bp � bq ¼ 0.

For multiple group comparison, e.g. in expression quantitative

trait loci studies where Zi has three levels (two degree of freedoms),

F-test can be performed for cell-type specific changes. We now can

add distributional assumption on the observed data, e.g. Gaussian

for microarray or negative binomial for count data. The parameter

estimation and statistical inference can be performed through linear

model (for Gaussian data) or generalized linear model (for count

data).

2.3 Simulation setting
To evaluate the proposed method versus existing methods, and to

examine the impact of different factors, we conduct a series of simu-

lation studies. The simulated data are generated based on parame-

ters estimated from real data, so that the simulation can well mimic

the real data scenario. The general flow of simulation procedure is

illustrated in Figure 1.

In the first step, we generate cell-type specific profiles (reference

panel X) based on the Immune Dataset. This dataset contains the

gene expression profiles from four types of immune cells (Jurkat,

IM-9, Raji, THP-1), each has measurements from three replicated

samples (Abbas et al., 2009). For gene g in cell type k, we first calcu-

late the mean lgk and variance r2
gk from the log expression values

across the three replicated samples, where g ¼ 1; . . . ;GðG ¼ 54657Þ
and k ¼ 1; . . . ;KðK ¼ 4Þ. We assume each subject has a unique pure

tissue profile Xi, representing the biological variation among indi-

viduals even for pure cell type. Xi is a matrix of G by K. For control

samples, we simulate the g-th row and k-th column element of Xi

from a log-normal distribution with mean lgk and variance r2
gk. For

cases, we first create some csDE genes. For each cell type, we ran-

domly select 5% of the genes to be DE between case and control,

half of them are up-regulated and half are down-regulated. The log

fold changes (lfcs) for the DE genes are randomly drawn from

Nð1; 0:22Þ for up-regulated genes and Nð�1; 0:22Þ for down-

regulated genes. We then calculate the mean profiles for pure cell

types in cases by adding the lfc to lgk. The variances r2
gk are kept un-

changed for most simulations, except when we evaluate the impact

of biological variance. In those simulations, we make the variances

of pure tissue profiles in cases to be n2
ref r

2
gk, where we vary nref from

0.1 (small biological variance) to 2. The pure cell profiles Xi for

cases are then simulated from log-normal distribution. We simulate

data for a total of s1 cases and s2 controls. Three selections of sam-

ples sizes (s1 ¼ s2 ¼ 50; 100; 500) are considered.

Next we simulate the mixing proportions hi. For cases and controls

we simulate from hi � Dirða1Þ and hi � Dirða0Þ, respectively. The

parameters a1 and a0 are based on a real dataset from Synapse.org

[Synapse ID: syn6098424 (Sonnen et al., 2009)], which includes

39 Alzheimer’s disease patients and 11 controls. We estimate the

maximum likelihood estimation of a1 and a0, as â1 ¼ ð0:47;

0:88; 0:52; 0:48Þ and â0 ¼ ð0:97; 4:71; 0:50; 0:35Þ respectively. Using

â1 and â0, we generate s1 cases’ tissue proportions and s2 controls’ tis-

sue proportions.

After reference panel Xi and proportion hi are obtained, the

simulated measurements of subject i is Yi ¼ Xihi þ E. Both Yi and E

are vectors of length G. Here E ¼ f�g; g ¼ 1; . . . ;Gg represents the

measurement error, and each element �g is simulated from

Nð0; nsdg
2
gÞ. nsd controls the level of technical noise. nsd ¼ 0:1; 1; 10

represents low, medium and high noise levels. gg is the standard de-

viation of measurement error for the g-th gene. To reflect the mean-

variance dependence widely observed in expression data, we simu-

late gg as a function of Xihi ¼ 1=K
P

k Xgikhik. In this simulation, we

use the relationship estimated from the Immune Dataset:

gg ¼ �8:06þ :11Xihi .

When observed measurements are obtained, we use deconvolu-

tion methods to estimate the mixture proportion. RB method lsfit

(Abbas et al., 2009) (referred to as ‘RB’) is used for proportion esti-

mation unless otherwise mentioned. As comparison, RF method

deconf (Repsilber et al., 2010) is used under some settings and is

referred to as ‘RF’. The proportion estimation uses the expression

for a number of marker genes as input. For this purpose, we select

1000 genes with the largest variances of log expressions as potential

marker genes. The expression of these genes can be directly fed into

deconf to estimate the proportions. For RB method lsfit, pure cell-

type specific expressions for the marker genes are required as refer-

ence panel. We add measurement error to the true pure cell-type

profiles to generate the reference panel used in RB methods, to ac-

count for the fact that the reference in real data analysis are not

known and have to be estimated from data.

2.4 Applications to real datasets
To demonstrate the functionality of TOAST on detecting cell-type

specific changes among different treatment groups or among differ-

ent cell types in the same group, we obtained two real datasets with

high-throughput measurements for both the mixed samples and

pure tissue profiles. The first dataset is a series of gene expression

microarray data from NCBI GEO database (Abbas et al., 2009),

under accession number GSE11058. The dataset includes the gene

expression measurements of four immune cell lines (Jurkat, IM-9,

Raji, THP-1) and their mixtures. There are four types of mixtures,

each with different known mixing proportions. Three replicates are

provided for each cell line and mixture. All gene expression data are

generated from Affymetrix Human Genome U133 Plus 2.0 Array.

This dataset is a valuable resource for testing the data analyses

Fig. 1. Schematic overview of our simulation study. The general design of our

simulation study. From left to right, we first generate simulation datasets,

then conduct deconvolution methods to estimate mixture proportions, and

lastly apply the proposed method on the synthetic datasets
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method on mixed samples. The DE among cell lines can be obtained

from pure cell line profiles and used as gold standard to validate the

DE calling results from mixed samples. Another advantage is that

the known mixture proportions enable us to compare the detection

accuracy when using the true versus estimated proportions.

The second application is on a set of human brain DNA methyla-

tion data. The data are obtained from GEO database under acces-

sion number GSE41826, which include DNA methylation

measurements for sorted neuron and glia from postmortem frontal

cortex of 29 major depression patients and 29 matched controls. In

addition, there are unsorted, whole-tissue measurements from 10 de-

pression cases and 10 matched controls. All data are generated from

Illumina Infinium HumanMethylation450 array. No significant cell-

type specific DMCs between depression patients and controls are

found after adjusting for multiple comparison (Guintivano et al.,

2013). Thus, we compare the methylation profiles between male

and female instead of disease status. We use the sorted neuron and

glia profiles from healthy controls, i.e. 15 females and 14 males for

sorted pure tissue profiles, to construct the gold standard, and all

whole-tissue profiles from healthy controls, i.e. 5 females and 5

males, as observed data. In real data applications, we use the same

procedures to conduct RB deconvolution as in simulation study.

3 Results

We conduct extensive simulation and real data analyses to evaluate

the performance of the proposed method. We mainly compare the

performance of TOAST with csSAM. In addition, we also include fol-

lowing two procedures for comparison in the simulation studies: lfc,

which is to directly use the log fold-change of the estimated pure cell-

type profiles to identify csDE/DM; absolute diff, which is to use the

absolute difference of the estimated pure cell-type profiles to identify

csDE/DM. A detailed description of how csSAM, lfc and absolute diff

are calculated is presented in Supplementary Section S1.

3.1 Simulation
The simulations are focused on evaluating the methods in detecting

csDE from microarray data. All of the results presented are testing

hypothesis 1 in Section 2.2, except for the subsection ‘Testing for

other hypotheses’. We design a series of simulation settings to evalu-

ate the impact of several factors on the accuracy of csDE detection,

including signal to noise ratio, sample size, cell mixing proportion

magnitudes and proportion estimation accuracy. All simulations are

conducted under two-group comparison design. In each setting, sim-

ulations are run for 100 times, and the results presented in this sec-

tion are averages of the 100 simulations. Our criteria to evaluate the

methods are the abilities to rank true csDE genes above non-DE

genes. We compute the true discovery rate (TDR), which is the per-

centage of true positives among various numbers of top-ranked

genes. Method with higher TDR is deemed better.

We first compare different methods under a typical setting. We as-

sume there are four cell types in the mixture. The data are from two

treatment groups with modest sample size (100 samples in case group

and 100 samples in control group), and medium noise level. Figure 2

compares the TDR curves for four hypothetical cell types. It shows

that using log fold-change of the estimated pure cell-type profiles per-

forms very badly and can barely detect true DE genes. Absolute differ-

ence is in the middle of log fold-change and csSAM. csSAM

demonstrates much better performance, while TOAST provides the

best performance in all four cell types. The improvement over csSAM

can be substantial. For example, in cell type 4, the TDR from TOAST

is close to 100% in top 200 csDE genes, whereas the rate is barely

above 70% for csSAM. Overall, the TDR from TOAST is 10%

higher than csSAM. It is worth noting that among all cell types, cell

type 2 has the highest TDR from almost all methods. This is because

cell type 2 has stronger signals due to its higher average mixture pro-

portions. We provide a more detailed discussion on this point later in

the subsection Impact of proportion magnitude.

Due to the poor performances from log fold-change and absolute

difference, we only focus on the comparison of csSAM and TOAST

hereafter.

Impact of noise level and sample size

The noises in the data can come from two sources: (i) biological

variation: the variation of pure cell-type profiles among different

sample; and (ii) technical noise: the measurement error. Here, we in-

vestigate the impact of technical noise level and sample sizes on the

performance of the proposed method.

Supplementary Figure S2 shows the TDR curves from the pro-

posed method under different technical noise levels and sample sizes.

We consider noise levels ranging from low (nsd ¼ 0.1, here nsd is the

parameter controls the magnitude of measurement error and is

described in the Section 2) to high (nsd ¼ 10). Medium level

(nsd ¼ 1) corresponds to the noise level estimated from the Immune

Data (described in the Section 2), and is close to typical real data

observations. We find that technical noise level has substantial influ-

ence on the performance of TOAST. When noise level is low, 50

samples in each group are enough for good performance. When

noise level is very high, the method suffers significantly especially

when sample size is small. In this case, larger sample size (500 sam-

ples in each group) can substantially improve the performance.

Impact of biological variation

We further evaluate the impact of biological variation (the within-

group variation of pure cell-type profiles across subjects).

Fig. 2. Comparison of csDE detection accuracy from simulation. Shown are

the TDR curves, which plot the proportions of true discovery among top-

ranked genes against the number of top-ranked genes. Methods under com-

parison include TOAST, csSAM, lfc and absolute difference
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Supplementary Figure S4 shows the TDR curves from TOAST under

different levels of biological variation (controlled by nref, described

in the Section 2). nref ¼ 1 corresponds to the biological variance level

estimated from the Immune Data. Similar to the technical noise, we

find that the biological variation also has substantial impact on the

performance of TOAST. This is expected, since greater biological

variation reflects higher heterogeneity in samples, making it more

challenging to detect csDE/csDM. Different from nsd, which multi-

plies by the variance of a normal distribution, nref multiples by the

standard deviation of a log-normal distribution. This leads to the

results in Supplementary Figure S4 that, a small change in nref can

substantially impact the variation of simulated reference panel.

When biological variation is small (nref ¼ 0.1), the TDR among the

2000 top-ranked genes is higher than 0.9 for all tissues. When bio-

logical variation is large (nref ¼ 2), <50% of the 2000 top-ranked

genes are true.

Impact of proportion magnitude

Results in Supplementary Figure S2 show that the orders of TDR

curves from different hypothetical cell types are similar under all

simulation settings, with the red curves being the highest in most

cases. Further investigation reveals that this order is related to the

abundance of each cell type in the mixture. As described in the

Section 2, the simulated proportions are based on the proportion es-

timation of a real dataset (shown in Supplementary Fig. S3). In gen-

eral, cell type 2 is the most abundant cell type, while cell type 4 is

the rarest. So in simulation, cell type 2 has the best receiver operat-

ing characteristic curve on most occasions, and cell type 4 has the

worst.

To further evaluate the impact of proportion in csDE detection,

we conduct another simulation study with all procedures the same

as described in the Section 2 except the proportion generation step.

Instead of using real data estimated proportions, we generate pro-

portions from Dirichletð590;300; 100; 10Þ for both cases and con-

trols. This ensures the proportions of the first cell type are around

59% for all subjects, second around 30%, etc. Then the obtained

TDRs can be linked to the average proportions of the corresponding

cell types. In addition, we run simulations using true proportions as

input for TOAST, i.e. no proportion estimation procedure involved,

thus the impact of proportion estimation accuracy will be excluded.

Figure 3a summarizes the distributions of true DE percentages in the

top 2000 genes for four cell types, which have different proportions

in the mixture. It shows that the magnitude of proportion is closely

related with the detection performance. DE genes in cell types with

smaller mixture proportions are much harder to be detected. This is

expected, because the changes in cell types that make up a smaller

proportion of the tissue have smaller contribution to the overall

measurement, and thus are more difficult to be identified. To better

detect csDE for rarer cell types, the only effective way is to increase

the sample size.

Impact of proportion estimation

Among all the factors, we find the accuracy of proportion estimation

has vital impacts on the accuracy of csDE detection. We compared

the performances of TOAST and csSAM, using different estimated

proportions as inputs. The estimated proportions are from RB and

RF methods. We also include the results using true proportions as

benchmark.

The TDRs for csDE detection are shown in Figure 3b. In all scen-

arios, TOAST outperforms csSAM. Obviously, using the true pro-

portion gives the best results for TOAST and csSAM. When using

the estimated proportions, RB estimation provides better results

than RF estimation. This is as expected, since RB method uses extra

information (pure cell-type profiles), and was reported to produce

better proportion estimation (Newman et al., 2015).

Impact of changes in multiple cell types

In the previous simulations, DE genes are randomly generated in

each cell type. Even though by chance some genes have DE in two or

more cell types simultaneously, it is still interesting to explicitly

evaluate the performance of TOAST when DE occurs in multiple

cell types. One real life example is aging, which is likely to alter gen-

omic profiles in several cell types in the blood. Supplementary

Figure S6 shows the TDR plots for detecting DE when two, three or

four cell types simultaneously. This demonstrates that TOAST con-

sistently provides the most accurate results.

Testing for other hypotheses

All the simulation results presented above are for testing difference

of one cell type between cases and controls, i.e. the hypothesis 1 in

Section 2.2. We also conduct additional simulations to examine the

performance of TOAST on testing other hypotheses. In these simula-

tions, we apply the Bioconductor package limma on the underlying

reference panels, and define the genes with FDR < 0.05 as true DE

genes. The detailed procedure of this experiment is described in

Supplementary Materials (Section S2). Supplementary Figure S7

demonstrates the TDR of TOAST in detecting difference between

two cell types in the normal group (hypothesis 2 in Section 2.2,

Supplementary Fig. S7a), in the disease group (hypothesis 3 in

Section 2.2, Supplementary Fig. S7b) and detecting difference of the

changes between two cell types in two conditions (hypothesis 3 in

Section 2.2, Supplementary Fig. S7c). We find that TOAST achieves

good performance in all these settings.

Computational performance

TOAST provides superior computational performance since it is

based on linear regression. csSAM, on the other hand, relies on per-

mutation procedure and is much more computationally demanding.

We benchmark the computational performances of TOAST and

csSAM on a laptop computer with 4GB RAM and Intel Core i5

CPU. For a moderate dataset with 20 000 genes and 100 samples in

each group, one csDE call from TOAST takes 1.42 s, but 378.67 s

from csSAM. Thus, TOAST is 266 times faster than csSAM.

Fig. 3. Impact of different factors on simulation results. (a) Impact of mixture

proportion magnitude on detection accuracy. Boxplot of the detection accur-

acy (represented by the proportions of true DEs in the 2000 top-ranked genes)

by different magnitude of mixture proportion values. �0:01 means proportion

magnitude around 1%. (b) Impact of proportion estimation on TOAST and

csSAM in Cell Type 1. TDR curves comparing TOAST versus csSAM when dif-

ferent deconvolution methods are used as up-stream proportion estimation

methods. RB: reference-based. RF: reference-free. True: true proportion
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Overall, the simulation studies demonstrate that our proposed

method TOAST provides more accurate and efficient performance

in detecting cell-type specific changes compared to csSAM. We find

that the most important factor in the csDE/csDM detection accuracy

is the proportion estimation, which is strongly influenced by the

technical noise. Moreover, cell types with lower proportions are

more difficult to analyze, since their signal in the mixed data is

lower.

3.2 Real data results
Application to immune dataset

We use this dataset to showcase the capability of TOAST in detect-

ing differences among cell types within the same group (hypothesis 2

of Section 2.2). The specific goal of this data analysis is to detect DE

genes for pair-wise comparisons of two different cell lines using the

mixture data only, e.g. the DE genes between Jurkat and IM-9, IM-

9 and THP-1, etc. It is worth noting that we do not compare csSAM

in this application because csSAM does not provide the function of

detecting DE genes across cell types under the same condition. For

each comparison, we define the gold standard based on the pure cell

line profiles. We apply limma (Ritchie et al., 2015) on the pure cell

line profiles to call DE genes. The true DE genes are defined as the

ones with (i) the limma P-value smaller than 0.05; and (ii) the abso-

lute lfc �3. The non-DE genes are defined as the ones with limma P-

value >0.8. We do not include the genes that have P-values between

0.05 and 0.8 to avoid ambiguity.

Using mixture proportions estimated from RB method, we apply

TOAST on the mixed data to detect DE genes for all pair-wise com-

parisons. Figure 4a shows the TDR curves for all comparisons.

Overall, the proposed method demonstrates good accuracy. The

TDR for three of the comparisons are over 80% for the top 500

genes. The results for comparing IM-9 and THP-1 are the worst. To

further investigate these results, we show the correlation of esti-

mated versus true proportions in Figure 4b. The proportion estima-

tion is the worst for IM-9 and THP-1. This partly explains the bad

results from IM-9 versus THP-1 comparison. We further try to use

RF method to estimate the mixing proportions, and use these esti-

mates as input for DE detection. The results are shown in

Supplementary Figure S9a. Overall, these results are much worse

than using the RB proportion estimates. We also use the true pro-

portion as inputs (Supplementary Fig. S10), which yields good ac-

curacy for all comparisons. These results suggest that our proposed

method can satisfactorily detect DE genes across cell types from

mixed sample data, and that the detection accuracy is highly de-

pendent on the accuracy of proportion estimation. These conclu-

sions are consistent with the simulation results.

Application to human brain methylation data

We use the dataset GSE41826 to show the functionality of TOAST

in detecting cell-type specific changes among different groups

(hypothesis 1 of Section 2.2). The dataset contains pure and mixed

samples for a number of individuals with different genders. The ori-

ginal study aimed to identify differences between patients with

major depression and healthy controls but did not find significant

cell-type specific changes after adjusting for multiple comparison

(Guintivano et al., 2013). Our analysis confirms their findings in

that contrast. We do find a reasonable set of DMCs between males

and females with low false discovery rate, which we use to bench-

mark the methods for detecting cell-specific differences.

We first group the healthy samples from GSE41826 by gender.

We construct gold standard DMC using profiles of sorted neuron

and glia. We apply Bioconductor package minfi (Aryee et al., 2014)

to call DMCs between the pure cell-type profiles of neuron and glia.

True DMC is defined as false discovery rate smaller than 0.05,

which results in 9439 and 9337 true DMCs (out of 480 491 CpGs)

in neuron and glia, respectively. Here true DMC in neurons include

all DMC detected in pure neurons, not just the ones exclusively

identified in neurons, likewise for true DMC in glia. Non-DM sites

are defined as those with false discovery rate larger than 0.8. The

DM and non-DM sites are then used as benchmark to evaluate the

csDM calling from whole-tissue sample data. We estimate the pro-

portions (for neuron and glia) from the whole-tissue DNA methyla-

tion data with RB deconvolution. The whole-tissue DNA

methylation data of five healthy males and five healthy females and

the estimated mixture proportions are used as inputs to both

TOAST and csSAM. The TDR curves for the results are shown in

Figure 5. Overall, these results are not very accurate, because of

small sample size and high inter-individual heterogeneity even for

the pure tissue profile. However with the same input data, the pro-

posed method still provides much higher accuracy among the top

CpG sites than csSAM.

It is important to note that csSAM is not designed for DNA

methylation data analysis. However, the two-step algorithm (solve

for pure tissue profiles and then perform test) can be applied to

methylation data as well. The result here shows that the proposed

framework performs better than the two-step approach.

The example above, based on human brain DNA methylation

data, involves only two cell types. We chose this data example due

Fig. 4. Accuracy of detecting DE across cell types in the Immune Dataset

using TOAST. (a) TDR curves for pair-wise comparisons of different cell types

using TOAST. RB with 1000 reference genes is used to estimate proportions.

(b) Heatmap of Pearson’s correlation coefficients between the estimated ver-

sus true mixture proportions

Fig. 5. Accuracy of detecting csDM in Human brain methylation data. TDR

curves for csDM detection from the comparisons of healthy males versus

healthy females in Neuron and Glia, using TOAST and csSAM. RB with 1000

reference genes is used to estimate mixture proportions
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to the difficulty of obtaining public dataset involving more cell types

with ground truth for assessment. Nonetheless, to illustrate the ap-

plication in tissues with more cell types, we include an example in

the Supplementary Material (Section S5 and Supplementary Fig.

S12), using a DNA methylation dataset from HIV patients and con-

trols from GEO with accession number GSE67705 (Gross et al.,

2016).

4 Discussion

In this work, we develop a general statistical framework named

‘TOAST’ to account for sample mixing and detect cell–type specific

differential features. By ‘cell-type specific’ differential effects we,

like others (Kuhn et al., 2011; Monta~no et al., 2013; Shen-Orr et al.,

2010; Westra et al., 2015; Zheng et al., 2018), refer to within-cell-

type differences as opposed to marginal differences. The method is

based on simple but rigorous statistical modeling, and provides flex-

ible functionalities for testing a variety of cell-type specific differen-

ces. A number of previous methods also utilize linear model and are

similar in spirit to our method. As shown in the Supplementary

Materials (Section S6), these methods are simplified version or spe-

cial cases of our framework. Compared with csSAM, which per-

forms statistical test on deconvolved pure cell-type signals, TOAST

can be considered as jointly performing signal deconvolution and

hypothesis testing. These results in improved performance, evi-

denced by simulation and real data analyses. The proposed method

can potentially be applied to a number of high-throughput experi-

ments, including but not limited to gene expression microarray data,

DNA methylation 450K data, proteomics data, etc.

The simulation and real data analyses presented in this work are

mostly focused on (gene expression or methylation) microarray

data, where the data can be approximated by log-normal distribu-

tion. We also conduct additional simulations for RNA-seq data, and

demonstrate that the proposed method performs well in detecting

csDE in RNA-seq (details are provided in Supplementary Material

Section S3 and Supplementary Fig. S8). However, one caveat of such

analysis is that the deconvolution method for RNA-seq data is still

not well developed and tested. It is not yet clear how one can obtain

accurate estimates of the mixing proportions, which is an important

prerequisite for the good performance of cell-type specific analysis

and something we plan to do in the near future.

In the simulations, we generate individualized reference panels

by adding noise randomly. When the reference panel and population

under study have systematic discrepancy (in age, ethnic group, etc.),

there could be bias. However, this would only affect proportion esti-

mation, not differential signal detection. Since estimating cell-type

proportion is not the main goal of this work and the proportions are

assumed to be given, such discrepancy would not have impact on

the proposed method. This being said, we believe that a careful

examination of deconvolution methods with the consideration of

systematical discrepancy between the reference panel and observa-

tions is an important problem to investigate.

There has been some discussion about whether one should use

raw- or log-scale data in signal deconvolution and differential ana-

lysis, including opinions arguing for using raw scale data (Abbas

et al., 2009; Gong et al., 2011; Zhong et al., 2013; Zhong and Liu,

2012) and for using log transformed data (Gaujoux and Seoighe

2013). Theoretically, mixing takes place at the raw scale and linear

deconvolution is expected to work on the same scale. However, real

biological data from high-throughput technology are complex and

often include many sources of noise, distortion and anomaly that

cannot be fully captured by simple parametric simulation. The

benefit of resistance to outliers often is a worthwhile tradeoff for the

loss of perfect linear relationship in between the mixed and latent

cell-type specific measures of expression/methylation. As a result,

real data applications may find that analyzing the log-scale data

delivers similar or even better performance (Supplementary Fig.

S11). We include a more in-depth discussion on this topic in

Supplementary Section S4. The implementation of the TOAST soft-

ware allows the user to opt for either raw- or log-scale data.

Whilst our paper was under review, we became aware of the

publication of a similar method called CellDMC (Zheng et al.,

2018). The data modeling framework of CellDMC is largely equiva-

lent to TOAST, but it works for the first hypothesis test (cell-type

specific changes associated with the outcome). TOAST enables more

flexible hypothesis testing depending on the scientists’ interest.

Though we expect that the most common goal is identifying differ-

ential effects within the cell type(s) of interest (as CellDMC does),

one may also be interested in whether differences are unique to a cell

type (i.e. qualitatively different across cell types, with bk 6¼ 0 for

only one cell type), or to different extent across cell types (i.e. quan-

titatively different across cell types, with bp � bq 6¼ 0). The com-

bined linear model in TOAST allows the user to define the

hypothesis of interest, and the flexibility is one of the advantages of

using TOAST. In addition, CellDMC was tested exclusively on

DNA methylation data, while we show that TOAST is also applic-

able on mRNA expression datasets.

We anticipate several natural extensions of TOAST. First, the es-

sence of the data modeling and statistical inference from our pro-

posed method can be applied to other types of high-throughput data

such as ChIP-seq or bisulfite-sequencing, even though the detailed

model fitting and statistical testing strategies will be different.

Secondly, we currently model the effect of covariate in a linear sys-

tem. It is possible that some covariates (such as age) have a non-

linear effect. In this case, we can replace covariates Z by f ðZÞ to

model the non-linear effect, where f can be a parametric or non-

parametric function.
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