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Abstract

Motivation: The ability to simulate epidemics as a function of model parameters allows insights

that are unobtainable from real datasets. Further, reconstructing transmission networks for fast-

evolving viruses like Human Immunodeficiency Virus (HIV) may have the potential to greatly en-

hance epidemic intervention, but transmission network reconstruction methods have been inad-

equately studied, largely because it is difficult to obtain ‘truth’ sets on which to test them and prop-

erly measure their performance.

Results: We introduce FrAmework for VIral Transmission and Evolution Simulation (FAVITES), a

robust framework for simulating realistic datasets for epidemics that are caused by fast-evolving

pathogens like HIV. FAVITES creates a generative model to produce contact networks, transmis-

sion networks, phylogenetic trees and sequence datasets, and to add error to the data. FAVITES is

designed to be extensible by dividing the generative model into modules, each of which is

expressed as a fixed API that can be implemented using various models. We use FAVITES to simu-

late HIV datasets and study the realism of the simulated datasets. We then use the simulated data

to study the impact of the increased treatment efforts on epidemiological outcomes. We also study

two transmission network reconstruction methods and their effectiveness in detecting fast-

growing clusters.

Availability and implementation: FAVITES is available at https://github.com/niemasd/FAVITES,

and a Docker image can be found on DockerHub (https://hub.docker.com/r/niemasd/favites).

Contact: smirarabbaygi@eng.ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The spread of many infectious diseases is driven by social and sexual

networks (Kelly et al., 1991), and reconstructing their transmission

histories from molecular data may be able to enhance intervention.

For example, network-based statistics for measuring the effects of

Antiretroviral Therapy (ART) in Human Immunodeficiency Virus

(HIV) can yield increased statistical power (Wertheim et al., 2011);

the analysis of the growth of HIV infection clusters can yield

actionable epidemiological information for disease control (Shargie

and Lindtjørn, 2007); transmission-aware models can be used to

infer HIV evolutionary rates (Vrancken et al., 2014).

A series of events in which an infected individual infects another

individual can be shown as a transmission network, which itself is a

subset of a contact network, a graph in which nodes represent indi-

viduals and edges represent contacts (e.g. sexual) between pairs of

individuals. If the pathogens of the infected individuals are
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sequenced, which is the standard of HIV care in many developed

countries, one can attempt to reconstruct the transmission network

(or its main features) using molecular data. Some viruses, such as

HIV, evolve quickly, and the phylogenetic relationships between

viruses are reflective of transmission histories (Leitner et al., 1996),

albeit imperfectly (Leitner and Romero-Severson, 2018; Romero-

Severson et al., 2014; Ypma et al., 2013).

Recently, multiple methods have been developed to infer proper-

ties of transmission networks from molecular data (Kosakovsky Pond

et al., 2018; Prosperi et al., 2011; Ragonnet-Cronin et al., 2013).

Efforts have been made to characterize and understand the promise

and limitations of these methods: it is suggested that, when combined

with clinical and epidemiological data, these methods can provide

critical information about drug resistance, associations between socio-

demographic characteristics, viral spread within populations and the

time scales over which viral epidemics occur (Grabowski and Redd,

2014). More recently, these methods have become widely used at

both local (Campbell et al., 2017) and global scale (Wertheim et al.,

2014). Nevertheless, several questions remain to be fully answered

regarding the performance of these methods. It is not always clear

which method/setting combination performs best for a specific down-

stream use-case or for specific epidemiological conditions. More

broadly, the effectiveness of these methods in helping achieve public

health goals is the subject of ongoing clinical and theoretical research.

Accuracy of transmission networks is difficult to assess because

the true order of transmissions is not known. Moreover, predicting

the impact of parameters of interest (e.g. rate of treatment) on the

epidemiological outcomes is difficult. In simulations, in contrast, the

ground truth is known and parameters can be easily controlled.

The simulation of transmission networks needs to combine models

of social network, transmission, evolution and ideally sampling

biases and errors (Villandre et al., 2016).

We introduce FrAmework for VIral Transmission and Evolution

Simulation (FAVITES), which can simulate numerous models of

contact networks, viral transmission, phylogenetic and sequence

evolution, data (sub)sampling and real-world data perturbations,

and which was built to be flexible such that users can seamlessly

plug in statistical models at every step of the simulation process.

Previous attempts to create an epidemic simulation tool include epi-

net (Groendyke et al., 2012), TreeSim (Stadler and Bonhoeffer,

2013), outbreaker (Jombart et al., 2014), seedy (Worby and Read,

2015) and PANGEA.HIV.sim (Ratmann et al., 2017). A detailed

comparison of FAVITES with these tools can be found in

Supplementary Table S1. One key distinction is that FAVITES simu-

lates the full end-to-end epidemic dataset (social contact network,

transmission history, incomplete sampling, viral phylogeny, error-

free sequences and real-world sequencing imperfections), whereas

each existing tool simulates only a subset of these steps. Another key

distinction is that FAVITES allows the user to choose among several

models at each step of the simulation, whereas the existing tools are

restricted to specific models. After describing the FAVITES frame-

work, we compare its output to real data on a series of experiments,

study the properties of HIV epidemics as functions of various model

and parameter choices, and finally perform simulation experiments

to study two transmission network reconstruction methods.

2 Materials and methods

2.1 FAVITES simulation process
FAVITES provides a workflow for the simulation of viral transmis-

sion networks, phylogenetic trees and sequence data (Fig. 1).

It breaks the simulation process into a series of interactions between

abstract modules, and users can select the module implementations

appropriate to their specific context. In the statistical sense, the end-

to-end process creates a complex composite generative model, each

module is a template for a sub-model of a larger model, and differ-

ent implementations of each module correspond to different statis-

tical sub-models. Thus, the FAVITES workflow does not explicitly

make model choices: each module implementation makes those

choices. The model for a FAVITES execution is defined by the set of

module implementations chosen by the user.

FAVITES defines APIs for each module and lets implementation

decide how to achieve the goal of the module. The APIs allow vari-

ous forms of interaction between modules, which enable sub-models

that are described as conditional distributions (via dependence on

preceding steps) or as joint distributions (via joint implementation).

Module implementations can simply wrap around existing tools,

allowing for significant code reuse. The available implementations

for each step are continuously updated; the full documentation of

these implementations can be found online, and a list of current

implementations can also be found in the Supplementary Material.

Simulations start at time zero and continue until a user-specified

stopping criterion is met. Error-free and error-prone transmission

networks, phylogenetic trees and sequences are output at the end.

FAVITES has eight steps (Fig. 1) detailed below. Depending on the

specific implementations, some of the steps may not be needed (we

mark these with an asterisk), especially when the phylogeny is simu-

lated backward in time. Also note that steps and modules are not

the same; a module may be used in several steps and a step may re-

quire multiple modules.

Step 1: Contact network

The ContactNetworkGenerator module generates a contact network;

vertices represent individuals, and edges represent contacts between

them that can lead to disease transmission (e.g. sexual). Graphs can

be created stochastically using existing models (Karo�nski, 1982),

including those that capture properties of real social networks

(Barabási and Albert, 1999; Newman et al., 2002; Watts and

Strogatz, 1998) and those that include communities (Fortunato,

2010; Watts, 1999). For example, the Erd}os–Rényi (ER) model

(Bollobas, 1984) generates graphs with randomly-placed edges, the

Random Partition model (Fortunato, 2010) generates communities,

the Barabási–Albert model (BA) (Barabási and Albert, 1999) gener-

ates scale-free networks whose degree distributions follow power-law

(suitable for social and sexual contact networks), the Caveman model

(Watts, 1999) and its variations (Fortunato, 2010) generate small-

world networks, the Watts–Strogatz model (Watts and Strogatz,

1998) generates small-world networks with short average path

lengths, and Complete graphs connect all pairs of individuals (suitable

for some communicable diseases). We currently have many models

implemented by wrapping around the NetworkX package (Hagberg

et al., 2008). In addition, a user-specified network can be used.

Step 2: Seeds

The transmission network is initialized in two steps.

a) The SeedSelection module chooses the ‘seed’ nodes: individuals

who are infected at time zero of the simulation.

b�Þ For each selected seed node, the SeedSequence module can gen-

erate an initial viral sequence.

Seed selection has many implemented models, including uniform

random selection, degree-weighted random selection and models
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that place seeds in close proximity. Seed sequences can be user-

specified or randomly sampled from probabilistic distributions. To

enable seed sequences that emulate the virus of interest, we imple-

ment a model that uses HMMER (Eddy, 1998) to sample each seed

sequence from a profile Hidden Markov Model (HMM) specific to

the virus of interest. Profile HMMs are appropriate for sampling

random sequences that are intended to resemble real sequences be-

cause they define a probabilistic distribution over the space of

sequences, they can be flexible to insertions and deletions, and they

can be sampled in a computationally efficient manner. We provide a

set of such pre-built profile HMMs constructed from multiple se-

quence alignments (MSAs) of viral sequences.

When multiple seeds are chosen, we need to model their phylogen-

etic relationship as well. Thus, we also have a model that samples a

single sequence from a viral profile HMM using HMMER, simulates

a seed tree with a single leaf per seed individual [e.g. using Kingman

coalescent or birth-death models using DendroPy (Sukumaran and

Holder, 2010)], and then evolves the viral sequence down the tree to

generate seed sequences using Seq-Gen (Rambaut and Grass, 1997).

Step 3: Transmissions

An iterative series of transmission events occurs under a transmis-

sion model until the EndCriteria module triggers termination (e.g.

after a user-specified time or a user-specified number of transmission

events). Each transmission event has five components.

a) The TransmissionTimeSample module chooses the time at

which the next transmission event will occur and advances the

current time accordingly, and

b) the TransmissionNodeSample module chooses a source node

and target node to be involved in the next transmission event.

These two modules are often jointly implemented. Some of the

current implementations use simple models such as drawing

transmission times from an exponential distribution and select-

ing nodes uniformly at random. Others are more realistic and

use Markov processes in which individuals start in some state

(e.g. Susceptible) and transition between states of the model (e.g.

Infected) over time. These Markov models are defined by two

sets of transition rates: nodal and edge-based. Nodal transition

rates are rates that are independent of interactions with neigh-

bors (e.g. the transition rate from Infected to Recovered), where-

as edge-based transition rates are the rate of transitioning from

one state to another given that a single neighbor is in a given state

(e.g. the transition rate from Susceptible to Infected given that a

neighbor is Infected). The rate at which a specific node u transi-

tions from state a to state b is the nodal transition rate from a to

b plus the sum of the edge-based transition rate from a to b given

neighbor v’s state for all neighbors v. We use GEMF (Sahneh

et al., 2017) to implement many compartmental epidemiological

models in this manner, including sophisticated HIV models like

the Granich et al. (2009) model and the HPTN 071 (PopART)

model (Cori et al., 2014).

c�) The NodeEvolution module evolves viral phylogenetic trees of

the source node to the current time using stochastic models of

tree evolution (Hartmann et al., 2010). We use DendroPy

(Sukumaran and Holder, 2010) for birth-death and use our own

implementation of dual-birth (Moshiri and Mirarab, 2018) and

Yule.

d�) If models of the tree evolution or transmission models are de-

pendent on sequences, the SequenceEvolution module is

invoked here to evolve all viral sequences in the source node to

the current time. Otherwise, sequence evolution is delayed

until Step 7 (we assume this scenario).

e�) The SourceSample module chooses the viral lineage(s) in the

source node to be transmitted.

Step 4: Time sampling and tree update

The patient sampling (i.e. sequencing) events are determined and

phylogenetic trees are updated accordingly. Three sub-steps are

involved.

Fig. 1. FAVITES workflow. (1) The contact network is generated (nodes: individuals; edges: contacts). (2) Seed individuals who are infected at time 0 are selected

(2a), and a viral sequence is chosen for each (2b). (3) The epidemic yields a series of transmission events in which the time of the next transmission is chosen

(3a), the source and target individuals are chosen (3b), the viral phylogeny in the source node is evolved to the transmission time (3c), viral sequences in the

source node are evolved to the transmission time (3d) and a viral lineage is chosen to be transmitted from source to destination (3e). Step (3) repeats until the

end criterion is met. Step 3c–3e are optional, as tree and sequence generation can be delayed to later steps. (4) Infected individuals are sampled such that viral

sequencing times are chosen for each infected individual (4a), viral phylogenies (one per seed) are evolved to the end time of the simulation (4b) and viral phylog-

enies (one per seed) are pruned to reflect the viral sequencing times selected (4c). (5) Mutation rates are introduced along the branches of the viral phylogenies

and the tree is scaled to the unit of expected mutations. (6) The seed trees are merged using a seed tree (cyan). (7) Viral sequences obtained from each infected in-

dividual are finalized. (8) Real-world errors are introduced on the error-free data, such as subsampling of the sequenced individuals (marked as green) (8a) and

the introduction of sequencing errors (8b). The workflows of a typical forward (blue) and backward (green) simulation are shown as well
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a) For each individual, the NumTimeSample module chooses

the number of sequencing times (e.g. a fixed number or a

number sampled from a Poisson distribution), the

TimeSample module chooses the corresponding sequencing

time(s) (e.g. by draws from uniform or truncated Gaussian

or Exponential distributions, or by sampling right before

the first transition of a person to a treated state), and the

NumBranchSample module chooses how many viral line-

ages will be sampled at each sequencing time (e.g. single). A

given individual may not be sampled at all, thus simulating

incomplete epidemiological sampling efforts.

b�/c�) The NodeEvolution module is called to simulate the phylo-

genetic trees given sampling times. This step can be used in-

stead of Step 3c to evolve only lineages that are sampled,

thereby reducing computational overhead. If the tree is

simulated in Step 3c, it will be pruned here to only include

lineages that are sampled.

Step 5: Mutation rates

To generate sequences, rates of evolution must be assumed and in

this step, the TreeUnit module determines such rates. For example,

it may use constant rates or may draw from a distribution (e.g.

Gamma). Applying rates on the tree from Step 4 yields a tree with

branch lengths in units of per-site expected number of mutations.

Step 6�: Finalize tree

We now have a single tree per seed. Some implementations of

SeedSequence also simulate a tree connecting seeds, so the roots of

per-seed trees have a phylogenetic relationship. In this case, this step

merges all phylogenetic trees into a single global tree by placing

each individual tree’s root at its corresponding leaf in the seed tree

(Fig. 1).

Step 7: Finalize sequences

The SequenceEvolution module is called to simulate sequences on the

final tree(s). Commonly-used models of DNA evolution including

General Time-Reversible (GTR) model (Tavaré, 1986), and its reduc-

tions such as Jukes and Cantor (1969), Kimura (1980), Felsenstein

(1981) and Tamura and Nei (1993), are currently available as imple-

mentations of SequenceEvolution. FAVITES also includes the

GTRþC model, which incorporates rates-across-sites variation (Yang,

1994). It also includes multiple codon-aware extensions of the GTR

model, such as mechanistic (Zaheri et al., 2014) and empirical (Kosiol

et al., 2007) codon models. These modules internally use Seq-Gen

(Rambaut and Grass, 1997) and Pyvolve (Spielman and Wilke, 2015).

Step 8: Errors

Error-free data are now at hand. Noise is introduced onto the com-

plete error-free data in two ways.

a�) The NodeAvailability module further subsamples the individu-

als to simulate lack of accessibility to certain datasets. Note

that whether or not an individual is sampled is a function of

two different modules: NodeAvailability and NumTimeSample

(if NumTimeSample returned 0, the individual is not sampled).

Conceptually, NumTimeSample can be used to model when

people are sequenced, while NodeAvailability can be used to

model patterns of data availability (e.g. sharing of data be-

tween clinics).

b) The Sequencing module simulates sequencing error on the

simulated sequences. In addition to sequencing machine

errors, this can incorporate other real-world sequencing issues,

e.g. taking the consensus sequence of a sample and introducing

of ambiguous characters. FAVITES currently uses existing

tools to simulate Illumina, Roche 454, SOLiD, Ion Torrent,

and Sanger sequencing (Angly et al., 2012; Huang et al.,

2012), including support for ambiguous characters.

Backward-in-time simulation

Thus far, we have assumed that trees are evolved forward-in-time:

they begin with a single root lineage, and as time progresses, lineages

split. However, backward-in-time models of tree evolution (e.g. co-

alescent) begin with k leaves, and as time regresses, these lineages

coalesce. In FAVITES, if a backward-in-time model of tree evolution

is chosen, Steps 3c–e and 4c can be skipped, and the full backward

simulation can be performed at once in Step 4b (Fig. 1). We use

VirusTreeSimulator (Ratmann et al., 2017) for coalescent models

with constant, exponentially-growing or logistically-growing popu-

lation size.

Sequence-dependent transmissions

Steps 3c� e are required only if the choice of transmission events

after time t depends on the past phylogeny or sequences up to time t.

If the choice of future transmission recipients/donors and transmis-

sion times are agnostic to past phylogenies and sequences, these

steps can be skipped and the tasks are delated to Steps 4b and 7.

Note also that if sequences are simulated in Step 3d, a mutation rate

needs to be assumed early. In this case, a joint implementation of the

TreeUnit and SequenceEvolution modules must be used such that

per-time mutation rates are chosen in Step 3d, and the same muta-

tion rates are used to scale the tree in Step 5.

Model validation

We provide tools to validate FAVITES outputs, by comparing the

simulation results against real data the user may have (e.g. networks,

phylogenetic trees or sequence data) using various summary statis-

tics (Supplementary Table S2). In addition to validation scripts, we

have several helper scripts to implement tasks that are likely com-

mon to downstream use of FAVITES output (Supplementary Table

S3).

2.2 Experimental setup
We have performed a set of simulations using the FAVITES frame-

work. In these studies, we compare the simulated data against real

HIV datasets, study properties of the epidemic as a function of the

parameters of the underlying generative models and compare two

transmission cluster inference tools when applied to sequence data

generated by FAVITES. All datasets can be found at https://gitlab.

com/niemasd/favites-paper-final.

2.2.1 The simulation model

We selected a set of ‘base’ simulation models and parameters and

also performed experiments in which they were varied. For each par-

ameter set, we ran 10 simulation replicates. The base simulation

parameters were chosen to emulate HIV transmission in San Diego

from 2005 to 2014 to the extent possible. In addition, to show the

applicability of FAVITES to other settings, we also performed a

simulation with parameters learned from the HIV epidemic in

Uganda from 2005 to 2014. For both datasets, we estimate some

parameters from real datasets while we rely on the literature where

such data are not available. We first describe base parameters for

San Diego and then present changing parameters and Uganda
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parameters (see Supplementary Tables S4 and S5 for the full list of

parameters).

Contact network

The contact network includes 100 000 individuals to approximate

the at-risk community of San Diego. We set the base expected degree

(Ed) to four edges (i.e. sexual partners over 10 years). This number

is motivated by estimates from the literature [e.g. �3 in Wertheim

et al. (2017) and 3–4 in Rosenberg et al. (2011)], and it is varied in

the experiments. We chose the BA model as the base network model

because it can generate power-law degree distributions (Barabási

and Albert, 1999), a property commonly assumed of sexual net-

works (Hamilton et al., 2008).

Seeds

We chose 15 000 total infected seed individuals uniformly at ran-

dom based on the estimate of total HIV cases in San Diego as of

2004 (Macchione et al., 2015).

Epidemiological model

We model HIV transmission as a Markov chain epidemic model (see

Section 2.1) with states Susceptible (S), Acute Untreated (AU), Acute

Treated (AT), Chronic Untreated (CU) and Chronic Treated (CT).

All seed individuals start in AU, and transmissions occur with rates

that depend for each individual on the number of neighbors it has in

each state (Fig. 2). Note that this model is a simplification of the

model used by Granich et al. (2009).

We set kAU ! CU such that the expected time to transition from

AU to CU is 6 weeks (Bellan et al., 2015) and set kAT ! CT such that

the expected time to transition from AT to CT is 12 weeks (Cohen

et al., 2011). We set kU ! T such that the expected time to start ART

is 1 year from initial infection (O’Brien and Markowitz, 2012), and

we define EART ¼ 1=kU!T . We set kT ! U such that the expected

time to stop ART is 25 months from initial treatment (Nosyk et al.,

2015). For the rates of infection kS,j for j 2 fAU;CU;AT;CTg,
using the infectiousness of CU individuals as a baseline, we set the

parameters such that AU individuals are five times as infectious

(Wawer et al., 2005) and CT individuals are not infectious (i.e. rate

of 0). Cohen et al. (2011) found a 0.04 hazard ratio when compar-

ing linked HIV transmissions between an early-therapy group and a

late-therapy group, so we estimated AT individuals to be 1 20= the in-

fectiousness of CU individuals. We then scaled these relative rates so

that the total number of new cases over the span of the 10 years was

roughly 6000 (Macchione et al., 2015), yielding kS,AU¼0.1125.

Phylogeny

We estimate parameters related to phylogeny and sequences from

real data. We used a MSA of 674 HIV-1 subtype B pol sequences

from San Diego (Little et al., 2014) and a subset containing the 344

sequences that were obtained between 2005 and 2014. For both of

these datasets, we inferred maximum-likelihood phylogenetic trees

using the ModelFinder Plus feature (Kalyaanamoorthy et al., 2017)

of IQ-TREE (Chernomor et al., 2016). We then removed outgroups

from the tree inferred from the full 674 sequence dataset and used

LSD (To et al., 2016) to estimate the time of the most recent com-

mon ancestor (tMRCA) and the per-year mutation rate distribution.

The tMRCA was estimated at 1980. The mutation rate was esti-

mated as 0.0012 with a standard deviation of roughly 0.0003, so to

match these properties, we sampled mutation rates for each branch

independently from a truncated normal random variable from 0 to

infinity with a location parameter of 0.0008 and a scale parameter

of 0.0005 to scale branch lengths from years to expected number of

per-site mutations.

In our simulations, a single viral lineage from each individual

was sampled at the end time of the epidemic (10 years). The viral

phylogeny in unit of time (years) was then sampled under a coales-

cent model with logistic viral population growth using the same ap-

proach as the PANGEA-HIV methods comparison exercise, setting

the initial population to 1, the per-year growth rate to 2.851904 and

the time back from present at which the population is at half the car-

rying capacity (v.T50) to �2 (Ratmann et al., 2017). Each seed indi-

vidual is the root of an independent viral phylogenetic tree, and

these trees were merged by simulating a seed tree with one leaf per

seed node under a non-homogeneous Yule model (Le Gat, 2016)

scaled such that its height equals 25 years to match the 1980 esti-

mate using SD. The rate function of the non-homogeneous Yule

model was set to kðtÞ ¼ e�t2 þ 1 to emulate short branches close to

the base of the tree (see comparison to other functions in

Supplementary Fig. S1).

Sequence data

We sampled a root sequence from a profile HMM generated from

the San Diego MSA using HMMER (Eddy, 1998). We evolved it

down the scaled viral phylogenetic tree under the GTRþC model

using Seq-Gen (Rambaut and Grass, 1997) with parameters inferred

by IQ-TREE (Supplementary Table S5).

Varying parameters

For San Diego, we explore four parameters (Table 1). For the con-

tact network, in addition to the BA model, we used the ER

(Bollobas, 1984) and WS (Watts and Strogatz, 1998) models. We

also varied the expected degree (Ed) of individuals in the contact net-

work between 2 and 16 (Table 1). For seed selection, we also used

Fig. 2. Epidemiological model of HIV transmission with states Susceptible (S),

Acute Untreated (AU), Acute Treated (AT), Chronic Untreated (CU) and

Chronic Treated (CT). The model is parameterized by the rates of infectious-

ness of AU (kS,AU), AT (kS,AT), CU (kS,CU), CT (kS,CT) individuals, and by the

rate to transition from AU to CU (kAU ! CU), the rate to transition from AT to

CT (kAT ! CT), the rate to start ART (kU ! T) and the rate to stop ART (kT ! U)

Table 1. Simulation parameters (base parameters in bold)

Parameter Parameter values

Contact network model Barabási–Albert, Erd}os–Rényi,

Watts–Strogatz

Expected degree(Ed) 2, 4, 8, 16

Seed selection Random, Edge-Weighted

Mean time to ART (EART ) 1
8,

1
4,

1
2, 1, 2, 4, 8 (years)
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‘Edge-Weighted’, where the probability that an individual is chosen

is weighted by the individual’s degree. For each selection of contact

network model, Ed, and seed selection method, we study multiple

rates of starting ART (expressed as EART ). In our discussions, we

focus on EART , a factor that the public health departments can try to

impact. Increased effort in testing at-risk populations can decrease

the diagnosis time, and the increased diagnosis rate coupled with

high standards of care can lead to faster ART initiation. Behavioral

intervention could in principle also impact degree distribution, an-

other factor that we vary, but the extent of the effectiveness of be-

havioral interventions is unclear (Kelly et al., 1991).

Uganda simulations

Our simulations with Uganda followed a similar approach to the base

model used for San Diego but with different choices of parameters,

motivated by Uganda. For inferring the reference phylogeny and mu-

tation rates, we used a dataset of all 893 HIV-1 subtype D pol sequen-

ces in the Los Alamos National Laboratory (LANL) HIV Sequence

Database that were sourced from Uganda and that were obtained be-

tween 2005 and 2014. All other Uganda parameters were motivated

by McCreesh et al. (2017), and the following are key differences from

the San Diego simulation. The contact network had 10000 total indi-

viduals (a regional epidemic), and 1500 individuals were randomly

selected to be seeds. For epidemiological parameters, we assumed the

expected time to begin as well as stop ART to be 1 year (McCreesh

et al., 2017). A comprehensive list of simulation parameters can be

found in Supplementary Tables S4 and S5.

2.2.2 Transmission network reconstruction methods

We compare two HIV network inference tools: HIV-TRACE

(Kosakovsky Pond et al., 2018) and TreeCluster (Moshiri, 2018).

HIV-TRACE is a widely used method (Pérez-Losada et al., 2017;

Rose et al., 2017; Wertheim et al., 2017) that clusters individuals

such that, for all pairs of individuals u and v, if the Tamura and Nei

(1993) (TN93) distance is below the threshold (default 1.5%), u and

v are connected by an edge; each connected component forms a clus-

ter. When we ran HIV-TRACE, we skipped its alignment step be-

cause we did not simulate indels. TreeCluster clusters the leaves of a

given tree such that the pairwise path length between any two leaves

in the same cluster is below the threshold (default 4.5%), the mem-

bers of a cluster define a full clade, and the number of clusters is

minimized. Trees given to TreeCluster were inferred using FastTree

2 (Price et al., 2010) under the GTRþC model. We used FastTree 2

because using IQ-TREE on these very large datasets (up to 80 000

leaves) was not feasible. TreeCluster is similar in idea to Cluster

Picker (Ragonnet-Cronin et al., 2013), which uses sequence distan-

ces instead of tree distances (but also considers branch support). We

study TreeCluster instead of Cluster Picker because of its improved

speed. Our attempts to run PhyloPart (Prosperi et al., 2011) were

unsuccessful due to running time.

2.2.3 Measuring the predictive power of clustering methods

We now have two sets of clusters at the end of the simulation pro-

cess (year 10): one produced by HIV-TRACE and one by

TreeCluster. Let Ct denote the clustering resulting from removing all

individuals infected after year t from a given final clustering C10, let

Ct
i denote a single i-th cluster in clustering Ct, and let gðCt

iÞ ¼

jCt
i
j�jCt�1

i
j

ffiffiffiffiffiffi

jCt
i
j

p denote the growth rate of a given cluster Ct
i (Wertheim

et al., 2018). We then compute the average number of individuals

who were infected between years 9 and 10 by the ‘top’ 1000 individ-

uals (roughly 5% of the total infected population) who were infected

at year 9, where we choose top individuals by sorting the clusters in

C9 in descending order of gðC9
i Þ (breaking ties randomly) and choos-

ing 1000 individuals in this sorting, breaking ties in a given cluster

randomly if needed (e.g. for the last cluster needed to reach 1000

individuals). As a baseline, we compute the average number of indi-

viduals who were infected between years 9 and 10 by all individuals,

which is equivalent (in expectation) to a random selection of 1000

individuals. Our metric, therefore, measures the risk of transmission

from the selected 1000 individuals. Our motivation for this metric is

to capture whether monitoring cluster growth can help public health

intervention efforts with limited resources in finding individuals

with a higher risk of transmitting.

3 Results

3.1 Comparison to real phylogenies
To compare data simulated by FAVITES to real data, we use the

aforementioned San Diego and Uganda phylogenies. Since the trees

on real data are inferred trees (as opposed to true trees), we compare

them to inferred trees on simulated data (built using FastTree 2 as run-

ning IQ-TREE on simulated data was not feasible). We randomly sub-

sample the simulated dataset to match the number of sequences in the

corresponding real dataset (344 for San Diego; 893 for Uganda).

For San Diego, the mean patristic distance between sequences on

inferred trees is respectively 0.087 and 0.089 for the real and base

simulated datasets. The distributions of pairwise distances among

inferred trees of real and simulated datasets have similar shapes, but

distances from real data have higher variance (Fig. 3a). To quantify

the divergence between the real and simulated distributions, we use

the Jensen–Shannon divergence (JSD), a number between 0 and 1

with 0 indicating a perfect match (Lin, 1991). The JSD is only 0.023

for trees inferred from the San Diego base parameters

(Supplementary Table S6). The Uganda simulations have a larger di-

vergence (Fig. 3a) between real and simulated distributions (JSD:

0.082), with simulated data showing higher mean distances (means:

0.075 and 0.097). We observe similar patterns when we compute

pairwise distances directly from sequences and apply phylogenetic

correction using the JC69þC model (Supplementary Table S6 and

Fig. S4). For all simulated datasets, the true trees have lower vari-

ance in pairwise distances compared to estimated trees; this is con-

sistent with the stochasticity of sequence evolution and the added

variance due to the inference uncertainty.

Our simulated trees, like real trees, include clusters of long ter-

minal branches and short internal branches, especially close to the

root (Supplementary Fig. S2). The branch length distributions are bi-

modal, with one peak close to 0 and another between 0.01 and 0.03

(Fig. 3b). However, the second mode for the real trees is larger than

the second mode of real data; e.g. for San Diego, the second peak is

at 0.030 for real data and 0.023 for base simulated data. The JSD di-

vergence between branch length distributions of real and simulated

trees are 0.102 for San Diego (base) and 0.119 for Uganda. The dis-

tribution of branch lengths on true trees (as opposed to inferred

trees) has a similar shape (Fig. 3b) but a shorter tail of long branches

and a reduced JSD compared to real data (e.g. 0.044 for base San

Diego; see Supplementary Table S6).

Sensitivity to parameters

Even though mean branch lengths can change (between 0.0053 and

0.0080) as a result of changing EART and Ed (Supplementary Fig.
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S3), the overall distributions remain quite stable (Fig. 3b and

Supplementary Fig. S4). Similarly, patristic distances are not sensitive

to EART (Fig. 3a and b) nor to Ed (Supplementary Fig. S4). In terms of

branch lengths, the divergence from the real data changes only mar-

ginally as Ed and EART change (Supplementary Table S7). While the

distributions are stable with respect to these epidemiological parame-

ters, they are sensitive to others. For example, results are sensitive to

the model of mutation rates. We draw mutation rates from a

truncated normal distribution (fitted to real data) and obtain close

matches to real data. However, other distributions (e.g. Exponential)

yield significant deviation from real distributions (Supplementary Fig.

S4). Because of these deviations, we have only used the truncated nor-

mal distributions for mutation rates everywhere.

3.2 Impact of parameter choices on the epidemiology
Infected population

The number of infected individuals increases with time and the rate

of growth is faster for larger EART values (Supplementary Fig. S5).

For all tested values of EART , the number of infected individuals

grows close to linearly (Pearson r�0.966), indicating that the large

at-risk population has not saturated in the 10-year simulation

period. As EART decreases from 8 years to 1 8= years, the total number

of infected individuals at the end of the simulation keeps decreasing

(Fig. 4a). For example, with degree 4, the average final number of

infected individuals in the 10 year period is 6686, 4134 and 1273

with EART set to 1, 1
2,

1
8 year, respectively.

The model of contact network and the model of choosing the

seed individuals have only marginal effects on these outcomes.

Edge-weighting the seed selections yields a slightly higher (at most

12%) total number of infected individuals than the random selection

(Supplementary Table S7). The BA model of contact network leads

to a slightly higher infection count when compared to the ER (at

most 7%) and WS (at most 8%) models (Supplementary Fig. S6),

but these differences are marginal compared to impacts of EART and

Ed (which, when changed, leads to 43 and 152% change, respective-

ly, in the number of infected people compared to the base parame-

ters). Finally, Uganda simulations lead to higher infection count (64

versus 45%) compared to San Diego (Supplementary Table S7).

Treated population

The ratio of untreated to treated individuals is a function of EART

but not Ed (Fig. 4b). Note that this ratio remains constant (at most

14.7% change) after year 4, has small changes in year 1–4, and

experiences an initial period of instability for about 1 year

(a)

(b)

Fig. 4. Sensitivity analysis of epidemiological outcomes. We show (a) the total

number of infected individuals, and (b) the ratio of the number of untreated

versus the number of treated individuals (log-scale), versus expected time to

begin Antiretroviral Therapy (EART ) for the Barabási–Albert model with vari-

ous mean contact numbers (Ed ) with all other parameters set to base values.

Untreated/treated¼1 is shown as the upper dashed line, and the value of un-

treated/treated corresponding to the ‘90–90–90’ goal (UNAIDS, 2014) is

shown as the lower dashed line (ð1� 0:93Þ=0:93 � 0:37). The Untreated/

Treated value corresponding to the simulated Uganda dataset has been

shown as aþ symbol on (b)

(a)

(b)

Fig. 3. Kernel density estimates of the distributions of (a) patristic distances

(path length) between all pairs of sequences and (b) branch lengths of real

and simulated datasets for the San Diego (SD) and Uganda (UG) datasets.

Averages are shown as dots (Supplementary Fig. S3). Black denotes distribu-

tions computed from true (simulated) trees and gray denotes distributions

computed from trees inferred from sequences (IQ-TREE for real and FastTree

2 for simulated data). Note that real data only have inferred pairwise distan-

ces and branch lengths, as true branch lengths are not known. EART is the

expected time to start ART
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(Supplementary Fig. S5), likely because all seeds are initially AU.

With EART ¼ 1 years, the ratio is on average 0.507 after year 2;

decreasing/increasing EART reduces/increases the portion of untreat-

ed people. The 90–90–90 campaign by UNAIDS (2014) aims to

have 90% of the HIV population diagnosed, of which 90% should

receive treatment, of which 90% (i.e. 72.9% of total) should be vir-

ally suppressed. Reaching the 90–90–90 goals in the epidemic we

model here requires EART between 1
2 and 1 year (assuming that lack

of viral suppression is fully attributed to lack of adherence). These

results are stable with respect to model of contact network, Ed, and

seed selection approach (Fig. 4b and Supplementary Fig. S7). The

only model choice that had a noticeable effect on the results is the

use of the ER network model, which led to an increase in Untreated/

Treated for Ed�4 (Supplementary Fig. S7). We note that our simu-

lated Uganda epidemic had twice the ratio of Untreated/Treated

compared to base San Diego (Supplementary Table S7).

3.3 Evaluating inference methods
Phylogenetic error

From simulated sequences, we inferred trees under the GTRþC
model using FastTree 2 (Price et al., 2010), and we computed the

normalized Robinson-Foulds (RF) distance [i.e. the proportion of

branches included in one tree but not the other (Robinson and

Foulds, 1981)] between the true trees and their respective inferred

trees (Supplementary Fig. S8). For all model conditions, the RF dis-

tance is quite high (0.36–0.58 for San Diego and 0.25–0.40 for

Uganda). However, we note that our datasets include many ex-

tremely short branches, defined here as those where the expected

number of mutations along the branch across the entire sequence

length is lower than 1. In our simulations, we have between 16 and

30% of branches that are extremely short (Supplementary Fig. S8)

and therefore hard to infer.

Clustering methods

We measure the number of new infections caused by each person in

the clusters with the highest growth rate and compare it with the

same value for the total population (Fig. 5). Over the entire popula-

tion, the average number of new infections caused by each person

between years 9 and 10 is 0.028 for our base parameter settings.

The top 1000 people from the fastest growing TreeCluster clusters,

in contrast, infect on average 0.066 new people. Thus, the top 1000

people chosen among the growing clusters according to TreeCluster

are more than twice as infectious as a random selection of 1000 indi-

viduals. HIV-TRACE performs even better than TreeCluster,

increasing the per capita new infections among top 1000 individuals

to 0.097 for base parameters, a 3.46� improvement compared to

the population average. As EART decreases, the total number of per

capita new infections reduces; as a result, the positive impact of

using clustering methods to find the growing clusters gradually

diminishes (Fig. 5). Conversely, reducing EART leads to further

improvements obtained using TreeCluster versus random selection

and using HIV-TRACE versus TreeCluster.

Changing Ed also impacts the results (Fig. 5). When Ed ¼ 2,

slowing the epidemic down compared to the base case, both meth-

ods remain better than random, and HIV-TRACE continues to out-

perform TreeCluster. However, when Ed is increased, the two

methods first tie at Ed ¼ 8, and at Ed ¼ 16, TreeCluster becomes

slightly better than HIV-TRACE for most EART values (Fig. 5). The

advantage compared to a random selection of individuals is dimin-

ished (improvements never exceed 70%) when the epidemic is made

very fast growing by setting EART�2 and Ed ¼ 16.

4 Discussion

Our results demonstrated that FAVITES can simulate under differ-

ent models and can produce realistic data. A comparison of the fit

between real and simulated data for Uganda and San Diego points

to the importance of data availability. For San Diego, where more

studies have been done and more sequence data were available, the

fit between simulated and true data was generally good

(Supplementary Table S6). For Uganda, we had to rely on several

sources [e.g. data from McCreesh et al. (2017) and LANL], and we

had a reduced fit between simulations and real data. Increased gath-

ering and sharing of data, including sequence data, can in future im-

prove our ability to parameterize simulations.

Although we only explored viral epidemics, FAVITES can easily

expand to epidemics caused by other pathogens for which molecular

epidemiology is of interest (Azarian et al., 2014). We also showed

that TreeCluster and HIV-TRACE, when paired with temporal

monitoring, can successfully identify individuals most likely to

transmit, and HIV-TRACE performs better than TreeCluster under

most tested conditions. The ability to find people with increased risk

of onward transmission is especially important because it can poten-

tially help public health officials better spend their limited budgets

for targeted prevention (e.g. pre-exposure prophylaxis, PrEP) or

treatment (e.g. efforts to increase ART adherence).

We studied several models for various steps of our simulations,

but we did not exhaustively test all models: FAVITES currently

includes 21 modules and a total of 169 implementations (i.e. specific

models) across them, and testing all model combinations is infeas-

ible. To simulate San Diego and Uganda, we aimed to choose the

Fig. 5. The effectiveness of clustering methods in finding high-risk individuals. The average number of new infections between years 9 and 10 of the simulation

caused by individuals infected at year 9 in growing clusters. We select 1000 individuals from clusters, inferred by either HIV-TRACE or TreeCluster, that have the

highest growth rate (ties broken randomly). As a baseline control, the average number of infections over all individuals (similar to expectations under a random

selection) is shown as well. For a cluster with nt members at year t, growth rate is defined as n9�n8
ffiffiffiffi

n9
p . The columns show varying expected degree (i.e. number of

sexual partners), and all other parameters are their base values

FAVITES 1859

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty921#supplementary-data
Deleted Text: .,
Deleted Text: ,
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty921#supplementary-data
Deleted Text:  (
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty921#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty921#supplementary-data
Deleted Text: (
Deleted Text: .,
Deleted Text: ))
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty921#supplementary-data
Deleted Text: -
Deleted Text: -
Deleted Text: &percnt;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty921#supplementary-data
Deleted Text: 1, 000
Deleted Text: 1, 000
Deleted Text: x
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: .
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty921#supplementary-data
Deleted Text: (
Deleted Text: ),
Deleted Text: .,


most appropriate set of 21 sub-models available in FAVITES to create

the end-to-end simulations. Each of these 21 sub-models has its own

limitations, as models inevitably do. However, it must be noted that

limitations resulting from model assumptions are limitations of the

specific example simulation experiment we performed in this manu-

script, rather than limitations of the framework: FAVITES is designed

specifically to be flexible, allowing the use of different models for dif-

ferent steps. If better models are developed for each of these 21 mod-

ules, they can be easily incorporated. Like all statistical modeling,

appropriate choice of model assumptions is essential to the interpret-

ation of the simulation results, and it is important for the user to

choose models appropriate to their specific epidemic of interest. To

aid users, our extensive documentation provides descriptions for each

module implementation and we provide model validation scripts.

For the simulation of HIV epidemics, novel statistical models

can be created to address the unrealistic assumptions. For example,

our contact network remains unchanged with time, whereas real

sexual networks are dynamic. Our transmission model does not dir-

ectly model effective prevention measures such as PrEP. Our sequen-

ces include substitutions, but no recombination. Moreover, the

models of sequence evolution we used ignore many evolutionary

constraints across sites. We also ignored infections from outside the

network (viral migration), assumed full patient sampling, and we

sampled all patients at the end time as opposed to varied-time sam-

pling. While these and other choices may impact results, we note

that our goal here was mainly to show the utility of FAVITES. We

leave an extensive study of the impact of each of these factors on the

results to future studies. Importantly, new models with improved

realism to address these issues can easily be incorporated, and con-

tinued model improvement is a reason why we believe flexible

frameworks like FAVITES are needed.

We observed relatively high levels of error in inferred phyloge-

nies. This is not surprising given the low rate of evolution and length

of the pol region (which we emulate). Further, our phylogenies in-

clude many super-short branches, perhaps due to our complete sam-

pling. Many transmission cluster inference tools (e.g. PhyloPart,

Cluster Picker and TreeCluster) use phylogenies during the inference

process and thus may be sensitive to tree inference error. Other tools

like HIV-TRACE do not attempt to infer a full phylogeny (only dis-

tances). The high levels of tree inference error may be partially re-

sponsible for the relatively lower performance of TreeCluster

compared to HIV-TRACE. Nevertheless, TreeCluster had higher per

capita new infections in its fastest growing clusters than the popula-

tion average, indicating that the trees, although imperfect, still in-

clude useful signal about the underlying transmission histories.

Using FAVITES, we compared TreeCluster and HIV-TRACE in

terms of their predictive power, and our results complement studies

on real data (Rose et al., 2017). Nevertheless, our simulations study

has some limitations that should be kept in mind. A major limitation

is that both methods we tested use a distance threshold internally for

defining clusters. The specific choice of threshold defines a trade-off

between cluster sensitivity and specificity, and the trade-off will im-

pact cluster compositions. The best choice of the threshold is likely a

function of epidemiological factors, and the default thresholds are

perhaps optimal for certain epidemiological conditions, but not

others. For example, we observed that, for a minority of our epi-

demiological settings, TreeCluster is more effective than HIV-

TRACE in predicting growing clusters. A thorough exploration of

all epidemiological parameters and method thresholds is left for fu-

ture studies. On a practical note, FAVITES can enable public health

officials to simulate conditions similar to their own epidemic and

pick the best method/threshold tailored to their situation.

The approach we used for evaluating clustering methods, despite

its natural appeal, is not the only possible measure. For example, the

best way to choose high-risk individuals given clustering results at

one time point or a series of time points is unclear. We used a strict

ordering based on square-root-normalized cluster growth and arbi-

trary tie-breaking, but many other metrics and strategies can be

imagined (Wertheim et al., 2018). For example, we may want to

order individuals within a cluster by some criteria as well and

choose certain number of people per cluster inversely proportional

to the growth rate of the cluster. We simply chose 1000 people to

simulate a limited budget, but perhaps reducing/increasing this

threshold gives interesting results. A thorough exploration of the

best method for each budget is beyond the scope of this work.

Similarly, we leave a comprehensive study of the best strategies to al-

locate budgets based on the results of clustering and better ways of

measuring effectiveness, to future work.
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