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Abstract

Motivation: Polygenic risk score (PRS) methods based on genome-wide association studies

(GWAS) have a potential for predicting the risk of developing complex diseases and are expected

to become more accurate with larger training datasets and innovative statistical methods. The area

under the ROC curve (AUC) is often used to evaluate the performance of PRSs, which requires indi-

vidual genotypic and phenotypic data in an independent GWAS validation dataset. We are moti-

vated to develop methods for approximating AUC of PRSs based on the summary level data of the

validation dataset, which will greatly facilitate the development of PRS models for complex

diseases.

Results: We develop statistical methods and an R package SummaryAUC for approximating the

AUC and its variance of a PRS when only the summary level data of the validation dataset are avail-

able. SummaryAUC can be applied to PRSs with SNPs either genotyped or imputed in the valid-

ation dataset. We examined the performance of SummaryAUC using a large-scale GWAS of

schizophrenia. SummaryAUC provides accurate approximations to AUCs and their variances. The

bias of AUC is typically <0.5% in most analyses. SummaryAUC cannot be applied to PRSs that use

all SNPs in the genome because it is computationally prohibitive.

Availability and implementation: https://github.com/lsncibb/SummaryAUC.

Contact: Jianxin.Shi@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large-scale genome-wide association studies (GWAS) have identi-

fied dozens or even hundreds of common SNPs associated with

many complex diseases, including psychiatric conditions, e.g.

schizophrenia (Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014), type 2 diabetes (Scott et al., 2017)

and common cancers, e.g. breast cancer (Michailidou et al., 2017)

and prostate cancers (Al Olama et al., 2014). Heritability analysis
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using algorithms such as genome-wide complex trait analysis

(GCTA) (Yang et al., 2010) and LD-score regressions (Bulik-

Sullivan et al., 2015) have shown that, for many complex diseases,

common SNPs have the potential to explain substantially larger

fraction of the phenotypic variance than that based on the estab-

lished GWAS SNPs, suggesting a great promise for genetic risk pre-

diction. In fact, polygenic risk scores (PRSs) have been proven useful

for predicting complex disease risk and are expected to become

more accurate with large training datasets (Chatterjee et al., 2013;

Dudbridge, 2013) and innovative statistical methods. For example,

a PRS for schizophrenia based on tens of thousands of SNPs

achieves an impressive prediction accuracy with an area under the

receiver operating characteristic curve (AUC) of 0.75 (Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2014)

with �35 000 cases and 45 000 controls.

Much effort has been invested on developing PRS prediction

models and on investigating the factors that determine the perform-

ance of PRSs. When raw genotypic and phenotypic data are avail-

able for the training dataset, machine learning algorithms

(Kooperberg et al., 2010; Wei et al., 2009) and linear mixed models

(Golan and Rosset, 2014; Maier et al., 2015; Speed and Balding,

2014) can be used to develop PRSs. PRSs can also be constructed

when only GWAS summary level data are available for training

dataset by simple P-value thresholding (Purcell et al., 2009) or by

more sophisticated methods that model linkage disequilibrium (LD)

(Vilhjalmsson et al., 2015). We have recently extended the P-value

thresholding method to further improve accuracy by accounting

for winner’s curse and by incorporating functional annotation data

(Shi et al., 2016). Different aspects of building PRS are discussed in

a recent review paper (Chatterjee et al., 2016).

Receiver operating characteristic (ROC) curve is one of the most

popular tools for characterizing and comparing the diagnostic accur-

acy of binary classifier systems such as the PRSs in the present con-

text. Since its first appearance in the Second World War for

detecting enemy objects in battlefields, the ROC curve analysis has

found its place in many others. A few books provide comprehensive

coverage of the topics, see, among others (Hanley and Mcneil, 1982;

Krzanowski and Hand, 2009; Pepe, 2003; Zou, 2011). The ROC

curve of a PRS is generated by plotting its true positive rate against

its false positive rate at various thresholds. The area under the ROC

curve (AUC) provides a quantitative measure for the discrimination

ability of a PRS (Hanley and Mcneil, 1982). AUC is the most fre-

quently used quantitative measure for evaluating the discrimination

performance of a PRS, although some concerns have been raised for

using AUC as a criterion for model comparison and risk stratifica-

tion (Katki and Schiffman, 2018). While AUC is defined as the area

under the ROC curve, i.e. the integral of the curve, a more conveni-

ent mathematical expression of AUC is the probability that a ran-

domly selected case has a larger PRS value than a randomly selected

control. With this expression, one can show that an AUC estimator

is closely related with the Mann–Whitney U statistic and the

Wilcoxon rank test. Given PRS values for a set of cases and controls,

one can easily calculate AUC using this approach and estimate the

variance of the estimated AUC using bootstrap.

Calculating AUC for a PRS typically requires the individual level

genotypic and phenotypic data in an independent GWAS validation

dataset. One solution is to genotype a large set of subjects as a new

validation GWAS dataset, which is financially expensive and time

consuming. Another possibility is to request individual level data from

existing large-scale GWAS independent of the training GWAS, which

is also time consuming and may turn out to be infeasible because of

data sharing policies. Instead, requesting summary statistics [odds

ratio (OR), P-value and imputation quality for individual SNPs] from

an independent validation GWAS consortium is much easier because

such summary statistics are usually available online with open access.

Thus, developing methods for evaluating the performance of PRSs

based on the summary statistics of validation GWAS would substan-

tially accelerate the assessment of PRSs for specific diseases and facili-

tate the development of more accurate PRSs.

In this manuscript, we develop a statistical method, termed as

‘SummaryAUC’, for approximating AUC and its variance for a

given PRS based on summary statistics from an independent GWAS

validation dataset. Although SummaryAUC relies on the normality

assumption of PRS, extensive simulation studies demonstrate that it

is highly accurate under realistic situations with more than five

SNPs. Furthermore, SummaryAUC is flexible for PRSs with inde-

pendent SNPs or SNPs in weak LD and for both genotyped and

imputed SNPs in the validation dataset. Finally, we applied

SummaryAUC to schizophrenia GWAS to demonstrate the validity

of the methods. SummaryAUC is best used for PRSs with independ-

ent SNPs and for PRSs with <20 000 SNPs in weak LD for both

accuracy and computational efficiency. SummaryAUC is not suit-

able for PRSs integrating all common SNPs in the genome, e.g. LD-

Pred (Vilhjalmsson et al., 2015) and BLUP-type PRSs (Golan and

Rosset, 2014; Speed and Balding, 2014) based on linear mixed mod-

els. An R package with the same name was developed to implement

the proposed method and is publicly available.

2 Materials and methods

We assume an additive PRS model based on M SNPs:

PRSi ¼
XM
m¼1

wmgim; (1)

where m indexes SNPs and i indexes subjects in the validation data-

set. The weights ðw1; . . . ;wMÞ are derived based on a specific algo-

rithm and a training dataset. The genotypic value gim 2 f0; 1; 2g if

the SNP is genotyped and gim 2 ½0; 2� if the SNP is imputed. The

selected SNPs in the PRS may be correlated because of LD.

When the genotypic data and the binary phenotypic data (yi) are

available for each individual subject in the validation dataset, one

can calculate PRS in (1) for all subjects and evaluate the perform-

ance of the prediction model by comparing PRS with the known

phenotypic data. The performance of a prediction model is often

assessed by the area under the AUC at the observational scale.

We are interested in developing methods for estimating AUC and

its standard deviations when only the GWAS summary statistics are

available for the validation dataset. For the mth SNP, the summary sta-

tistics include the minor allele, the minor allele frequency (MAF) in the

control samples, the ORm or equivalently the regression coefficient

bm ¼ logðORmÞ, the two-sided P-value Pm or equivalently the Z-score

statistic Zm ¼ sign bmð ÞU�1ð1� Pm=2Þ, the imputation information

score r2
m, the number of cases n1 and the number of controls n0. Here,

bm and Pm are based on single variant logistic regression. UðÞ is the cu-

mulative distribution function for Nð0; 1Þ. In addition, MAF may not

be available from the summary statistics to prevent subjects in the

study to be deidentified (Homer et al., 2008; Jacobs et al., 2009).

2.1 Estimating AUC and its variance by summary

statistics

Let PRS1i ¼
PM

m¼1 wmg1
im be PRS for the ithcase and PRS0j ¼

PM
m¼1 wmg0

jm for the jth control subject. We assume that M is
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reasonably large that PRSs approximately follow normal distribu-

tions in cases and controls, respectively:

PRS1i � N l1;r
2
1

� �
and PRS0j � N l0; r

2
0

� �
: (2)

We will investigate the impact of the normality assumption in

numerical studies. We define

D ¼ l1 � l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
0

q : (3)

The AUC (denoted as h) is defined as the probability that, for a

randomly selected case and a randomly selected control, the case has

a larger PRS than the control, i.e. h ¼ PðPRS1i > PRS0jÞ. For a val-

idation dataset with n1 cases and n0 controls with individual PRS

values, one can estimate the AUC based on the following U-statistic

(or the Wilcoxon–Mann–Whitney statistic):

ĥ ¼ 1

n0n1

Xn1

i¼1

Xn0

j¼1

IðPRS1i > PRS0jÞ: (4)

The expectation of AUC assuming normal distributions defined

in (2) can be calculated as

h ¼ PðPRS1i > PRS0jÞ

¼ P
ðPRS1i > PRS0jÞ � ðl1 � l0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1 þ r2

0

q >
�ðl1 � l0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1 þ r2

0

q
0
@

1
A

¼ UðDÞ:

(5)

When n1 � 1; n0 � 1 and r2
1 � r2

0 (when common SNPs have

modest effect sizes for complex diseases), we derive in

Supplementary Appendix that

Var ĥð Þ ¼ n1 þ n0

n1n0
P z1 > �D; z2 > �Dð Þ � U2 Dð Þ
� �

; (6)

where z1 � Nð0; 1Þ, z2 � Nð0;1Þ and cor z1; z2ð Þ ¼ 1=2 If a PRS has

rare SNPs with large effect size, variance is derived in

Supplementary Appendix (A8) without assuming r2
1 � r2

0.

Note that both AUC (5) and the variance of the AUC estimator

(6) depend on D defined in (3). Thus, it remains to estimate D based

on the summary statistics in the validation dataset.

2.2 Estimate D when SNPs are independent
Let p1m and p0m denote the MAF of SNP m in the case and the

control group, respectively. Typically, p0m is included in the

GWAS summary data while p1m is not included. p1m ¼ p0m=

ðp0mORm þ 1� p0mÞ, where ORm is the OR in the validation data-

set. Let s2
0m ¼ Varðg0

jmÞ ¼ 2p0m 1� p0mð Þr2
m be the genotypic vari-

ance in the control group assuming the Hardy Weinberg

Equilibrium law. Similarly, let s2
1m ¼ Var g1

im

� �
¼ 2p1m 1� p1mð Þr2

m

be the genotypic variance in the case group. Remember that we assume

PRS1i � Nðl1; r
2
1Þ and PRS0j � Nðl0; r

2
0Þ approximately in (2).

When SNPs in the PRS are independent, we have l1 ¼PM
m¼1 2wmp1m, l0 ¼

PM
m¼1 2wmp0m, r2

1 ¼
PM

m¼1 w2
ms2

1m and r2
0 ¼PM

m¼1 w2
ms2

0m.

Substituting these into (3) leads to

D ¼ l1 � l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
0

q ¼
PM

m¼1 2wmðp1m � p0mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 w2

mðs2
1m þ s2

0mÞ
q : (7)

Thus, it remains to estimate p1m � p0m, the difference of the al-

lele frequencies between cases and controls.

Let G1
m and G0

m be the average genotypic values in the case group

and the control group, respectively. One can estimate p1m � p0m as

p̂1m � p̂0m ¼ ðG1
m �G0

mÞ=2: (8)

The Z-statistic for genetic association can be approximated by

the t-statistic for large studies, i.e. Zm ¼
ðG1

m �G0
mÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1m=n1 þ s2
0m=n0

q
; thus, we have

G1
m �G0

m � Zm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1m=n1 þ s2
0m=n0

q
: (9)

Combining (7), (8) and (9) leads to an estimate for D:

D̂ ¼
PM

m¼1 wmZm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1m=n1 þ s2
0m=n0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1 w2
mðs2

1m þ s2
0mÞ

q : (10)

When p0m is not included in the summary statistics, we can use

the allele frequency based on public data (e.g. The 1000 Genome

Project) of the similar ancestry populations to approximate s2
0m

and s2
1m.

2.3 Estimate D when SNPs are in LD
We first assume that SNPs in PRS are genotyped in the validation

dataset. When some SNPs in PRS are in LD, we only need to modify

the denominator in (10). We assume that, for complex diseases, cor-

relations between local SNPs are similar in cases and controls. This

assumption is reasonable because ORs are modest for nearly all

disease-associated SNPs. Let qml ¼ corðgim; gilÞ be the genotypic cor-

relation between SNP m and SNP l. The variance of PRS in controls

and cases are

Var PRS0j

� �
¼
XM

m¼1
w2

ms2
0m þ 2

X
m< l

wmwls0ms0lqml

and

Var PRS1ið Þ ¼
XM

m¼1
w2

ms2
1m þ 2

X
m< l

wmwls1ms1lqml:

Thus, (10) can be modified as

D̂ ¼
PM

m¼1 wmZm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1m=n1 þ s2
0m=n0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1 w2
mðs2

1m þ s2
0mÞ þ 2

P
m< lwmwlðs0ms0l þ s1ms1lÞqml

q :

(11)

In implementation, we assume qml ¼ 0 for SNPs located on dif-

ferent chromosomes and for SNPs on the same chromosome but

more than 5 Mb away. In addition, we estimated qml using the geno-

type data of the similar ancestry population in The 1000 Genomes

Project.

However, it is very challenging when SNPs in the PRS are

imputed. Let ĝimbe the imputed genotypic dosage. Let

q0ml ¼ corðĝim; ĝilÞ be the correlation between the imputed genotyp-

ic dosages. Although we cannot rigorously prove, we observe that

imputation tends to inflate the magnitude of pairwise correlation,

particularly for SNPs imputed with high uncertainty. We find that

using qml (calculated based on genotype data in external data) to cal-

culate D̂ in (11) makes the approximation to AUC and its variance

less accurate, particularly when a PRS has many SNPs. To address

this problem, we propose a strategy to estimate q0ml using The 1000

Genome Project data, which is illustrated in Figure 1. Briefly, the

subjects in The 1000 Genome Project with relevant ancestry are div-

ided into two sets, denoted as S1 and S2. For subjects in S1, we keep

only SNPs that are genotyped in the validation GWAS dataset and

perform imputation to derive genotypic dosages using the

4040 L.Song et al.
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haplotypes in S2 as the reference panel. We can calculate q0ml ¼
corðĝim; ĝilÞ using the imputed genotypic dosages to approximate D̂
in (11). Obviously, the degree of uncertainty of imputed genotypes

is similar to that in the validation GWAS dataset because they are

based on the same set of genotyped SNPs. Thus, we expect this strat-

egy to attenuate the impact of imputation to the calculation of LD

and thus to improve the approximation to AUC and its variance.

3 Results

3.1 Implementation
We implemented our algorithms in an R package ‘SummaryAUC’,

which is freely available online. Pairwise correlations between SNPs

are estimated using the genotype data in the The 1000 Genome

Project with relevant ancestry. For PRS with practically independent

SNPs (e.g. SNPs pruned rigorously), there is no limitation on the

number of SNPs in PRS. When SNPs in a PRS are correlated, we

only adjust for correlations for SNP pairs that are <5 Mb away. In

real data analyses, most PRSs have <10 000 SNPs, which can be cal-

culated in a few minutes.

3.2 Simulation studies
The key assumption of SummaryAUC is that PRS follows a normal

distribution approximately. This assumption may lead to poor ap-

proximation to AUC when the number of SNPs (M) in a PRS is

small. Thus, we performed simulations to investigate whether and

how the accuracy of SummaryAUC depends on M. In each simula-

tion, we simulated genotypes for 3000 cases and 3000 controls and

for M independent SNPs (M¼5,10,� � �,100). The allele frequency

p0m in controls followed a uniform distribution U(0.05, 0.5). We

simulated bm ¼ logðORmÞ � Nð0; 1=32Þ. The coefficients for PRS

were set as the simulated b values. The allele frequency p0m in cases

were calculated as p1m ¼ ORmpom=ðORmpom þ 1� pomÞ, where

ORm is the OR for the SNP in the validation sample. Genotypic

data were simulated using binomial distribution separately for cases

and controls.

For each set of simulated data, we calculated AUC and its variance

in two ways. In the first approach, we calculated PRS for each individ-

ual subject using the individual genotypic values; we then calculated

AUC using an R package ‘AUC’ and its variance using bootstrap

(N¼10 000). In the second approach, we first performed association

test for each SNP to derive Zm and also allele frequency p0m for control

samples; we then approximated AUC and its variance using

SummaryAUC.

The simulation results are summarized in Figure 2. Results sug-

gest that SummaryAUC provides accurate approximation to AUC

and its variance even when PRS has only five SNPs. Note that the

correlation between true AUC and approximated AUC is >99%.

Thus, the performance of SummaryAUC is robust to the number of

SNPs in PRS.

Next, we also performed simulations by simulating

bm ¼ logðORmÞ � Nð0;1=22Þ; � Nð0;1Þ and � 0:25þUð0; 0:5Þ.
The 90% quantile of the simulated ORs are 2.28, 5.2 and 2.01, re-

spectively. These values are quite big for common SNPs and poly-

genic diseases. Results are reported in Supplementary Figures S1–S3.

Again, SummaryAUC provides good approximations.

Finally, we performed simulations using SNPs that have been

reported to be associated with nine complex diseases, including mul-

tiple autoimmune diseases and cancers (Supplementary Fig. S4A).

The number of SNPs in PRSs ranged from 19 (melanoma) to 165

(prostate cancer). We used the published ORs and reference allele

frequencies in the European ancestry for simulations. For most of

the nine diseases, there was one common SNP with OR much bigger

than the other SNPs (Supplementary Fig. S4B), providing an oppor-

tunity to check the robustness of SummaryAUC in presence of out-

liers in ORs. In all simulations, SummaryAUC provided accurate

approximation to AUCs and their variances. Simulation results are

summarized in Supplementary Figures S5 and S6.

3.3 Application to genetic risk prediction of

schizophrenia
We evaluated the performance of SummaryAUC using schizophre-

nia GWAS (Schizophrenia Working Group of the Psychiatric

Genomics, 2014). Schizophrenia is a devastating psychiatric dis-

order with high heritability (80–85%) and has a prevalence of �1%

worldwide. Schizophrenia is highly polygenic and estimated to be

caused by more than 10 000 common SNPs. The Schizophrenia

Working Group of Psychiatric Genetics Consortium (PGC) recently

performed a meta-analysis of 49 case-control studies (34 241 cases

and 45 604 controls) and 3 family studies (1235 parent affected off-

spring trios) and identified 108 genome-wide significant common

SNPs. Encouragingly, PRSs have achieved a high discrimination per-

formance with average AUC �75% by leave-one-out analysis. Thus,

Fig. 1. Estimate correlation of imputed SNPs in the validation GWAS dataset.

The subjects in The 1000 Genome Project with relevant ancestry are divided

as two sets S1 and S2. (A) The genotype of the subjects in S1. (B) Only SNPs

that are genotyped in the validation GWAS dataset are kept. (C) The haplo-

types in S2 are used as reference panel for imputation. (D) Imputation is per-

formed to derive the genotypic dosage for SNPs that are not genotyped in the

validation GWAS dataset. The correlation between two SNPs is calculated

based on the imputed genotypic dosages

Fig. 2. AUC values and the standard errors for PRS with independent SNPs

based on simulation study. Each data point represents one simulation. For

each simulation, we calculated the AUC and its variance based on individual

data (x-coordinate) and using SummaryAUC (y-coordinate)
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this dataset is very useful for evaluating the performance of

SummaryAUC because we can choose PRS with wide range of AUC

values. Another advantage of using schizophrenia GWAS data is

that the performance is typically maximized when most of SNPs are

included in the PRS (Schizophrenia Working Group of the

Psychiatric Genomics, 2014), i.e. the P-value threshold for including

SNPs in PRS is nearly one. Thus, we can evaluate the accuracy of

our method in presence of extensive correlations between SNPs.

PRSs were constructed using the results of a fixed-effect meta-

analysis using all sub studies excluding the Molecular Schizophrenia

Genetics (MGS) study (Shi et al., 2009). The MGS study (2681 cases

and 2653 controls of European ancestry) was used to calculate AUC

values as the independent validation dataset. The meta-analysis

results included P-values Pm and ORm based in single variant logis-

tic regression analysis. Let wm ¼ log ORmð Þ, PRSs were built in two

steps following Purcell’s approach (Purcell et al., 2009): (1) LD-

clumping using pairwise correlation threshold r. LD-clumping was

guided by the association P-values in the training dataset to keep the

SNPs with smaller P-values in each specified short interval. After

LD-clumping, reminding SNPs (denoted as Ar) had pairwise correl-

ation less than r. (2) The PRS was defined as PRSi Q; rð Þ ¼P
m2Ar ;Pm <Qwmgim for a given P-value threshold Q. Note that the

number of SNPs in PRS increases with Q and r. We chose a wide

range of P-value threshold, ranging from 5�10�8 (genome-wide

significance) to 1 (i.e. all SNPs in Ar). To investigate how the pair-

wise correlation in SNPs impacted the performance, we chose r2 ¼
0:01 (very stringent, SNPs practically independent), 0.1 and 0.2

(locally, modestly correlated).

3.3.1 Compare performance when SNPs are genotyped in MGS

In the first set of analyses, we compared AUCs and SEs for PRSs

restricted to genotyped SNPs in the MGS dataset. For each PRS, we

calculated AUC and its standard error (SE) using MGS as the valid-

ation dataset in two ways. First, we assumed that individual level

genotype/phenotype data in MGS were available, calculated PRS for

each subject in MGS and calculated AUC using an R package

‘AUC’. Then, we performed bootstrap (N¼10 000) to estimate the

SEs of the estimated AUC values. We denote the two values as

AUC0 and SE0. Second, we performed single variant logistic regres-

sion to derive P-values, allele frequencies in controls and ORs for all

common SNPs, adjusting for sex, age and the top 10 Principal com-

ponent analysis (PCA) scores. The AUC and its SE were calculated

using SummaryAUC. We denote the two values as AUC1 and SE1.

Results are reported in Figure 3. As was reported previously

(Purcell et al., 2009; Schizophrenia Working Group of the

Psychiatric Genomics Consortium, 2014), including more SNPs in

PRS increases AUC for schizophrenia because of the extremely high-

ly polygenic genetic architecture. When SNPs are practically inde-

pendent with pruning criteria r2 ¼ 0:01, AUC0 and AUC1 agree very

well with the largest difference jAUC0�AUC1j ¼0.37%. When we

allow SNPs to be weakly correlated with pruning criteria r2 ¼ 0:2,

we observed highly concordant results until P-value threshold <0.1,

where the largest difference jAUC0�AUC1j ¼0.31%. When we

included SNPs with more liberal P-values, we observed larger incon-

sistency but the difference is still acceptable with the largest differ-

ence jAUC0�AUC1j ¼0.63% when all SNPs (122 552 SNPs) after

pruning are included in PRS. Because we only ran 10 000 bootstrap

samples to derive SE0, there is some fluctuation across PRS models.

Apparently, SE1 provides an accurate approximation to SE0.

To empirically examine the accuracy for PRSs with a small num-

ber of SNPs, we examined the performance of SummaryAUC for

PRS with the number of SNPs varying from 5 to 100 (Fig. 4).

When r2 ¼ 0:01, the largest difference jAUC0-AUC1j ¼0.41%;

when r2 ¼ 0:2, the largest difference jAUC0�AUC1j ¼0.55%. SE1

values also agree well although SE0 fluctuates because of the limited

number of bootstrap samples.

3.3.2 Compare performance when SNPs are imputed in MGS

MGS samples were imputed using software IMPUTE2 (Howie et al.,

2009) and using the haplotypes in The 1000 Genome Project as the

reference. SNPs with imputation R2 < 0:5 were excluded from

analyses. Again, AUC0 and SE0 were calculated using individual

level data. AUC1 and SE1 were calculated using SummaryAUC with

qml ¼ corðgim; gilÞ estimated directly using the genotype data in The

1000 Genome Project. AUC2 and SE2 were calculated using

Fig. 3. AUC values and their standard errors for PRS of schizophrenia for gen-

otyped SNPs in the MGS study. PRSs were trained based on the PGC sum-

mary data excluding the MGS study; the MGS study was used as the

validation data for calculating AUC and its variance. Analysis was restricted

to SNPs genotyped in MGS. The x-coordinate is the P-value threshold (for

training dataset) for including SNPs in PRS. AUC0 and SE0 were calculated

using individual level data. AUC1 and SE1 were calculated using

SummaryAUC based on GWAS summary data in MGS. r2 ¼ 0:01: SNPs were

LD-clumped using r2 ¼ 0:01 in PLINK. r2 ¼ 0:2: SNPs were LD-clumped using

r2 ¼ 0:2 in PLINK

Fig. 4. AUC values and their standard errors for PRS of schizophrenia for gen-

otyped SNPs in validation dataset. PRSs were trained based on the PGC data

excluding the MGS study; the MGS study was used as the validation data for

calculating AUC and its variance. The x-coordinate is the number of SNPs

(with smallest P-values in the training dataset) for PRS. AUC0 and SE0 were

calculated assuming individual level data. AUC1 and SE1 were calculated

using SummaryAUC based on GWAS summary data in MGS. r2 ¼ 0:01:

SNPs were LD-clumped using r2 ¼ 0:01 in PLINK. r2 ¼ 0:2: SNPs were LD-

clumped using r2 ¼ 0:2 in PLINK
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SummaryAUC with q0ml ¼ corðĝim; ĝilÞ estimated using the imputed

genotypic dosage data for samples in The 1000 Genome Project, as

illustrated in Figure 1.

Results are presented in Figure 5. When SNPs were very rigorously

pruned with r2 ¼ 0:01, both methods approximated AUCs and their

standard errors very well. When SNPs were pruned with r2 ¼ 0:2,

both AUC1 and AUC2 approximate AUC0 very well when the P-value

threshold <0.01. In fact, when P-value threshold ¼0.01, the PRS has

27404 SNPs. When PRSs use more liberal P-value threshold to in-

crease the number of SNPs, precisely adjusting for local correlation

between SNPs becomes more important but difficult for

SummaryAUC. In this case, AUC1 does not approximate AUC0 very

well with the largest bias jAUC0�AUC1j ¼2.25%. This is because

AUC1 uses qml ¼ corðgim; gilÞ estimated directly using the genotype

data in The 1000 Genome Project. In fact, imputation may change the

correlation for imputed SNPs, particularly for poorly imputed SNPs.

Encouragingly, AUC2 better approximates AUC0 with the largest bias

jAUC0�AUC2j ¼1.30%. The remaining bias may be due to the sub-

tle difference of LD between the external genotype and the MGS

population. A similar pattern is observed for SE0, SE1 and SE2.

4 Discussions

Although the predictive performance of PRS models are relatively

poor for most of complex diseases, PRS will be improved by increas-

ing the sample size of the training GWAS dataset and innovative

statistical methods that incorporate additional biological informa-

tion, e.g. functional annotation data and genetic pleiotropy (T.Chen

et al., submitted for publication; Hu et al., 2017; Shi et al., 2016).

One difficulty for developing more accurate PRS is to evaluate the

predictive performance of PRS in independent GWAS, which

requires individual level genotypic and phenotypic data. Herein, we

develop SummaryAUC as a new statistical method for

approximating AUC and its standard error based on GWAS sum-

mary level data, which will greatly facilitate the development of

more accurate PRS models.

Although SummaryAUC was derived under the normality

assumption of PRS, simulation results suggest that the performance

of SummaryAUC is robust to the number of SNPs in PRS. In fact,

we found that SummaryAUC was accurate even for PRS with only

five SNPs.

We systematically examined the accuracy of SummaryAUC by

applying it to schizophrenia GWAS. Because of the extremely poly-

genic genetic architecture and the very large sample size in the training

dataset, PRS can reach as high as 75% when all SNPs after LD-prun-

ing are included. These data are very useful for examining the per-

formance of SummaryAUC because we can compare accuracy for a

wide range of AUC and for PRSs with tens of thousands of SNPs. The

observations from this numerical study can be summarized as follows.

First, when SNPs in PRS are practically independent after rigor-

ous LD-pruning, SummaryAUC is most accurate and the accuracy is

not compromised even when all SNPs (after pruning) are included in

PRS. In this case, computation is very fast.

Second, if locally correlated, genotyped SNPs are included in

PRS, the performance is only slightly compromised compared to that

based on independent SNPs. Because we have to adjust for local cor-

relation, the computation might be slightly slow. In our implementa-

tion, we set qml ¼ 0 for SNPs on different chromosomes or on the

same chromosome but 5 Mb away; thus, computation can be done

within a few minutes even when PRS has tens of thousands of SNPs.

Third, it is more complicated when PRS has correlated SNPs that

are imputed in the validation GWAS dataset. When PRS is reasonably

sparse (e.g. <20000 SNPs), SummaryAUC is still accurate. However,

when PRS has many SNPs (e.g. when including SNPs using P-value

threshold 0.01), SummaryAUC is less accurate if pairwise correlations

are not appropriately adjusted. In this case, an imputation-based

method helps to reduce the bias. In reality, this only applies to schizo-

phrenia and a few other psychiatric disorders because of their highly

polygenic genetic architecture. For most of other diseases, the PRS

with optimal classification accuracy is sparse, typically with <2000

SNPs. Thus, we expect SummaryAUC to work well.

Thus, if PRSs use independent SNPs, SummaryAUC can be used

with confidence for PRS with any size and for both genotyped and

imputed SNPs. If PRSs use correlated SNPs that are imputed in val-

idation GWAS dataset, SummaryAUC is most accurate for sparse

PRS models and needs to adjust correlations using imputed dosage

data only for very dense PRS models. In addition, SummaryAUC is

not suitable for PRSs using all common SNPs in the genome, e.g.

LD-Pred (Vilhjalmsson et al., 2015) and BLUP-type PRSs (Golan

and Rosset, 2014; Speed and Balding, 2014) that are based on linear

mixed models. It is computationally infeasible to adjust for the cor-

relation for multiple millions of SNPs.

In addition, we found from simulations that, if summary statis-

tics in the validation dataset were not appropriately corrected for

population stratification, SummaryAUC may overestimate AUC.

Thus, we recommend checking the quantile–quantile plot and run-

ning LD-score regression (Bulik-Sullivan et al., 2015) to estimate the

extent of population stratification. If population stratification is a

major concern for a validation dataset (e.g. cases and controls are

from different studies), it should not be used for evaluating AUC for

a PRS. Finally, if the summary level data based on pooling multiple

studies are used for validation, we need to consider heterogeneity

(differences in ORs and allele frequencies for SNPs in PRS) across

these studies. If evidence suggests strong and extensive heterogeneity

across studies, the pooled dataset should not be used as the

Fig. 5. AUC values and their standard errors for PRS of schizophrenia when

SNPs are imputed. PRSs were trained based on the PGC data excluding the

MGS study; the MGS study was used as the validation data for calculating

AUC and its variance. MGS samples were imputed using IMPUTE2 and the

haplotypes in The 1000 Genome Project. AUC0 and SE0 were calculated

assuming individual level data. AUC1 and SE1 were calculated using

SummaryAUC based on GWAS summary data in MGS, where pairwise SNP

correlation was estimated using the genotype in The 1000 Genome Project

directly. AUC2 and SE2 were calculated using SummaryAUC based on the

summary data in MGS, where pairwise correlation was estimated using the

imputed genotypic dosage data illustrated in Figure 1. r2 ¼ 0:01: SNPs were

LD-clumped using r2 ¼ 0:01 in PLINK. r2 ¼ 0:2: SNPs were LD-clumped using

r2 ¼ 0:2 in PLINK
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validation dataset and effort must be made to perform validation for

individual studies.

Currently, we are working on developing methods for approxi-

mating R2 ¼ cor2ðyi;PRSiÞ using GWAS summary data in the valid-

ation dataset, the fraction of phenotypic variance explained by a

PRS model at the observational scale. In addition, we are working

on developing statistical methods for testing whether the AUC val-

ues from two PRS models are statistically different using GWAS

summary data.
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