Skip to main content
. 2016 May 26;21(3):223–235. doi: 10.1111/anec.12372

Table 2.

Studies Using HRV as a Tool for Diagnosis in Diabetics

Author and Year Sample Analysis Parameters and Methods Sensibility (%) Specificity (%) Conclusion
Takasae et al. (1992)27 Diabetes: N = 25; DMT2; with CAN (13) 58 ± 11 years; without CAN (12) 49 ± 16 years

ECG

24 hours

Mean of SD of iRR (SDANN) 72 92 SDANN < 30 ms produced a better sensitivity and specificity for diabetics with CAN
Ziegler et al. (2001)28

Diabetes: N = 108; DMT1 (89); DMT2 (19), CAN (3 stages); 45.3 ± 1.4 years

Control: N = 37, 41.1 ± 2.0 years

Finapress

10 minutes

LF, HF HF is more sensitive to detect early autonomic dysfunction to a cutoff value of 0.892
Balcioglu et al. (2007)29 Diabetes: N = 90; DMT2; with CAN (35) 56 ± 9 years; CAN borderline (55) 56 ± 9 years

ECG

24 hours

SDNN, SDANN, RMSSD, triangular index, TFC of start and TFC tilt 97 71 All indices were reduced in individuals with CAN. TFC of tilt is better sensitivity and specificity for detection of CAN at a cutoff value of 3.32.
Khandoker et al. (2009)30 Diabetes: N = 17; DMT2; with CAN (9) 52 ± 12 years; without CAN (8) 56 ± 14 years

ECG

20 minutes

SDNN, RMSSD, LFun, HFun, LF/HF, SD1, SD2, SD1/SD2 and SampEn 100 75 SampEn and SD1/SD2 produced better sensitivity and specificity to distinguish between diabetics with and without CAN
Acharya et al. (2011)31

Diabetes: N = 15; 58.5 ± 6.42 years, CAN unknown

Control: N = 15; 50 ± 8.8 years

ECG

60 minutes

Correlation dimension, Poincaré geometry, Recurrence plot/AdaBoost and SVM 87.5 84.6 The AdaBoost classifier obtained better accuracy to diagnose DM. The index DII was proposed based on the results to discriminate diabetic neuropathy.
Seyd et al. (2012)32

Diabetes: N = 70; DMT2; NAC unknown

Control: N = 65

Age varied from 40 to 72 years for both groups

ECG

60 minutes

RMSSD, NN50, TINN, triangular index, SDNN, PNN50, LF, HF, VLF/artificial neural network 89.23 96.92 Training of artificial neural network using as base indices of HRV has good sensitivity and specificity to distinguish DM and healthy individuals
Acharya et al. (2013)33

Diabetes: N = 15; 58.5 ± 6.42 years, CAN unknown

Control: N = 15; 50 ± 8.8 years

ECG

60 minutes

Recurrence plot, ApEn, DFA, Lyapunov

exponet/AdaBoost, DT, FSC, k‐NN, PNN and SVM

92.52 88.73 The AdaBoost classifier obtained better performance than other classifiers to diagnose DM
Swapna et al. (2013)34

Diabetes: N = 15; 58.5 ± 6.42 years, CAN unknown

Control: N = 15; 50 ± 8.8 years

ECG

60 minutes

Higher order spectra features/GMM, SVM, NBC, k‐NN, Fuzzy classifier, DT 85.7 95.2 The GMM classifier showed better accuracy than other classifiers to diagnose DM

N = sample; DMT2 = type 2 diabetes mellitus; DMT1 = type 1 diabetes mellitus; CAN = cardiac autonomic neuropathy; ECG = electrocardiogram; SDANN = standard deviation of mean of normal RR intervals every 5 minutes for a period of time, expressed in ms; LF = low‐frequency component; HF = high‐frequency component; SDNN = standard deviation of all normal RR intervals recorded at an interval of time expressed in ms; RMSSD = square root of the mean of the square of differences between adjacent normal RR intervals, at an interval of time expressed in ms; TFC = heart rate turbulence; SD1 = standard deviation of the instantaneous variability beat to beat; SD2 = standard deviation of the long‐term variability; SampEn = Sample Entropy; NN50 = adjacent RR intervals with difference of duration of 50 ms; TINN = triangular interpolation of RR intervals; PNN50 = percentage of adjacent RR intervals with difference of duration greater than 50 ms; VLF = very low‐frequency components; SVM = support vector machine; ApEn = approximate entropy; DFA = detrended fluctuation analysis; DT = decision tree; FSC = fuzzy Sugeno classifier; k‐NN = k‐nearest neighbor algorithm; PNN = probabilistic neural network; GMM = Gaussian Mixture Model; NBC = NaïveBayes classifier; DII = diabetes integrated index.