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Background: Premature beats (PBs) have been considered as artifacts producing a bias in the tradi-
tional analysis of heart rate (HR) variability. We assessed the effects and significance of PBs on fractal
scaling exponents in healthy subjects and patients with a recent myocardial infarction (AMI).

Methods: Artificial PBs were first generated into a time series of pure sinus beats in 20 healthy
subjects and 20 post-AMI patients. Thereafter, a case-control approach was used to compare the
prognostic significance of edited and nonedited fractal scaling exponents in a random elderly popu-
lation and in a post-AMI population. Detrended fluctuation analysis (DFA) was used to measure the
short-term (α1) and long-term (α2) fractal scaling exponents.

Results: Artificial PBs caused a more pronounced reduction of α1 value among the post-AMI
patients than the healthy subjects, for example, if >0.25% of the beats were premature a >25%
decrease in the α1was observed in post-AMI patients, but 4% of the premature beats were needed
to cause a 25% reduction in α1 in healthy subjects. Both edited (1.01 ± 0.31 vs 1.19 ± 0.27, P <
0.01) and unedited α1 (0.71 ± 0.33 vs 0.89 ± 0.36, P < 0.05) differed between the patients who died
(n = 42) and those who survived (n = 42) after an AMI. In the general population, only unedited α1
differed significantly between survivors and those who died (0.96 ± 0.19 vs 0.83 ± 0.27, P < 0.05).

Conclusions: Unedited premature beats result in an increase in the randomness of short-term R-R
interval dynamics, particularly in post-AMI patients. Premature beats must not necessarily be edited
when fractal analysis is used for risk stratification. A.N.E. 2004;9(2):127–135
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Spectral and statistical measures of heart rate vari-
ability (HRV) provide prognostic information on pa-
tients after an acute myocardial infarction.1−3 How-
ever, these conventional methods may not provide
adequate information on the complexity that lies
inside beat-to-beat variability. Several new meth-
ods based on chaos and fractal theory have been
developed to obtain approaches in quantifying the
dynamic properties of R-R interval time series.4−9

It has been suggested that nonlinear HRV methods
can provide important information on the dynam-
ics of the heart rate variability in various clinical
settings.10−14 In particular, detrended fluctuation
analysis (DFA) of R-R interval data has been of in-
creasing interest. Analysis of the short-term fractal
scaling exponent (α1) has provided prognostic in-
formation in many patient populations.11,13,14

Most ECG recordings include technical or biolog-
ical artifacts that cause a bias in the reliable mea-
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surement of HRV. Premature beats have been com-
monly considered as one source of error in the HRV
analysis and several methods of handling and edit-
ing the artifacts and premature beats in the HRV
data have been developed and tested.15−31 It has
been recently suggested that premature beats may
have an important role in the new dynamic analy-
sis of R-R interval behavior, and should perhaps be
included in the analyses, because they represent
the real beat-to-beat R-R interval time series.13,14

However, the true effects of the premature beats on
the nonlinear HR variability measures are largely
unknown.

The purpose of the present study was to pro-
vide more information on the effects of the pre-
mature beats on the fractal scaling exponent α1
and α2 in two different populations, that is, among
subjects without evidence of structural heart dis-
ease and among patients with a recent myocardial
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infarction (AMI). We tested the hypothesis that
the same amount of premature beats may have
quantitatively different effects on nonlinear indices
of HRV among the healthy subjects and patients
with a recent myocardial infarction. We also tested,
which of the many editing methods of premature
beats is most suitable for fractal analysis of HRV.
Finally, we assessed whether the short-term and
long-term fractal scaling exponents α1 and α2 mea-
sured either from original R-R interval time series
including the premature beats or from the R-R in-
terval data after editing the premature beats sepa-
rates the patients or subjects who remain alive from
those who experienced a cardiac death during the
follow-up.

STUDY POPULATION
AND METHODS

The effects of the artificial premature R-R in-
tervals on nonlinear HRV measures were studied
from data sets of 8000 R-R intervals with pure si-
nus beats. Twenty R-R interval time series from 15
healthy subjects with no history of heart disease
were selected from a previously described popula-
tion of 114 healthy subjects32 and 20 R-R interval
time series of 15 patients who had survived an AMI.
The details of the post-AMI population have been
described elsewhere.33 Mean age of the healthy
subjects was 45 ± 11 years and that of post-AMI pa-
tients 54 ± 5 years. General R-R interval variation
was measured by the standard deviation of all nor-
mal R-R intervals (SDNN) and it was significantly
lower (P < 0.001) among the post-AMI patients
(85 ± 35 ms) than among the healthy subjects
(175 ± 50 ms).

The effects of the real premature beats on
the nonlinear HRV measures were studied from
24-hour R-R interval data of post-AMI patients and
from 24-hour R-R interval data of a random elderly
population. Forty-two post-AMI patients, who died
during the follow-up of 14 ± 8 months, and 42 post-
AMI patients matched with age, sex, functional
class, and ejection fraction, who were alive after
the follow-up, were selected from a previously de-
scribed post-AMI population.33 Beta-blocker drugs
were given to 80 patients (95.2%), digoxin treat-
ment was given to 8 patients (9.5%), and a calcium
antagonist to 10 patients (11.9%). Forty-two healthy
elderly subjects, who died during the follow-up
of 120 months and 42 controls, who were alive,
matched with age, sex, and functional class were

selected from a large survey of the health sta-
tus of the elderly in the city of Turku, Finland.
The details concerning enrollment, diagnosis, and
follow-up of this random sample of 480 people aged
65 or more, who were living in the community
from the register of the Social Insurance Institu-
tion have been described elsewhere.34−36 None of
the 42 healthy elderly subjects that were included
in this study were taking medication. Mean age of
the selected elderly healthy subjects was 72 ± 4
years and that of post-AMI patients 69 ± 8 years.
All deaths in both study populations were classi-
fied as cardiac deaths. General R-R interval vari-
ation was measured by SDNN and it was signifi-
cantly lower (P < 0.001) also in this post-AMI group
(81 ± 29 ms) compared to that of the elderly sub-
jects (139 ± 35 ms).

The measurements of the all the 8000 R-R in-
terval data were done with a RR recorder, a real-
time microprocessor QRS detector system37 (Po-
lar Electro Oy, Kempele, Finland). The 24-hour
electrocardiographic recordings were performed
with a portable two-channel tape recorder (Oxford
Medilog, Oxford, UK) with a sampling frequency
of 256 Hz. Measured R-R intervals were saved in a
computer disk for additional processing.

Artificial ectopic beats were generated into the
tachograms of 8000 R-R intervals that included
only pure sinus beats. Single premature beats fol-
lowed by a compensatory pause were uniformly
distributed over the whole R-R interval tachograms
in random places. Ectopic beats with compensatory
pauses replaced the original sinus beats so that the
number of the R-R intervals remained the same and
the tachograms were not shifted. Between two gen-
erated ectopic beats there always existed at least
three pure sinus beats. Several levels of ectopy
were used: amount of ectopy varied from 0.125%
to an ectopy level where 35% of the R-R intervals
were qualified as ectopic beats with compensatory
pauses. Three different types of prematurity in-
dexes were used so that the premature beats and
the compensatory pauses differed by 30%, 20%,
or 10% compared to previous normal R-R interval.
Only one type of prematurity was used at a time. In-
sertion of the artificial premature beats in random
places was done three times to obtain an average
effect of the ectopy insertion on the nonlinear HRV
parameters. The analyses of the fractal scaling ex-
ponents were performed for original data with pure
sinus beats and for data with different amount of
artificial premature beats.
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The performance of four different editing meth-
ods in the fractal analysis of HRV was studied
by editing the generated artificial premature beats
with four different methods: deletion, interpolation
of degree zero, interpolation of degree one, and cu-
bic spline interpolation. Deletion removes the non-
normal R-R intervals, interpolation of degree zero
replaces the edited R-R intervals with a local av-
erage of the previous accepted normal R-R inter-
vals. The local nonectopic neighborhood for the in-
terpolation of degree 0 was three R-R intervals in
this study. Interpolation of degree 1 replaces the R-
R intervals with the points obtained from a fitted
straight line over the edited R-R intervals. The ba-
sic idea of the cubic spline interpolation is to ob-
tain smooth curves through a number of points.
The coefficients of the cubic polynomials are fit-
ted so that the curve passes through the data points
without discontinuities. Cubic spline interpolation
was computed over the ectopic beats from the lo-
cal nonectopic neighborhood. The analyses of the
fractal scaling exponent α1 and α2 were performed
for original data with no premature beats or edit-
ing and for data with different amount of edited
premature beats.

For all 24-hour data the preedition of artifacts
was done with the interpolation of degree 0. First,
premature beats were left unedited and secondly,
premature beats were edited with the interpolation
of degree 0. The analyses of the fractal scaling expo-
nent α1 and α2 were performed for preedited data
including premature beats and for data with edited
premature beats.

Fractal Analysis of Heart Rate Variability

Detrended fluctuation analysis was performed
and the scaling exponents α1 and α2 were computed
to quantify the fractal scaling properties of short-
term and intermediate-term R-R intervals time se-
ries. Detrended fluctuation analysis is a modified
root mean square analysis of random walk and it
quantifies the absence or presence of the fractal cor-
relation properties of the heart rate. The details of
this method have been described elsewhere.38 The
HR correlation properties were estimated for both
short-term (≤11R-R intervals, α1) and for long-term
(>11R-R intervals, α2) R-R interval data.

For the data of 8000 R-R intervals the analyses of
the fractal scaling exponents were computed over
the whole segment and for the 24-hour data the
analysis were done in 8000 R-R interval segments

to achieve an average value for the entire recording
period.

Power Spectrum of HRV

The power spectrum of the HRV was computed
for the data of 8000 R-R intervals with premature
beats to observe the effects of the premature beats
on power spectra in post-AMI and healthy sub-
ject population. Fast Fourier spectrum computation
was used.

Statistical Methods

Independent samples t test was used to analyze
the differences of the fractal scaling exponent val-
ues in patients who died and those who remained
alive during the follow-up. Differences were an-
alyzed in both post-AMI and general population.
A value of P < 0.05 was considered statistically
significant.

RESULTS

Performance of Editing Methods

Figure 1 shows the performance of different edit-
ing methods in the analysis of the fractal scaling
exponents α1 and α2. In the α1 analysis, the in-
terpolation of degree 0 performed best in editing
the artificial ectopic beats in both AMI patients
and in healthy subjects. In α2 analysis, the cubic
spline interpolation produced the smallest error for
the healthy subjects, but for the AMI patients the
best performance of editing in the α2 analysis was
achieved with the interpolation of degree one.

Effects of the Generated Artificial
Premature Beats

Figure 2 shows the effects of the artificial pre-
mature beats on the analysis of the fractal scaling
exponents α1 and α2. The analysis of the α1 was
more sensitive to the insertion of the premature
beats in the AMI patients compared to healthy sub-
jects. Even a small amount of ectopy insertion pro-
duced a large decrement in α1 values with all the
three types of the artificial premature beats. Only
0.25% of artificial premature beats of 20% prema-
turity produced over 25% decrease in the α1 values
in the post-AMI data, but in the healthy subjects
more than 4% of artificial premature beats of 20%
prematurity were needed to produced over 25% de-
crease in the α1 values. In the post-AMI patients,
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Figure 1. Effects of four different editing methods on the values of the fractal scaling analyses
for the R-R interval data of post-AMI patients and healthy subjects. Mean values of the α1 and
α2 analyses are in function of the amount of the edited R-R intervals. α1 and α2 indicate the
scaling exponents analyzed by detrended fluctuation analysis from short and intermediate time
windows respectively. The symbols indicate following editing methods: —— = original values,
–�– = deletion, - - -�- - - = interpolation of degree 0, - - -�- - - = interpolation of degree 1, and
- - -♦- - - = cubic spline interpolation.

only 1% of artificial premature beats of 20% prema-
turity decreased the α1 values under 0.75, while in
the healthy patients the amount of 10% premature
beats were needed to reduce the α1 values under
0.75. Also, in the α2 analysis the effects of the ec-
topy addition were more remarkable in the AMI
patients compared to the healthy subjects. Figure 3
shows effects of the artificial premature beats on
the HRV power spectrum of (1) a post-AMI and (2)
a healthy subject. Already with a small inclusion of
premature beats the power spectrum of a post-AMI
patient included a larger degree of false frequency
components especially in the higher frequency ar-
eas compared to the power spectrum of a healthy
subject.

Effects of the Real Premature Beats on
Fractal Scaling Analysis of 24-Hour Data

Comparisons of the α1 and α2 analysis in the post-
AMI patients and in the elderly population between

those who died and those who survived during the
follow-up are shown in Tables 1 and 2. In post-
AMI, both edited and unedited α1 values differed
between survivors and nonsurvivors (P < 0.01 for
edited, and P < 0.05 for unedited). In the general
population, there were no significant differences
between those who died and the survivors in the
edited α1 value. However, α1 analyzed from the
unedited data differed significantly between the el-
derly subjects who survived or experienced car-
diac death (P < 0.05). In the analysis of α2, there
was no significant difference between the survivors
and those who died either in post-AMI or general
population.

DISCUSSION

Time and frequency domain analysis of HRV
is typically based on the assumption that vari-
ous indices of HRV can describe the input of
the autonomic nervous system on the sinus node.
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Figure 2. Effects of the artificial premature beats on fractal scaling analysis in post-AMI pa-
tients and healthy subjects. Mean values of the α1 and α2 analyses are in function of the amount
of the premature beats. α1and α2 indicate the scaling exponents analyzed by detrended fluc-
tuation analysis from short and intermediate time windows respectively. The symbols indicate
following prematurity: —— = original (0% premature beats), –�– = 30% prematurity, - - -�- - -
= 20% prematurity, and - - -�- - - = 10% prematurity.

Therefore, the ectopic beats are traditionally
deleted and replaced or edited by artificial R-R
intervals. Similar assumption may not deal with
the analysis of dynamic behavior of R-R intervals
by methods based on nonlinear dynamics, how-
ever. Unlike the traditional measures of HRV from
Holter recordings containing ectopic beats, nonlin-
ear analysis methods may describe true R-R in-
terval dynamics without deletion and replacement
of real R-R intervals caused by ectopic beats. The
present study was designed to assess the effects of
premature beats on fractal scaling exponents ana-
lyzed by the DFA methods. We chose this particu-
lar analysis method because the short-term fractal
scaling exponent has provided important prognos-
tic information in various patient populations.

The following main observations were made in
this study. First, premature beats cause quantita-
tively different effects on short-term scaling expo-
nent among the healthy subjects and post-AMI pa-
tients. Second, various editing methods may have
divergent effects on fractal scaling exponents. In-

terpolation of degree 0 appeared to be the most
suitable for editing of premature beats and artifacts
when short-term scaling exponent is analyzed by
the DFA method. Finally, the nonedited short-term
scaling exponent provided prognostic information
both in the post-AMI population and in the random
general population.

Effects of Premature Beats on Fractal
Scaling Exponents

Analysis of fractal-like HR behavior by the DFA
methods has shown that healthy subjects show
only little inter-individual variation in the short-
term scaling exponent, its values being between
1.0 and 1.3. The present study showed that a rel-
atively large amount of premature beats is needed
before this normal fractal-like HR behavior is bro-
ken down toward more random dynamics in the
subjects without an evidence of structural heart dis-
ease. On the contrary, in post-AMI patients even a



132 � A.N.E. � April 2004 � Vol. 9, No. 2 � Peltola, et al. � Effects of Premature Beats

Figure 3. HRV power spectrum of (A) a post-AMI patient and (B) a healthy subject in function
of the percentage of the artificial premature beats. Notice a different scaling in (A) and (B) due
a different intensity of the spectral components.
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Table 1. Measures of HR Dynamics Among the
Post-Infarct Patients Who Died Due to Cardiac
Causes During the Follow-up and Among the

Matched Survivors

Clinical Dead Alive P
Variables (n = 42) (n = 42) Value

Age 69 ± 8 68 ± 8 NS
Men/women 26/16 26/16 NS
EF (%) 39 ± 12 42 ± 10 NS
NYHA-class II-III 67% 67% NS
Number of 26 ± 42 32 ± 68 NS

premature
beats/hour

Measures of HR dynamics
SDNN 76 ± 25 87 ± 32 NS
α1-unedited 0.71 ± 0.33 0.89 ± 0.36 0.05
α1-edited 1.01 ± 0.31 1.19 ± 0.27 0.01
α2-unedited 1.08 ± 0.20 1.09 ± 0.16 NS
α2-edited 1.21 ± 0.11 1.17 ± 0.12 NS

Values are expressed as mean ± standard deviation unless
otherwise indicated.
EF = ejection fraction; NYHA = New York Heart Association
Classification; SDNN = standard deviation of all R-R
intervals; α1 = short-term scaling exponent; α2 = long-term
scaling exponent; unedited = analysis of fractal measures of
R-R interval variability including the premature beats; edited
= analysis of fractal measures of R-R interval variability after
editing of the premature beats.

small amount of premature beats resulted in ran-
dom R-R interval dynamics.

There is an obvious explanation why a smaller
amount of premature beats is needed in post-AMI
patients to break down the normal fractal-like R-R
interval dynamics. The post-AMI patients showed
a smaller overall HRV, measured by SDNN, as well
as smaller beat-to-beat R-R interval oscillations,
measured by the high-frequency spectral compo-
nent. Figure 3 shows how a HRV power spectrum
of (1) a post-AMI and a (2) healthy subject changes
by the inclusion of the artificial premature beats.
It can be seen that in a post-AMI patient already a
small amount of premature beats causes an exten-
sive increase in the high frequencies of the power
spectrum. In a healthy subject a larger amount of
premature beats is required to cause a similar effect
in the power spectrum. The scaling exponent α1
is obtained from the slope of the logarithmic fluc-
tuation function versus logarithmic R-R intervals.
Therefore, α1 describes the “roughness” of the R-R
interval time series in the pre-defined time win-
dow. A larger value of the α1 means a smoother
signal.

Table 2. Measures of HR Dynamics Among the
Healthy Subjects Who Died During the Follow-Up

and Among the Matched Survivors

Clinical Dead Alive P
Variables (n = 42) (n = 42) Value

Age 73 ± 4 72 ± 4 NS
Men/women 23/19 23/19 NS
NYHA-class II-III 90% 90% NS
Number of 23 ± 28 14 ± 17 NS

premature
beats/hour

Measures of HR dynamics
SDNN 133 ± 38 144 ± 32 NS
α1-unedited 0.83 ± 0.27 0.96 ± 0.19 0.05
α1-edited 1.10 ± 0.18 1.16 ± 0.15 NS
α2-unedited 1.10 ± 0.12 1.11 ± 0.09 NS
α2-edited 1.17 ± 0.08 1.14 ± 0.09 NS

Values are expressed as mean ± standard deviation unless
otherwise indicated.
NYHA = New York Heart Association Classification; SDNN =
standard deviation of all R-R intervals; α1 = short-term scaling
exponent; α2 = long-term scaling exponent; unedited = anal-
ysis of fractal measures of R-R interval variability including
the premature beats; edited = analysis of fractal measures
of R-R interval variability after editing of the premature beats.

Methods of Editing

In the α1 analysis of the short-term data, the best
performance of editing was achieved with the inter-
polation of degree 0 in both the post-AMI and the
healthy population. If a large number of R-R in-
tervals are edited with the interpolation of degree
one or spline interpolation the α1 value increases
because of a smoothening effect of the spline inter-
polation on the R-R interval time series. The dele-
tion method conversely decreases the α1 value by
increasing the “roughness” of the signal. This may
happen with the R-R time series with high beat-to-
beat variability (healthy subjects). But for the time
series with a low R-R variability (AMI patients) the
effects of the deletion method can even be oppo-
site: the deletion method may produce an increase
in the α1 value by removing only few high fre-
quency fluctuations (smoothening effect) that may
appear. The effects of different editing methods on
the HRV power spectrum analysis have been re-
ported earlier by Salo et al.15 Deletion was found
to be the most unsuitable editing method for the
HRV power spectrum analysis. Interpolation meth-
ods were found to perform better in editing pro-
cess compared to deletion, however, interpolation
methods did cause a low-pass filtering effect by
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smoothening the tachograms.15 Overall, the edit-
ing methods seem to have a larger magnitude on
power spectral components than on fractal scaling
exponents studied here.

Edited and Unedited α1 and Mortality

The subjects of the general population who sub-
sequently died due to cardiac problems had a lower
short-term scaling exponent than those who sur-
vived when the analysis was done from the real
R-R interval data including the premature beats.
The edited short-term scaling exponent or the num-
ber of ectopic beats itself could not separate the sur-
vivors from those who died. Thus, reduced overall
HRV together with frequent ectopy in the subjects
without a known structural heart disease seems
to result in altered R-R interval dynamics toward
more random behavior. This change in the dynamic
pattern of fractal-like HR behavior seems to be as-
sociated with an increased risk for cardiac death,
independent of the study population.

CONCLUSIONS

The type of editing and the amount of ectopic
beats have quantitatively different effects on the
dynamic measures of fractal-like R-R interval be-
havior among the healthy subjects and post-AMI
patients. This is mainly due to basic differences
in the magnitude of overall and beat-to-beat HRV
between these groups. The present analysis also
showed that it is not necessary to delete or edit
the ectopic beats when fractal analysis of HRV
is used for prognostic purposes among healthy
subjects or post-AMI patients. In fact, unedited
short-term fractal scaling exponent seems to pro-
vide more powerful prognostic information that the
other HRV indices in general population.
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37. Ruha A, Sallinen S, Nissilä S. A real-time microprocessor
QRS detector system with a 1-ms timing accuracy for the
measurement of ambulatory HRV. IEEE Trans Biomed Eng
1997;44:159–167.

38. Peng C-K, Havlin S, Stanley HE, et al. Quantification of scal-
ing exponents and crossover phenomena in nonstationary
heartbeat time series. Chaos 1995;5(1):82–87.


