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ABSTRACT Chronic infections are frequently caused by polymicrobial biofilms. Im-
portantly, these infections are often difficult to treat effectively in part due to the re-
calcitrance of biofilms to antimicrobial therapy. Emerging evidence suggests that
polymicrobial interactions can lead to dramatic and unexpected changes in the abil-
ity of antibiotics to eradicate biofilms and often result in decreased antimicrobial ef-
ficacy in vitro. In this review, we discuss the influence of polymicrobial interactions
on the antibiotic susceptibility of biofilms, and we highlight the studies that first
documented the shifted antimicrobial susceptibilities of mixed-species cultures. Re-
cent studies have identified several mechanisms underlying the recalcitrance of
polymicrobial biofilm communities, including interspecies exchange of antibiotic
resistance genes, �-lactamase-mediated inactivation of antibiotics, changes in
gene expression induced by metabolites and quorum sensing signals, inhibition of
the electron transport chain, and changes in properties of the cell membrane. In ad-
dition to elucidating multiple mechanisms that contribute to the altered drug sus-
ceptibility of polymicrobial biofilms, these studies have uncovered novel ways in
which polymicrobial interactions can impact microbial physiology. The diversity of
findings discussed highlights the importance of continuing to investigate the effi-
cacy of antibiotics against biofilm communities composed of different combinations
of microbial species. Together, the data presented here illustrate the importance of
studying microbes as part of mixed-species communities rather than in isolation. In
light of our greater understanding of how interspecies interactions alter the efficacy
of antimicrobial agents, we propose that the methods for measuring the drug sus-
ceptibility of polymicrobial infections should be revisited.
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BIOFILMS ARE RECALCITRANT TO ANTIMICROBIAL TREATMENT

Biofilms are communities of microbial cells that are attached to a surface and to one
another and are surrounded with a self-produced matrix. The biofilm lifestyle is

incredibly common in all environments, from natural settings to the human body, both
in health and in disease (1, 2). Furthermore, it is estimated that the majority of chronic
infections are caused by biofilms (3). Biofilms are 100- to 1,000-fold more tolerant to
antibiotics than their planktonic counterparts (2, 4) and promote persistence in the
host, which makes successful treatment challenging.

The reason that biofilms are able to withstand such high concentrations of antimi-
crobial agents is multifactorial and incompletely understood. Antibiotic resistance
refers to genetically encoded mechanisms that allow microbes to grow in the presence
of a drug, whereas tolerance is the ability to survive transient exposure to an otherwise
lethal dose of an antibiotic, by either genetically encoded or phenotypic, nonheritable
mechanisms (5–8). Biofilms exhibit both resistance and tolerance to antibiotics, a
combination referred to as “recalcitrance” (5–7).

The many genetically encoded resistance mechanisms used by planktonic cells to
withstand antimicrobial treatment contribute to the recalcitrance of biofilms. Resis-
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tance can arise in various ways, such as by modifying an antibiotic target, enzymatic
deactivation, or active efflux of a drug once it has entered the cell. Furthermore,
resistance can be acquired by spontaneous mutations or by exchanging antibiotic
resistance genes between other cells. These mechanisms are at play within biofilms and
are often compounded by other aspects of biofilm physiology to confer even greater
levels of recalcitrance. For example, �-lactamases concentrated within the extracellular
matrix can degrade the antibiotic before it can reach the cells within the biofilm (4).
Additionally, the biofilm lifestyle has been found to facilitate rates of horizontal gene
transfer (HGT); bacteria within biofilms exchanged plasmids containing antibiotic re-
sistance genes at a higher rate than their planktonic counterparts (8–10).

In addition to the resistance mechanisms outlined above, multiple aspects of a
microbe’s physiology contribute to the elevated antibiotic tolerance of cells within a
biofilm relative to planktonic cells. These features include reduced growth rate (11–13)
due to oxygen-depleted microenvironments (14), nutrient limitation and the subse-
quent activation of stress responses (15–17), limited diffusion of certain antibiotics,
such as via chelation of cationic compounds by extracellular matrix components
(18–20), and the frequent emergence of so-called “persister” cells— dormant or slow-
growing cells that are genetically identical to the rest of the population but display
several phenotypic differences, such as elevated multidrug tolerance and high induc-
tion of stress responses (6). In addition, bacterial biofilms upregulate efflux pumps even
in the absence of antibiotic exposure, conferring high levels of drug tolerance (21, 22).
As another example, the production of periplasmic cyclic glucans in biofilm-grown
bacteria can enhance biofilm tolerance to aminoglycoside antibiotics (23). Thus, mul-
tifaceted resistance and tolerance mechanisms contribute to the overall recalcitrance of
biofilms to antimicrobial therapy.

THE ETIOLOGY OF MOST CHRONIC INFECTIONS IS POLYMICROBIAL

Multispecies biofilm-like communities are responsible for causing persistent infec-
tions in a wide range of body sites, including the lung (24–31), oral cavity (32, 33),
middle ear (34–36), urinary tract (37–39), and both surgical and chronic wounds
(40–45). In several disease settings, polymicrobial infections have been reported to
cause worse outcomes than single-species infections (46–54). In particular, polymicro-
bial bloodstream infections are associated with higher rates of mortality than mono-
species infections (46–50). Similarly, polymicrobial lung infections have been shown to
lead to worse prognoses. Cystic fibrosis (CF) patients who are coinfected with Pseu-
domonas aeruginosa and Staphylococcus aureus demonstrate more rapid lung function
decline than patients with monospecies infections (55–59). Furthermore, P. aeruginosa
and S. aureus have been detected in the same lobe of the lung (60, 61), and they
engage in a plethora of interactions in vitro (62–68). Thus, it is possible that these
microbes interact during infection.

Interspecies interactions profoundly influence microbial physiology in ways that
may alter disease progression and outcome, including the upregulation of virulence
factors (69–73), altered biofilm formation (67, 74–76), impaired wound healing (73, 77),
and shifted antibiotic susceptibility profiles (63, 67, 74, 75, 77–88). Additionally, inter-
actions between a host and one microbial species may modify immune responses to a
coinfecting species (76, 89, 90). Therefore, as others have postulated (91, 92), perhaps
the consequences of these interactions on microbial and host physiology contribute to
the worse patient outcomes that are frequently observed for coinfections than for
monoinfections.

THE DISCONNECT BETWEEN IN VITRO ANTIMICROBIAL SUSCEPTIBILITY AND
TREATMENT SUCCESS

An important clinical outcome to consider is whether a given antimicrobial therapy
can successfully treat an infection. Various studies have evaluated whether in vitro
MIC—still considered the gold standard for drug susceptibility testing— correlated with
the success or failure of antimicrobial treatment. Surprisingly, these studies found little
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or no association between clinical antimicrobial susceptibility testing results (specifi-
cally, a pathogen’s in vitro MIC value for a specific drug) and clinical outcomes
measured following antibiotic treatment, even in the context of single-species infec-
tions (93–98). In other words, patients did no better when they were infected by
susceptible organisms (low MIC) than by resistant organisms (high MIC). An even more
worrisome observation was made by authors studying the association between Can-
dida fluconazole MICs and treatment outcomes of bloodstream infections. Contrary to
expectation, low in vitro MICs actually correlated with treatment failure (99). Approxi-
mately one-third of isolates with low MICs (�16 �g/ml) failed to respond to fluconazole
therapy, indicating that a drug judged to be effective in vitro was unable to eradicate
infections in multiple patients. The reverse was also true, whereby the treatment of four
Candida isolates was successful despite having MICs of �32 �g/ml (99). A similar
correlation was observed for Candida caspofungin MICs and candidiasis outcomes
(100). Therefore, these studies illustrate that while the susceptibility methods currently
used in the clinical microbiology laboratory are often quite useful, such in vitro tests are
not always able to predict a patient’s response to antimicrobial treatment.

While alarming, these findings are not entirely surprising, given the enormous
difference between controlled laboratory conditions and an infection site within a
patient, and others have questioned the clinical predictive value of MIC tests (2, 101).
Standard antibiotic susceptibility testing guidelines recommend that sensitivity should
be measured when a microbe is grown planktonically, in rich medium, in monoculture.
Therefore, test results only actually indicate whether an organism is sensitive to an
antimicrobial compound under those precise conditions. These laboratory tests do not
consider the conditions that microbes experience within an infection site, including
constant assault by the host immune system. In addition, antimicrobial efficacy is also
influenced by immunosuppression (102) and drug-drug interactions (103), which may
contribute to differences between laboratory results and clinical outcomes. Further-
more, in most chronic infections, microorganisms likely form biofilms and probably
interact with a multitude of neighbors (including other microbes and the host) within
that infection niche.

Importantly, as we discuss below, in addition to adopting a biofilm lifestyle, inter-
acting with other microbes in these sessile communities can contribute to drug
sensitivity profiles that are vastly different from when an organism is grown planktoni-
cally in pure culture. Therefore, it is possible that interactions between microbes could
influence the success of antimicrobial treatment. Here, we discuss various mechanisms
underlying how interspecies interactions alter antimicrobial sensitivity profiles within
polymicrobial biofilm communities, which may in part explain why antimicrobial therapies
often fail to eradicate chronic infections.

MECHANISMS OF ANTIMICROBIAL RESISTANCE IN POLYMICROBIAL BIOFILMS

Some of the same genetic mechanisms that can cause planktonic cells to become
antibiotic resistant also contribute to the ability of biofilm-forming microbes to with-
stand antibiotic treatment. Here, we review the contributions of HGT and antibiotic-
inactivating enzymes to drug resistance within multispecies biofilms.

INTERSPECIES GENETIC EXCHANGE CONFERS ANTIMICROBIAL RESISTANCE

In addition to the occurrence of spontaneous mutations that are genetically inher-
ited by daughter cells, horizontal gene transfer (HGT) is another means whereby
microbes can acquire new sources of antibiotic resistance genes. The biofilm lifestyle
has been found to promote HGT by increasing the rates of conjugation (8–10, 104, 105)
and transformation (106), and to increase the stability of plasmids (107) relative to the
planktonic setting. It has been proposed that the ordered structure and high density of
cells within a biofilm promote efficient conjugation, although the underlying mecha-
nisms remain unclear (107). However, genetic exchange may not occur uniformly within
biofilms. For example, high conjugation frequencies may be confined to subpopula-
tions of cells during initial stages of biofilm development (108, 109). Additionally,
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conjugative pili were found to promote attachment and biofilm formation by Esche-
richia coli (110, 111), raising the possibility that maintenance and transfer of conjugative
plasmids within biofilms benefit cells growing within these communities.

In addition to conjugation, rates of transformation are also elevated within biofilms.
In one study, the transformation frequencies of biofilm-grown Streptococcus mutans
were found to be 10- to 600-fold higher than for planktonic populations (112). The
induction of competence in many species is influenced by a variety of environmental
cues, including cell density, environmental pH, antibiotic exposure, starvation, and the
presence or absence of particular carbon sources (113–116). In addition to its role in the
induction of competence, quorum sensing plays a role in regulating biofilm formation
in many bacterial species (117); therefore, competence and biofilm formation are linked
by virtue of being regulated (at least in part) by a common pathway. Furthermore, the
presence of extracellular DNA within the biofilm matrix has been proposed to induce
competence (118) and may in part contribute to the high rates of transformation
observed within biofilms.

There have been multiple reports of HGT of antibiotic resistance genes between
species within polymicrobial biofilms. One study found that a plasmid harboring a
carbapenemase resistance gene (blaNDM-1) can be transferred from E. coli to either P.
aeruginosa or Acinetobacter baumannii via conjugation within dual-species biofilms
(119), which was not observed between these organisms in planktonic settings (120).
These results highlight the enhanced propensity of genetic exchange within biofilms.
Additionally, conjugative transposons have been implicated in transferring antimicro-
bial resistance genes within a multispecies oral biofilm in vitro (121, 122). For example,
Streptococcus spp. acquired a transposon from Veillonella dispar by two distinct mech-
anisms: either conjugation with V. dispar (121) or transformation of purified V. dispar
DNA (122). These data indicate that in addition to conjugation, which requires intimate
cell-to-cell contact, uptake of extracellular DNA is another way in which members of a
mixed-species community can exchange genetic information while in close proximity.

Moreover, there is evidence for HGT occurring between pathogens in vivo in the
context of a mixed microbial community. It was discovered that the multidrug resis-
tance of an S. aureus isolate within a polymicrobial infection of an indwelling tube was
mediated by interspecies interactions (123). The already methicillin-resistant S. aureus
isolate likely became resistant to vancomycin in vivo via the acquisition of a vanA-
containing plasmid from Enterococcus faecium, one of the constituents of the polymi-
crobial biofilm. Additionally, the S. aureus isolate harbored a tetracycline resistance
gene (tetU) that was not previously detected in S. aureus and was also likely transferred
by E. faecium within this mixed-species biofilm during infection.

The studies described above determined that conjugation and transformation can
mediate the spread of antimicrobial resistance between species. These findings under-
score the potential for interspecies transfer of antibiotic resistance genes within an
infection site, which can alter the antimicrobial susceptibility of an entire polymicrobial
community. Importantly, a single conjugative event can have wide-ranging conse-
quences for the spread of antimicrobial resistance, both within a single infection and
between patients.

�-LACTAMASE-PRODUCING STRAINS PROTECT THEIR NEIGHBORS

Bacteria produce multiple genetically encoded factors that inactivate antibiotics. An
important example is the group of proteins called �-lactamases, which are microbially
produced enzymes that hydrolyze �-lactam antibiotics, a clinically important class of
cell-wall-targeting drugs. These enzymes can be either chromosomally or plasmid encoded
and have played a major role in the emergence of multidrug resistance among
Gram-negative bacteria (124). �-Lactamases can be either localized to the periplasmic
space of the producing cell or released into the extracellular space. Additionally,
�-lactamases have been found within the outer membrane vesicles (OMVs) of multiple
Gram-negative bacteria (125, 126) as well as the extracellular vesicles of S. aureus (127).

Importantly, inactivation of antibiotics by �-lactamases can protect not only the
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producing cell but other cells in the vicinity. In addition to protecting sensitive cells of
the same species from antibiotics (128, 129), �-lactamase-producing bacteria can alter
the antimicrobial sensitivity profiles of entire polymicrobial communities, allowing
coinfecting species to survive otherwise lethal doses of such antibiotics (75, 126, 127,
130–132). In particular, the production of �-lactamases was shown to influence the
sensitivity of multispecies biofilms involving three predominant etiologic agents of
otitis media: Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneu-
moniae (34). �-Lactamases produced by M. catarrhalis conferred protection on both H.
influenzae (75) and S. pneumoniae (130, 132) in dual-species biofilms. Furthermore,
these interactions were shown to be mediated by M. catarrhalis OMVs (126). Addition-
ally, H. influenzae-produced �-lactamases were shown to influence the sensitivity of S.
pneumoniae biofilms to amoxicillin in vitro and in a chinchilla model of otitis media
(131). Together, these studies illustrate that three pathogens that are commonly
coisolated from inner ear infections and form mixed-species biofilms can greatly influence
one another’s susceptibility to �-lactams in a passive, contact-independent manner via
antibiotic-degrading enzymes.

Importantly, �-lactamases have been detected in clinical samples from polymicro-
bial infections, including CF pulmonary infections (133) and otitis media (134, 135).
Additionally, one study detected �-lactamase activity in 89% of ear aspirates from
patients with infections that failed to respond to amoxicillin (134). These findings
indicate the potential for this interspecies mechanism of antimicrobial resistance to
occur in vivo, thus potentially contributing to treatment failure.

The above studies demonstrate that enzymatic inactivation of �-lactams can confer
antibiotic resistance within mixed-species biofilms. This community-wide mechanism
does not require direct interaction between two coinfecting species and has been
shown to protect entire biofilms from antibiotic challenge (4). Thus, combined with the
threat of plasmid-mediated exchange of resistance genes between species, this type of
community-level resistance may have potentially far-reaching impacts on the outcomes
of polymicrobial infections.

MECHANISMS UNDERLYING DRUG TOLERANCE OF POLYMICROBIAL BIOFILMS

In addition to the mechanisms leading to antimicrobial resistance typically associ-
ated with planktonic organisms (which are discussed above), recent studies have
elucidated novel mechanisms explaining how interspecies interactions contribute to
the antimicrobial tolerance of polymicrobial biofilm communities. We discuss these
mechanisms below in the context of biofilms or biofilm-like infections.

MICROBIALLY SECRETED PRODUCTS ALTER ANTIBIOTIC TOLERANCE
Primary metabolites. Metabolic interactions between members of a polymicrobial

community have been found to influence antibiotic sensitivity of the community’s
constituent microbes. For example, P. aeruginosa and anaerobic bacteria, organisms
frequently coisolated from CF respiratory infections, were shown to engage in cross-
feeding whereby P. aeruginosa consumes metabolites that are produced upon mucin
fermentation by anaerobes (136). Interestingly, P. aeruginosa became more susceptible
to ampicillin when in the presence of the drug-sensitive anaerobic community than
when grown in monoculture (87). These data suggest that the drug sensitivity of an
organism can increase when it is participating in particular metabolic interactions. In
contrast, the interactions between members of a cross-feeding community composed
of E. coli, Salmonella enterica, and Methylobacterium extorquens produced an opposite
result, whereby E. coli sensitivity to tetracycline was lower in coculture than in mon-
oculture (87). Together, these data illustrate that polymicrobial interactions can pro-
duce unexpected antibiotic sensitivity profiles. These findings also have potentially
important implications for patient treatment—when a pathogen is part of a microbial
community, the antibiotic dose needed for eradication may be different than what was
predicted from monoculture experiments. Examples of such metabolite-driven changes
in biofilm tolerance are outlined in the subsequent paragraphs.
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Indole, an aromatic compound derived from tryptophan, has been described to shift
the antibiotic sensitivity profiles of neighboring organisms both within and between
species via transcriptional changes. Indole can impact the antibiotic sensitivity of
single-species E. coli populations by inducing the expression of drug transporters (137).
Additionally, indole was shown to mediate an interaction between the human com-
mensal E. coli and Salmonella enterica serovar Typhimurium, a pathogen of the gastro-
intestinal tract. Indole produced by E. coli altered the antibiotic sensitivity of S.
Typhimurium during in vitro coculture and in a coinfection model of intestinal infection
in part via the induction of the S. Typhimurium OxyR oxidative stress pathway (83).
Indole was hypothesized to protect S. Typhimurium from ciprofloxacin by increasing
the expression of OxyR-regulated genes that confer protection from oxidative stress,
including the catalase gene katG. This interaction illustrates how the production of a
metabolite by a commensal can protect a pathogen from antimicrobial treatment by
altering its physiology. Since indole is produced in high quantities by the mammalian
intestine (138), the host may also influence bacterial drug susceptibility profiles in the
same manner. Thus, indole can promote antibiotic tolerance in multiple ways.

The volatile fermentation product 2,3-butanedione has also been implicated in
shifting antimicrobial sensitivity profiles by inducing changes in gene expression.
2,3-Butanedione is produced by streptococci as a consequence of acetoin metabolism,
and it can be consumed by P. aeruginosa (139). Exposure to 2,3-butanedione was found
to protect E. coli from various antibiotics by strongly inducing the expression of hipA
(140), which is proposed to promote the generation of persister cells (141). Importantly,
this volatile metabolite was detected in high levels in the airways of CF patients by
breath gas analysis (139), indicating the possibility that microbially produced volatiles
can exert long-range effects on other microbes within the lung.

Finally, the volatile metabolic by-product ammonia was also shown to modulate the
antibiotic sensitivity of other microbes at a distance. Exposure to ammonia altered the
susceptibility of E. coli to tetracycline (82). Bernier et al. propose that ammonia altered
the antibiotic sensitivity of spatially distant bacteria by stimulating the production of
polyamines (82)— compounds known to influence bacterial membrane permeability
and drug susceptibility profiles (142–144). Additionally, ammonia has the ability to
alkalize the surrounding growth medium, which was shown to inactivate ampicillin
(145). Thus, it is possible that ammonia and other metabolites can interfere with the
activity of antibiotics more generally by chemically modifying the environment. More-
over, the microbially produced gases hydrogen sulfide and nitric oxide were also
observed to decrease the antibiotic sensitivity of multiple bacterial species (146, 147),
suggesting the common ability of microbially produced volatiles to influence antimi-
crobial efficacy in vitro (148).

Together, these findings suggest that by-products of microbial metabolism can have
diverse effects on the drug susceptibility of other organisms, both within and between
species. However, it remains unclear in many instances how exposure to metabolites
leads to altered antibiotic sensitivity profiles. Is it by directly influencing microbial
physiology or the growth environment, or both? Further research is needed to eluci-
date the mechanisms underlying these observations. Additionally, multiple compounds,
including ammonia, nitric oxide, and indole, were also reported to influence biofilm
formation (149–152), which can further exacerbate the recalcitrance of microbes.
Finally, the detection of volatile metabolites in vivo suggests that they have the
potential to influence bacteria at a distance from the producing cell, which may lead to
widespread changes in antibiotic sensitivity within an infection site.

Quorum sensing signals and other secondary metabolites. Quorum sensing
molecules have been shown to mediate interactions between microbes residing within
multispecies biofilms. It is thought that microbes can distinguish between signals from
different species, since different concentrations and combinations of autoinducers lead
to distinct behaviors in responding species (153–155). Interspecies communication
using quorum sensing signals was shown to impact drug sensitivity within mixed-
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species biofilms. Ryan et al. (74) discovered that Stenotrophomonas maltophilia and
Pseudomonas aeruginosa, two organisms that coinfect CF patients, can communicate
using quorum sensing molecules. The S. maltophilia-derived diffusible signal factor
(DSF) was shown to be recognized by a P. aeruginosa sensor kinase and to cause the
induction of P. aeruginosa PmrAB, a two-component system that regulates resistance to
cationic peptides (74). As a result, P. aeruginosa biofilms became less sensitive to
polymyxins. In addition, P. aeruginosa exposed to DSF adopts a striking filamentous
phenotype (74).

A different interspecies interaction involving quorum sensing molecules was found
to influence biofilm formation as well as to confer protection from antibiotic challenge
(75). The authors observed that the thickness of M. catarrhalis biofilms, as well as the
number of viable cells within the biofilm, increased in response to the quorum sensing
signal AI-2 produced by H. influenzae (75). Whether and how M. catarrhalis senses and
processes the AI-2 signal remain to be elucidated. Furthermore, the H. influenzae-
mediated enhancement in M. catarrhalis biofilm biomass benefited both organisms,
resulting in increased tolerance of both species to multiple antibiotics (75), perhaps by
inhibiting drug diffusion through the biofilm. In addition, H. influenzae promoted
enhanced persistence of M. catarrhalis in a chinchilla model of infection in an AI-2-
dependent manner (75), suggesting that quorum sensing signals are mediating inter-
actions between these bacterial pathogens in vivo. Together, the above studies suggest
that interspecies communication via quorum sensing can impact antibiotic efficacy
within multispecies biofilms.

Furthermore, quorum sensing signals and related small molecules can shift the
antimicrobial susceptibility of neighboring microbes via mechanisms other than clas-
sical quorum sensing-mediated transcriptional changes. It has been recognized that
quorum sensing signals can impact multiple aspects of microbial physiology (156), and
emerging evidence suggests that these physiological changes can, in turn, lead to
unexpected changes in drug tolerance. One study showed that farnesol, a quorum
sensing molecule produced by Candida albicans, protected S. aureus from vancomycin
within a polymicrobial biofilm (157). The authors propose a mechanism whereby
exposure to farnesol induces the production of reactive oxygen species in S. aureus,
which activates a general stress response and causes the upregulation of efflux pumps,
thereby enhancing S. aureus antibiotic resistance (157). These data suggest that a
quorum sensing molecule can shift drug sensitivity within polymicrobial biofilms by
stimulating a cascade of physiological changes.

A different secondary metabolite has been described to mediate polymicrobial
interactions and alter antibiotic susceptibility. The P. aeruginosa-secreted small mole-
cule 2-heptyl-4-hydroxyquinolone N-oxide (HQNO) has been shown to strongly influ-
ence S. aureus physiology in vitro. HQNO is part of the Pseudomonas quinolone signal
(PQS) quorum sensing system pathway and acts as a potent inhibitor of the S. aureus
electron transport chain (ETC) (158). Inhibition of the S. aureus ETC causes a reduction
in the electrochemical gradient, which is required for the cellular uptake of multiple
classes of protein synthesis inhibitors (159). Consequently, exposure to HQNO de-
creases the susceptibility of S. aureus to the aminoglycosides dihydrostreptomycin and
tobramycin (78, 80) and to multiple tetracycline and macrolide antibiotics (85).

Furthermore, HQNO has been shown to protect S. aureus biofilms from cell wall-
targeting antibiotics, including the front-line drug vancomycin and multiple �-lactams
(85). HQNO-mediated inhibition of the ETC forces S. aureus to grow by fermentation
(64), leading to a decrease in ATP levels (86) and reduction in growth (85). Since many
drug classes are effective against only actively growing cells, it is likely that slow growth
renders S. aureus less susceptible to cell wall-targeting antibiotics. Additionally, pro-
longed exposure to HQNO has been shown to select for small-colony variants (SCVs) of
S. aureus (80). SCVs have a nonfunctional ETC, which renders them highly tolerant to
several classes of antibiotics and promote persistence within the host (160). Infection
sites are often oxygen limited (161, 162), which can also induce a metabolic shift to
fermentation and slow growth (163) and may further contribute to antibiotic tolerance
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within chronic infections. Together, these data illustrate that inhibition of electron
transport can have wide-ranging effects on drug efficacy and can explain how the same
microbe grown under different conditions might display differential susceptibility to
the same antimicrobial agent.

Moreover, quorum sensing signals and related small molecules can impact antimi-
crobial efficacy by altering properties of bacterial membranes. For example, HQNO was
shown to increase S. aureus cell membrane fluidity, rendering S. aureus biofilms more
susceptible to several membrane-targeting antibiotics and antiseptics, including chlo-
roxylenol (88). Additionally, the C. albicans quorum sensing signal farnesol can disrupt
the integrity of the S. aureus cell membrane (164, 165), which, in turn, was hypothesized
to contribute to farnesol’s ability to shift S. aureus drug sensitivity profiles (164). It has
been proposed that the hydrophobic character of both of these molecules may allow
for their accumulation within the S. aureus membrane (88, 164). These findings raise the
possibility that other hydrophobic molecules with well-known roles in interbacterial
signaling also have the ability to alter membrane properties and influence antibiotic
sensitivity.

Two additional P. aeruginosa quorum sensing-regulated products, LasA and rham-
nolipids, have been found to shift the susceptibility of S. aureus planktonic populations
to various antibiotics. The endopeptidase LasA was observed to potentiate the efficacy
of vancomycin, while rhamnolipids were proposed to increase the efficacy of tobra-
mycin by facilitating uptake of the antibiotic (86, 166). In the future, it will be important
to investigate whether LasA and rhamnolipids are able to modulate the drug suscep-
tibility of biofilm cells in addition to that of planktonic cells.

Together, the above studies illustrate that quorum sensing signals and downstream
products regulated by these pathways can elicit a suite of physiological changes that
greatly alter the antimicrobial susceptibility profiles of polymicrobial biofilm commu-
nities. It is important to note that a single molecule can act via more than one
mechanism to alter antibiotic sensitivity, as in the case of HQNO or farnesol. Finally, it
is possible that other quorum sensing molecules modulate drug efficacy via mecha-
nisms other than their canonical roles in signaling.

BIOFILM MATRIX COMPONENTS WITHIN POLYMICROBIAL BIOFILMS MODULATE
DRUG SENSITIVITY

Multiple studies have described cross-domain interactions that modify the structure
of microbial biofilms and lead to altered sensitivity to antimicrobial agents. C. albicans
is well known to form robust, polymicrobial biofilms with several bacterial species,
including staphylococci (81, 84, 167–169). In particular, S. aureus cells can use C.
albicans hyphae as a scaffold for attachment and subsequent microcolony formation
(81). As a consequence, residence within this mixed-species biofilm protected S. aureus
from miconazole (84) and from elevated doses of vancomycin (up to 1,600 �g/ml) (81).
In contrast, the drug susceptibility of C. albicans to multiple antifungal drugs was
unaltered (81, 84). Extracellular DNA and �-1,3-glucan components of the fungal matrix
were shown to contribute to the observed protection of S. aureus within the mixed-
species biofilm (81, 84, 170), but the underlying mechanisms are still unclear. Similarly,
protection of E. coli from ofloxacin within a dual-species biofilm with C. albicans is also
dependent on the presence of the polysaccharide �-1,3-glucan (171).

As another example, formation of a mixed-species biofilm can also shield both
microbes from antimicrobial treatment. A matrix-nonproducing strain of Staphylococcus
epidermidis is normally highly sensitive to vancomycin; however, when grown in
coculture with C. albicans, S. epidermidis was protected from the drug, while C. albicans
was protected from fluconazole (172). Thus, while it is well appreciated that biofilm
matrix components enable intimate associations between coinhabiting species and
that the biofilm lifestyle confers protection from antimicrobial insults, the above studies
suggest that structural components produced by one microbe can greatly influence the
drug sensitivity of a coexisting microbe within a mixed-species biofilm.

Interactions between bacterial species have also been shown to influence biofilm
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structure. Staphylococcal protein A (SpA), an adhesin known to mediate S. aureus
biofilm formation (173), can also bind to the P. aeruginosa exopolysaccharide Psl and
inhibit initial P. aeruginosa biofilm formation (174). In a different study, the interaction
between these two adhesins led to striking changes in the architecture of mature P.
aeruginosa biofilms (67). Specifically, exposure to SpA transformed P. aeruginosa bio-
films into densely packed aggregates that occupied less surface area and were much
less susceptible to tobramycin than untreated biofilms. While the observed shifts in
biofilm structure and drug tolerance were shown to require the presence of both
adhesins, it is currently unclear how the interaction between SpA and Psl causes the
formation of aggregates. Together, these data indicate that interspecies interactions
can modify biofilm architecture in diverse ways and, as a consequence, can greatly
influence the drug susceptibility of a polymicrobial community.

INTERSPECIES INTERACTIONS WITHIN POLYMICROBIAL BIOFILMS INDUCE CELL
WALL CHANGES

Several recent studies indicate that polymicrobial interactions can influence suscep-
tibility to antibiotics by altering characteristics of their neighbor’s cell wall. One study
examined the drug susceptibility profiles within a three-species biofilm community
composed of Streptococcus anginosus, P. aeruginosa, and S. aureus. When part of this
polymicrobial biofilm, S. anginosus became more tolerant to vancomycin, while S.
aureus became less tolerant (175). Additionally, the authors found that exposure to S.
aureus culture supernatant protected S. anginosus biofilm cells, but not planktonic cells,
from vancomycin (175). In a subsequent study, the same group found that residence
within the multispecies biofilm led to the upregulation of S. anginosus cell wall
biosynthesis genes and caused an increase in cell wall thickness, which was hypothe-
sized to protect S. anginosus biofilms from the drug (176). These data are consistent
with the well-documented association between increased cell wall thickness and
decreased susceptibility to vancomycin in S. aureus (177–180). Together, these findings
suggest that interspecies interactions can alter properties of bacterial cell walls, which
may contribute to changes in antimicrobial susceptibility within biofilm communities.

CONCLUSIONS

As we have reviewed in this article, biofilms are recalcitrant to antimicrobial therapy
due to a combination of genetic and phenotypic mechanisms. These same mechanisms
operate within polymicrobial biofilms, but with added layers of complexity produced
by interspecies interactions. There are many examples of polymicrobial interactions
influencing the antibiofilm efficacy of antibiotics. Here, we highlight the few, better-
understood mechanisms that have been uncovered (Fig. 1), including those involved in
a well-studied interspecies interaction that shift the drug susceptibility of S. aureus
biofilms (Fig. 2). Antibiotic recalcitrance mechanisms within polymicrobial biofilms
include horizontal gene transfer of antibiotic resistance genes, enzymatic degradation
of antibiotics (by �-lactamases), the induction of transcriptional changes by primary
metabolites (e.g., indole and 2,3-butanedione) or quorum sensing signals (e.g., DSF and
farnesol), inhibition of electron transport (by HQNO), and changes in membrane fluidity
(by HQNO). Chronic polymicrobial infections, such as those associated with airway
infections in patients with CF, are likely impacted by many of these mechanisms, as has
been highlighted in a recent literature review (181).

Based on the studies reviewed above, it is clear that interspecies interactions can
modulate the sensitivity of entire polymicrobial communities in dramatic and highly
unpredictable ways, often enabling mixed-species biofilms to withstand even greater
antibiotic challenge compared to single-species biofilms. Therefore, we believe that the
results of monoculture experiments cannot always be extrapolated to predict the
behavior of organisms when they are part of a community composed of other patho-
gens or members of the microbiota. Unfortunately, that is exactly how we currently
measure the antimicrobial susceptibility of disease-causing organisms in the clinical
setting. Indeed, a recent publication called into question the utility of using MIC testing
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to guide the treatment of the chronic, polymicrobial communities that are character-
istic of CF airway infections (182).

In the past, multiple studies have made the striking observation that a microorgan-
ism’s antimicrobial sensitivity profile can be dramatically different when it is grown in
mixed culture compared to in pure culture (183–189). As highlighted previously by
DeLeon et al., in 1969 Shahidi and Ellner compared the antibiotic sensitivity of an
artificial mixed-species community to that of a pure culture (63, 183). Briefly, broth
cultures were inoculated either with an individual organism or with different combi-
nations of 10 bacterial species and then spread uniformly onto agar plates. Subse-
quently, different antibiotic disks were placed on the agar surface, and zones of inhibition
were recorded to establish whether an organism was sensitive or resistant to a given
drug. To the authors’ surprise, they discovered that the ability of a drug to inhibit an
organism was often entirely dependent on whether the organism was part of a pure or
mixed culture. Specifically, they found multiple instances in which two organisms that
were “sensitive” to an antibiotic in pure culture became “resistant” when mixed
together. These results did not occur for all combinations tested, and it was not
established in these studies what was driving these different outcomes. From these
observations, it was concluded that “since reactions of bacterial mixtures are com-
pletely unpredictable, the authors emphasize that antibiotic susceptibility testing be
limited to pure cultures” (183). This is not an unreasonable conclusion, but the studies
cited above also highlight the limitations of such an approach.

Similar results were observed in later studies that assessed whether performing
direct susceptibility testing using patient samples could be a way to expedite the
communication of test results to clinicians (184–187, 189). Disk diffusion tests were

FIG 1 Multiple mechanisms contribute to the recalcitrance of polymicrobial biofilms to antimicrobial
treatment. Interspecies interactions can shift the drug sensitivity profiles of microbes within multispecies
biofilms, as represented by the differently colored microbes in a biofilm community at the top of the
panel, and can do so via several mechanisms, including enzymatic inactivation of antibiotics by
�-lactamases, interspecies exchange of antibiotic resistance genes, inhibition of electron transport,
altered membrane fluidity, and metabolite-induced transcriptional changes. Abbreviations: HGT, hori-
zontal gene transfer; ETC, electron transport chain; HQNO, 2-heptyl-4-hydroxyquinolone N-oxide.
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performed either by directly swabbing clinical specimens (blood, urine, or wound
exudates) onto agar plates or by the traditional method of first isolating individual
organisms and growing them in broth to a standard inoculum density before plating.
Then, the susceptibility results produced by each method were compared. For speci-
mens that contained a single organism, the susceptibility results from the direct
method typically closely mirrored those obtained by the traditional method (7.3%
discrepancy in one study [186]). In contrast, for specimens that contained multiple
microbes, the results often differed greatly between the two methods (42.6% discrep-
ancy [186]). In other words, the sensitivity profiles for an organism were notably
different under the mixed-culture compared to pure-culture conditions. The authors of
this study echoed those above by saying the results obtained from mixed-culture
experiments are “completely unreliable” and “provide clinically misleading information”
(183, 189) and reached the consensus that susceptibility testing should be performed
only on organisms grown in pure culture. However, these studies did not consider the
intriguing hypothesis suggested by their observations that one species can profoundly
influence the antimicrobial susceptibility of another, which may have important impli-
cations for the treatment of polymicrobial infections in patients.

In 1975, Linn and Szabo also observed and considered the problem of the incon-
gruity between monospecies and multispecies antimicrobial sensitivity profiles. Con-
trary to the previous studies, they argued that “sensitivity testing in mixed cultures may
well provide greater clinical relevance since these cultures more closely simulate the

FIG 2 Interspecies interactions between Pseudomonas aeruginosa and Staphylococcus aureus influence
the efficacy of antibiotics against S. aureus biofilms. The P. aeruginosa-secreted molecule 2-heptyl-4-
hydroxyquinolone N-oxide (HQNO) alters the sensitivity of biofilm-grown S. aureus to multiple antibac-
terial agents, including cell wall-targeting drugs (e.g., vancomycin), protein synthesis inhibitors (e.g.,
aminoglycosides), and membrane-active compounds (e.g., chloroxylenol). HQNO-mediated inhibition of
the S. aureus electron transport chain (ETC) leads to slow growth and decreases the proton motive force
(PMF), which promote tolerance to vancomycin and aminoglycosides, respectively. Additionally, expo-
sure to HQNO increases the fluidity of the S. aureus cell membrane, enhancing the ability of the
membrane-targeting antiseptic chloroxylenol (and other hydrophobic compounds) to eradicate S. aureus
biofilms.
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situation in the patient than does the pure culture” (188). Interestingly, they found
cases where drugs became more effective when certain organisms were combined.
They also observed that the differences in antimicrobial sensitivity between pure and
mixed cultures were not randomly distributed but that certain organisms or drugs
behaved the same way when in combination, knowledge that may offer therapeutic
guidance. The literature above suggests that we have rediscovered and extended
the findings of Linn and Szabo. Given the polymicrobial etiology of most chronic
infections, and the important influence of interspecies interactions on antimicrobial
efficacy in vitro, as illustrated by the many findings cited above, we argue that the
approaches for measuring the drug susceptibility of mixed-species infections
should be reconsidered.

Here, we address several important challenges and propose ideas for testing the
antimicrobial susceptibility of microbes within polymicrobial, biofilm infections. A
fundamental problem is the lack of effective treatments for polymicrobial infections,
such as those of the CF airway or diabetic foot ulcers. Therefore, the first challenge is
to direct drug discovery efforts toward identifying antimicrobial agents that can more
effectively treat these recalcitrant infections. Furthermore, another key challenge is that
we currently do not know how in vitro antimicrobial susceptibilities of mixed-species
infections correlate with clinical outcomes. Perhaps, one solution could be to design
clinical trials that test whether laboratory susceptibility testing results correlate with
treatment outcomes (e.g., does the high in vitro efficacy of a drug against three
bacterial species isolated from a wound infection correlate with the successful eradi-
cation of that infection following treatment with the same drug). Additionally, it may be
possible to mine data retrospectively to assess if particular antibiotic regimens work
better against mixed-species infections caused by certain combinations of organisms.
Finally, an important challenge is a lack of knowledge about how antimicrobial efficacy
changes with the addition of more than two constituent species. A priority moving
forward should be to establish new in vitro model systems to interrogate the drug
susceptibility profiles of complex polymicrobial communities, as at least one group has
begun to do (175).

Once progress has been made in overcoming the above challenges, it may be
possible to implement new approaches for susceptibility testing. Here, we propose a
few ideas. If and when we reach a stage when we understand which drugs (or drug
classes) retain efficacy against particular combinations of microbes, one possible ap-
proach could be to develop standardized treatments for particular combinations of
microbes within mixed-species infections. As a simple example, if microbes A and B are
detected in the same sample, then drug 1 is used, but if microbes A and C are detected
together, drug 2 is selected. We envision that these treatments could be used in
conjunction with existing MIC testing on pure cultures.

Alternatively, a personalized medicine approach could be a reasonable strategy for
evaluating the antimicrobial susceptibility of mixed-species infections. Here, we pro-
pose a framework for a potential method. Following the identification of the microbes
present in a clinical specimen using rapid, culture-independent methods, it may be
possible to select and reconstitute a simplified microbial community (including bacteria
and fungi). Perhaps, this community would be composed of the most abundant
species, as well as less abundant species that are considered particularly clinically
relevant. The selected community would be reconstituted in a microtiter plate and
treated with a small number of antimicrobial agents at multiple concentrations, fol-
lowed by plating onto selective agar for the enumeration of viable counts of each
microbial species. This approach would provide a measure of the survival of each
species after drug exposure. We recognize that there are many limitations of these
proposed approaches for polymicrobial testing in the clinical laboratory. First of all,
such strategies might be feasible for sites that are sterile in the absence of infection or
sites that contain a relatively small number of resident species. In contrast, this
approach could be quite challenging for infections in sites containing a complex
microbiota (e.g., the intestine). For example, it is likely that commensals influence the
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drug sensitivity profiles of pathogens at these infection sites (83, 87); however, includ-
ing commensals in the reconstituted community could lead to an intractable number
of species for testing. Another important limitation for some of the approaches outlined
above would be the high labor costs and time-intensive nature of such testing.
However, integrating the routine use of culture-independent techniques could reduce
the time and laborious culturing protocols that are commonly used for species iden-
tification in clinical microbiology laboratories and allow for more time and resources to
be available for performing the proposed drug testing methods. Additionally, recent
machine learning approaches have utilized the abundant available genome sequence
resources to accurately predict MICs of organisms (190, 191); perhaps such approaches
could be applied to polymicrobial communities. Additionally, it may be possible to
automate several parts of the process using liquid-handling machines and plate-
scanning software. Other concerns are the lack of rapid and reliable methods to
quantify fungal viability following coculture with other microbes and the problem of
how to tackle the antibiotic susceptibility of biofilms, which adds another layer of
complexity.

Finally, perhaps the simplest solution to the challenges outlined here is a return to
testing the antibiotic susceptibility of direct clinical samples, as described above (186). For
example, following species identification, the original clinical specimen could be transferred
to microtiter plates and subjected to different antibiotic treatments. Afterward, the treated
sample could be plated on selective medium to determine viability of each species, which
can be compared to the starting number of cells before antibiotic treatment to evaluate the
success of antimicrobial treatment. Alternatively, for the subset of infections not responding
to treatment, the clinical sample could be swabbed directly to permissive medium and a
suite of antibiotics could be tested using standard MIC assays to empirically determine the
antibiotic(s) that most effectively inhibits the organisms in the infection. As reported
previously (87), sometimes only the most susceptible member of the community has to be
killed to effectively reduce the growth/viability of the entire community. A major concern
of this approach is whether testing on direct clinical samples can be standardized. Thus,
because mixed-species infections vary widely from one patient to another, it is possible that
a personalized approach is the best strategy to measure susceptibility profiles. To move
forward, it is essential to promote discussion and collaboration between the clinical setting,
academia, and industry to develop new methods to treat and diagnose polymicrobial
infections.
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