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Background: Assessment of heart rate variability by means of deceleration capacity (DC) provides a
noninvasive probe of cardiac autonomic activity. However, clinical use of DC is limited by the need
of manual review of the ECG signals to eliminate artifacts, noise, and nonstationarities.

Objective: To validate a novel approach to fully automatically assess DC from noisy, nonstationary
signals

Methods: We analyzed 100 randomly selected ECG tracings recorded for 10 minutes by routine
monitor devices (GE DASH 4000, sample size 100 Hz) in a medical emergency department. We
used a novel automated R-peak detection algorithm, which is mainly based on a Shannon energy
envelope estimator and a Hilbert transformation. We transformed the automatically generated RR
interval time series by phase-rectified signal averaging (PRSA) to assess DC of heart rate (DCauto).
DCauto was compared to DCmanual, which was obtained from the same manually preprocessed ECG
signals.

Results: DCauto and DCmanual showed good correlation and agreement, particularly if a low-pass
filter was implemented into the PRSA algorithm. Correlation coefficient between DCauto and DCmanual
was 0.983 (P < 0.0001). Average difference between DCauto and DCmanual was –0.23±0.49 ms with
limits of agreement ranging from –1.19 to 0.73 ms. Significantly lower correlations were observed
when a different R-peak detection algorithm or conventional heart rate variability (HRV) measures
were tested.

Conclusions: DC can be fully automatically assessed from noisy, nonstationary ECG signals.
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Cardiac autonomic function yields important
prognostic information in cardiac and noncardiac
diseases. Analysis of beat-to-beat (RR) variations
by means of heart rate variability (HRV) provides
a noninvasive probe of cardiac autonomic activity
and is therefore used for clinical purposes.1 The
RR interval time series is usually derived from
Holter recordings or short-term resting ECGs but
can also be obtained from monitoring devices
used in emergency rooms, intensive care units, or
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operating rooms. In the latter case, however, ECG
signals are characterized by a substantial amount
of nonstationarities and noise.

In most studies, manual preprocessing of the
ECG signals is performed as a conditio sine qua
non to eliminate artifacts and noise. This approach,
however, is highly impracticable when HRV shall
be used for fast clinical decision. Fully automated
approaches to HRV analysis would therefore be of
high interest.
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Deceleration capacity (DC) of heart rate is a novel
measure of HRV that might be particularly useful
for automated approaches to HRV assessment.2

Owing to its underlying signal processing algorithm
DC is largely insensitive to nonstationarities and
noise.3 DC is an integral measure of periodic
power within the RR interval time series and
has previously been shown to be a very potent
predictor of mortality after myocardial infarction.2

In the present study, we validate a fully
automated approach to DC assessment from noisy,
nonstationary ECG signals recorded in a large
medical emergency department under routine
clinical conditions.

METHODS

Patients and ECG Signals

The study included 100 patients admitted to the
medical emergency department of the Eberhard-
Karls-University, Tübingen, Germany. Patients
were randomly selected from a large database.
All patients were in sinus rhythm. Directly after
hospital admission single lead ECG monitoring
was started using a commercial device (GE DASH
4000, sampling frequency 100 Hz). Recordings
were performed under routine clinical conditions.
Only the first 10 minutes were used for analysis.
The study has been approved by the local ethical
committee.

Manual Processing of the ECG Signals

Manual processing of the ECG signals was done
by an experienced technician with help of a
commercial software package (Cardioday Version
2.2.0, Getemed, Teltow, Germany). The signals
were carefully checked for artifacts and noise. True
R peaks were identified to obtain the series of RR
intervals.

Automated Processing of the ECG Signals

Automated processing of the ECG signals was
done without any manual intervention. We used an
optimized version of a previously published R-peak
detection algorithm.4 The sequence of filtering and
R-peak detection is illustrated in Figure 1. The
original algorithm is described in detail elsewhere.4

Briefly, a Butterworth filter (second-order, cutoff
0.5) and a band pass filter (fourth order Chebyshev

type 1, bandwidth filter 6–18 Hz) were applied to
the signal. The amplitudes were normalized using
Equation (1):

d[n] = d[n]/max(d[n]). (1)

Subsequently, the signal was filtered by forward
differencing filter:

d[n] = f[n + 1] − f[n]. (2)

The signal was then nonlinearly transformed
using the Shannon energy envelope:

s[n] = − d2[n] log(d2[n]). (3)

Subsequently, a Hilbert transformation was
performed and a moving average filter with a
length of 250 samples was applied to the signal
followed by a Savitzky-Golay-filter (frame 15,
degree 0). Times of positive zero crossing were
identified. R-peaks were searched in the original
signal within a range of ±10 samples.

We additionally evaluated an established stan-
dard method of R-peak detection based on the Pan–
Tompkins algorithm. The exact methodology of the
Pan–Tompkins algorithm can be found elsewhere.5

Phase-Rectified Signal Averaging (PRSA)
and Assessment of DC

Both, the manually and automatically generated
series of RR intervals were transformed by PRSA
as previously described.3 Briefly, instances within
the RR interval time series are identified where the
heart rate decelerates (so-called anchors). Segments
around these decelerations are averaged to obtain
the so-called PRSA signal. The central part of the
PRSA signal is quantified by Haar wavelet analysis
to obtain an estimate of the periodic power of the
signal. The wavelet coefficient is termed DC.

The PRSA technology allows for several adjust-
ments. Here, we systematically tested the effect of
the low-pass filter T (eq. 2a in Ref.3). The scale s
of the wavelet used for quantification of the PRSA
signal is adjusted to T as follows (see also eq. 8 in
Ref.3):

S = T + 1[4]. (4)

DC obtained from manually or automatically
processed ECG signals are denoted DCmanual and
DCauto, respectively.
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Figure 1. Scheme of automated R-peak detection.

Assessment of Standard Measures of
HRV

Standard measures of HRV were calculated in
time and frequency domain as proposed by the
task force.1 We assessed the following measures:

the standard deviation of all normal-to-normal
intervals (SDNN), the root mean square of suc-
cessive differences of normal-to-normal intervals
(RMSSD), the frequency power in the low (0.04–
0.15 Hz) and high frequency (0.15–0.40 Hz) band
(HF and LF).
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Figure 2. Typical problems in noisy ECG recordings. (A) High-frequency artifacts
probably due to muscular activity; B and C: different forms of baseline wandering;
D: artifacts due to signal interruption.

Statistical Analyses

Continuous variables are presented as mean and
standard deviation. Qualitative data are expressed
as percentages. Correlation between two continu-
ous variables was assessed by Pearson’s correlation
coefficient. Agreement between two continuous
variables was analyzed by the method of Bland
and Altman,6 which involves plotting the signed
difference between two measures against the mean
of the two measures. Limits of agreement depict
the mean difference of two measures ± 1.96 ×
the standard deviation.

RESULTS

ECG Signals

ECG tracings were characterized by substantial
artifacts and noise. Typical examples are shown in

Figure 2. On average, 16.6 ± 10.4% of the recording
time was classified as artifacts or noise by manual
review.

Correlation and Agreement of DCmanual
and DCauto

DCmanual and DCauto were highly significantly
correlated. Correlation coefficients ranged from
0.903 to 0.983 depending on T used for PRSA
analysis (P < 0.0001 for all). With increasing
T, the correlation coefficient gradually improved
and saturated when T was 5 or more (Fig. 3).
Figure 4 shows the correlations of DCmanual and
DCauto for T = 1 and T = 5, respectively. Figure 5
shows the Bland–Altman plots of DCmanual and
DCauto for T1 and T5, in which the average
of DCmanual and DCauto is plotted against their
difference. For T = 1, the average difference
between DCauto and DCmanual was –1.12±1.69
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Figure 3. Correlation coefficients of manually and automatically generated
measures of deceleration capacity using different T-filters in the phase-rectified
signal averaging algorithm. The T-filter acts as a low-pass filter.

Figure 4. Correlation of manually and automatically generated measures of deceleration capacity. Panel A shows
computation by using T = 1. Panel B shows computation by using T = 5.

ms with limits of agreement ranging from –4.43
to 2.19 ms. For T = 5, the average difference
between DCauto and DCmanual was –0.23±0.49 ms
with limits of agreement ranging from –1.19 to
0.73 ms.

Standard HRV Measures and Standard
R-Peak Detection Algorithm

We also analyzed the correlations for several
other HRV measures in time and frequency
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Figure 5. Bland-Altman plot showing the agreement of manually and automatically generated measures of deceleration
capacity DCmanual and DCauto. The average of DCmanual and DCauto is plotted versus the difference. A shows computation
by using T = 1. Panel B shows computation by using T = 5.

Table 1. Correlations of Manually and Automatically
Generated HRV Measures Using Two Different

Approaches

Manual versus Manual versus
Autoa Auto 2b

HRV Measure R P-Value R P-Value

DCT1 0.903 <0.001 0.371 <0.001
DCT5 0.980 <0.001 0.427 <0.001
SDNN 0.653 <0.001 0.294 0.003
RMSSD 0.761 <0.001 0.208 0.038
LF 0.278 0.005 0.148 0.145
HF 0.603 <0.001 0.105 0.304

aAuto refers to automatic R-peak detection as proposed
in the present study mainly based on a Shannon entropy
envelope estimator and a subsequent Hilbert transformation;
bAuto 2 refers to a standard R-peak identification based on
the Pan–Tompkins algorithm.
Abbreviations as in text.

domain. As shown in the left columns of Table 1,
correlations were significantly lower for standard
measures of HRV including SDNN, RMSSD, LF,
and HF as compared to DC, demonstrating the
importance of PRSA in our approach.

Additionally, we tested a standard method of R-
peak detection by the Pan–Tompkins algorithm.
As shown in the right columns of Table 1, HRV
analysis based on the standard R-peak detection by
the Pan–Tompkins algorithm resulted in significant
lower correlations of manual and automated HRV
analysis.

DISCUSSION

The findings of our study indicate that DC can be
automatically calculated from noisy, nonstationary
ECG signals with considerable agreement to
DC derived from manually preprocessed ECG
signals. Agreement between automatically and
manually derived DC can be further enhanced
by implementation of a low-pass filter into
the PRSA algorithm. Use of a standard R-peak
detection algorithm or quantification of HRV by
standard measures resulted in significantly worse
correlations between automatically and manually
derived measures.

Automated R-peak detection in the setting of
noise and nonstationarities is challenging. R-peak
detection is mainly based on two different steps,
preprocessing of the ECG signal and decision
making. Aim of preprocessing is to harmonize QRS
complexes and to suppress noise. In the present
study, this was mainly realized by nonlinear
transformation of the ECG signal using a smooth
Shannon energy envelope estimator. As previously
shown, this is of particular advantage when QRS
complexes are characterized by sudden changes
in morphology.4 After preprocessing of the ECG
signal, the positions of the R peaks need to be iden-
tified. Most conventional approaches to decision
making use heuristic rules which are often complex
and require predefined thresholds. The Hilbert
transformation as used here is a remarkably simple
approach to R-peak identification of preprocessed
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data. It assumes that the signal is subject to
cyclic variations by calculating the phase for every
time point and with phase zero corresponding to
the R peak. The subsequent moving averaging
filter is used to remove low-frequency baselines
shifts, which can occur when QRS amplitudes are
suddenly changing. Manikandan and coworkers
have recently tested the performance of this
approach in 48 ECGs of the MIT-BH database.4 The
algorithm achieved an average detection accuracy
of 99.80% outperforming other approaches based
on linear prediction, wavelet transform,7–9 or
empirical mode decomposition.10

However, even the best algorithm for automated
R-peak detection may sometimes fail when applied
to noise-polluted data. This is particularly true
when ECGs are derived from low-resolution mon-
itoring devices in emergency rooms or intensive
care units. It is therefore of great importance
that HRV is assessed by a method that is most
insensitive to artifacts, nonstationarities, and noise.
As substantiated by rather low correlations coeffi-
cients standard approaches to HRV assessment are
not particularly reliable in this setting. In contrast,
PRSA is a robust technique to detect periodic
patterns even in the presence of nonstationarities
and noise. We have previously shown that the
threshold intensity for the detection of additional
quasi-periodic components is approximately 75%
lower with PRSA than with standard techniques.3

The agreement between manually derived and
automatically generated PRSA signals can be
further improved by implementation of a low-
pass filter into the PRSA algorithm. In previous
studies on postinfarction patients, DC has been
shown to yield strong and independent prognostic
information.2,11,12 In survivors of acute MI,
predictive value of DC was shown to be superior
to left ventricular ejection fraction and standard
measures of HRV.

The limitations of our study should be recog-
nized. Although automatically generated measures
of DC showed good agreement with manually gen-
erated measures, automated and manual analyses
are still different. It is subject to further investi-
gations to evaluate whether these differences are
clinically meaningful. Implementation of a low-
pass filter into the PRSA algorithm suppresses high-
frequency oscillations of heart rate. The clinical

value of low-pass filtered DC needs to be proven
by further studies.

In conclusion, we developed and validated a
novel approach that allows for a fully automated
assessment of cardiac autonomic function without
manual intervention in noise-polluted signals.
Automatically generated DC showed good agree-
ment to DC derived from manually preprocessed
data. Future studies are needed to test the
clinical usefulness of automated DC assessment in
different clinical settings.
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