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Abstract

In this study, we examined a deep learning method for de-identification of clinical notes at 

UF Health under a cross-institute setting. We developed deep learning models using 2014 i2b2/

UTHealth corpus and evaluated the performance using clinical notes collected from UF Health. 

We compared four pre-trained word embeddings, including two embeddings from the general 

domain and two embeddings from the clinical domain. We also explored linguistic features 

(i.e., word shape and part-of-speech) to further improve the performance of de-identification. 

The experimental results show that the performance of deep learning models trained using i2b2/

UTHealth corpus significantly dropped (strict and relax F1 scores dropped from 0.9547 and 

0.9646 to 0.8360 and 0.8870) when applied to another corpus from a different institution (UF 

Health). Linguistic features, including word shapes and part-of-speech, could further improve the 

performance of de-identification in cross-institute settings (improved to 0.8527 and 0.9052).
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I. Introduction

The unstructured clinical text has been increasingly used in clinical and translational 

research as it contains detailed patient information that not readily available in structured 

medical codes. De-identification [1] is a critical technology to facilitate the use of 

clinical narratives while protecting patient privacy and confidentiality. The Health Insurance 

Portability and Accountability Act (HIPAA) “Safe Harbor” rules identified 18 Protected 

Health Information (PHI) to be removed to generate a de-identified copy of clinical data. 

As manually de-identification is often time-consuming and not applicable to large volumes 
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of clinical text, researchers have developed natural language processing (NLP) methods to 

identify and remove PHIs from clinical notes automatically. Most existing studies approach 

the de-identification as a clinical named entity recognition (NER) [2] task, which is a 

standard clinical NLP task to identify medical concepts and determine their semantic 

categories. The clinical NLP community has organized several shared tasks [3]–[5] to assess 

the current clinical NLP systems on de-identification of clinical text. In this study, we 

examined a deep learning method, LSTM-CRFs, for de-identification of clinical notes at UF 

Health under a cross-institute setting. We developed deep learning-based de-identification 

models using the 2014 i2b2/UTHealth corpus [3] and evaluated the performance using 

clinical notes collected from UF Health.

II. material and methods

A. Data sets

In this study, we used clinical notes from the 2014 i2b2/UTHealth challenge and UF Health 

Integrated Data Repository (IDR). For cross-institute evaluation, we collected a total number 

of 4,996 clinical notes from the UF Health IDR. These clinical notes were from 97 patients 

and distributed in 39 different note types. We randomly selected 218 notes from the UF 

Health dataset using stratified sampling based on the note types. Two annotators (TL and 

CL) manually annotated the PHIs in the selected notes. To facilitate cross-institute analysis, 

we merged several rare PHIs for the annotation of UF Health corpus: (1) excluded the days 
of week, seasons and holidays, state and country as they are not required by HIPAA; (2) 

merged the phone and fax as PHONE; (3) combined email, URL and IP Address as WEB; 

(4) merged organization and hospital as INSTITUTE. We adjusted the PHI annotations 

in the 2014 i2b2/UTHealth corpus to make the annotations consistent. Table I shows the 

distribution of PHIs in i2b2/UTHealth corpus and UF Health corpus.

B. Word embeddings

In this study, we examined four different word embeddings trained with different algorithms 

and corpora. The two general domain-based embeddings are released by Google and 

Facebook. The GoogleNews-word2vec embeddings were developed by Google trained using 

the word2vec on the part of the Google news dataset [6] and the CommonCrawl-fastText 

embeddings were released by Facebook trained using the fastText [7] algorithm and the 

Common Crawl dataset [8]. The two clinical domain-based embeddings are created by our 

group based on the corpus consisted of all notes from the Medical Information Mart for 

Intensive Care III (MIMIC-III) database [9]. We generated the MIMIC-III-word2vec using 

the word2vec while developed the MIMIC-III-fastText embeddings using the fastText.

C. Experiments and Evaluation

We used an LSTM-CRFs model developed in our previous work [10] using Tensorflow [11]. 

We compared the performance of LSTM-CRFs models with or without linguistic features 

(i.e., word shapes and part-of-speech). For evaluation, we reported the micro-averaged strict 

and relax precision, recall, and F1-score.
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III. Results

Two annotators annotated 3,216 PHIs from 218 UF Health notes with an inter-annotator 

agreement of 0.889 Cohen’s kappa. We fixed the discrepancies of annotations through group 

discussions. Table I shows the detailed number of PHIs for each category and compared with 

the i2b2/UTHealth corpus. The model trained with the CommonCrawl-fastText achieved the 

best strict and relax F1 scores of 0.9547 and 0.9646 respectively on the I2B2 corpus. When 

applying this model to UF Health data, it achieved strict and relax F1 scores of 0.8360 and 

0.8870, respectively. After adding linguistic features, both strict and relax F1 scores were 

improved to 0.8527 and 0.9052. Table II compares the performances (micro-averaged strict 

and relax F1-scores) of LSTM-CRFs model on the I2B2 dataset and the UF Health dataset.

IV. Discussion and Conclusion

This study shows that it is necessary to customize the deep learning-based de-identification 

systems for cross-institute settings.
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TABLE I.

PHI distributions in the 2014 i2b2/UTHealth corpus and UF Health corpus.

PHI Category

Number of Annotations

2014 i2b2/UTHealth UF Heath

Training Validation Evaluation

DATE 9,067 3,104 1,866

NAME 5,472 1,868 782

AGE 1,507 490 166

ID 1,142 364 138

PHONE 406 128 46

WEB 6 1 4

INSTITUTE 1,926 592 129

STREET 280 72 21

CITY 502 152 44

ZIP 276 76 20

Total 20,584 6,847 3,216
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