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Abstract

Background: Electronic medical record (EMR) systems need functionality that decreases 

cognitive overload by drawing the clinician’s attention to the right data, at the right time. We 

developed a Learning EMR (LEMR) system that learns statistical models of clinician information-

seeking behavior and applies those models to direct the display of data in future patients. We 

evaluated the performance of the system in identifying relevant patient data in intensive care unit 

(ICU) patient cases.

Methods: To capture information-seeking behavior, we enlisted critical care medicine physicians 

who reviewed a set of patient cases and selected data items relevant to the task of presenting at 

morning rounds. Using patient EMR data as predictors, we built machine learning models to 

predict their relevancy. We prospectively evaluated the predictions of a set of high performing 

models.

Results: On an independent evaluation data set, 25 models achieved precision of 0.52, 95% CI 

[0.49, 0.54] and recall of 0.77, 95% CI [0.75, 0.80] in identifying relevant patient data items. For 

data items missed by the system, the reviewers rated the effect of not seeing those data from no 

impact to minor impact on patient care in about 82% of the cases.

Conclusion: Data-driven approaches for adaptively displaying data in EMR systems, like the 

LEMR system, show promise in using information-seeking behavior of clinicians to identify and 

highlight relevant patient data.
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1. Introduction

With increasing amounts of patient data being captured by electronic medical record (EMR) 

systems, intelligent integration and presentation of data to clinicians is a vital need. In 

complex and dynamic workplaces, such as the intensive care unit (ICU), decision making is 

highly reliant on situational awareness of a patient’s condition. In the ICU, clinicians are 

required to peruse a large amount of continuously changing patient data, determine what 

data are relevant, synthesize the relevant data, and act on the assessment [1].

In the ICU, and in other settings, patient data accumulate rapidly. A study estimated that 

about 1348 data points are generated per patient per day in the pediatric ICU [2]. Clinicians 

face cognitive overload in all three aspects of cognitive processes that underpin situational 

awareness: observation of relevant patient data, comprehension of the meaning and synthesis 

of the data, and prediction of future patient states and clinical events. In current EMR 

systems, data are scattered across many places and clinicians laboriously navigate, view, and 

filter out irrelevant data. The increased amount of patient data and their location in various 

places in the EMR may lead to cognitive overload and patient data may be inadvertently 

missed [3]. Cognitive overload is detrimental to both clinicians and patients because it may 

prevent a clinician from rapidly identifying, aggregating, and synthesizing relevant data for 

clinical tasks. Advanced EMR systems should aim to provide clinicians with excellent 

situational awareness [4]. In particular, it is imperative to improve the usability of EMR 

systems with functionality that draws the clinician’s attention to the right data for the right 

patient at the right time [5].

As a step towards developing an EMR system that decreases cognitive overload, we 

developed a Learning EMR (LEMR) system that focuses on highlighting relevant data for 

clinical assessment and decision-making. We hypothesized that predictive modeling could 

be used to automatically highlight relevant information. The purpose of this study was to 

create those predictive models and evaluate their ability to highlight patient data that are 

most relevant to clinicians.

2. Background

Investigators have explored several approaches to display patient data for clinical tasks that 

enable rapid comprehension of the overall state of the patient and characterization of 

significant changes in the clinical course [6]. Examples of approaches for integrated data 

display include summarizing using graphs [7], summarizing using temporal trends, and 

organizing data in organ system-based [8,9] or disease-focused frameworks [10,11]. 

Graphical summaries of data take advantage of the acute perceptual capabilities of humans. 

For example, Anders et al. demonstrated that a graphical trending display helped ICU nurses 

to better synthesize information about patients’ evolving clinical conditions, when compared 

to a tabular display [12]. Much of patient data are temporal and investigators have explored 
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ways to summarize and display clinical time series data. For example, Klimov et al. 

developed methods for intelligently visualizing and exploring time-oriented medical records 

[13], and Post et al. developed temporal abstractions to automatically identify temporal 

patterns in clinical data [14]. Rind et al. surveyed a comprehensive range of visualization 

system designs based on timeline exploration of clinical data [15]. Wright et al. published a 

systematic review of display approaches and design frameworks that are applicable to the 

ICU [16].

Approaches for organized display of patient data in EMR systems can be broadly 

categorized into two groups: knowledge-based and data-driven. Knowledge-based 

approaches typically use rules that are derived from general medical knowledge or the 

experience of clinical experts [17]. For example, easily derived rules from medical 

knowledge are used to indicate out of range laboratory test values and physiological 

measurements. More sophisticated approaches, such as the AWARE system, group ICU 

patient data by organ system, which is a common way for ICU clinicians to summarize data 

[18]. Knowledge-based approaches have several advantages including that they are likely to 

be clinically useful and they can be readily implemented in EMR systems. However, such 

approaches suffer from several disadvantages. Collecting clinical experience data and 

manually constructing rules is typically tedious and time-consuming [19,20]. Knowledge-

based systems are expensive to revise, tune, and update, and furthermore they have limited 

coverage of the large variety of clinical scenarios.

In contrast to knowledge-based approaches, data-driven approaches can automatically derive 

patterns from data. Using order-entry data in EMR systems, Klann et al. derived Bayesian 

network models that can be used to produce patient-specific order menus. Such menus were 

shown to help physicians in writing complete order sets faster [21]. Gambino et al. created a 

framework for automatic generation of adaptive and customizable toolbars and menus in 

medical imaging that is data-driven [22]. Using patient-management activity data in ICU 

EMR systems, Hauskrecht et al. developed support vector machine classifiers that generate 

alerts about potential errors in orders entered by clinicians. Such alerts were judged to be 

clinically useful about 50% of the time [23,24]. A major advantage of such data-driven 

approaches is that the capacity to learn is limited in scope only by the collective experience 

that is embodied in the data contained in a health system’s EMR systems. Data-driven 

approaches can construct sophisticated statistical models that predict clinician information-

seeking behavior and update the models rapidly based on new data. Moreover, data-driven 

approaches are applicable to a wide range of care settings and tasks; hence the coverage is 

broader than knowledge-based approaches. The LEMR prototype system that we describe in 

this paper is an example of a data-driven approach for adapting the display of patient data to 

the needs of the user.

3. Methods

We designed and implemented a prototype LEMR system and used it with past ICU patient 

cases in our experiments. The LEMR system (1) uses information-seeking behavior of 

clinicians in viewing past cases to train statistical models to predict which data items are 

relevant in a current case, and (2) applies these models to automatically highlight data (e.g., 
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vital signs, laboratory test results, and medication orders) that are relevant to a patient’s 

current clinical condition. To develop a functioning LEMR system, we obtain information-

seeking behavior from clinician reviewers who assess past patient cases. However, in a 

mature LEMR system, such information-seeking behavior would be inferred automatically 

from clinician user activity in using the EMR.

We created a training data set from past patient cases that were annotated by critical care 

medicine physicians (i.e., intensivists) for relevant patient data, derived multiple statistical 

models to predict data relevancy, and evaluated the performance of the models in an 

independent evaluation data set. We restricted the cases in the training and evaluation data 

sets to patients with either acute kidney failure or acute respiratory failure that are two 

common conditions in the ICU.

3.1. The learning EMR system

The prototype LEMR system that we developed can be used to capture information-seeking 

behavior as well as apply models learned from that data to highlight relevant patient data in 

an EMR. The current prototype system does not interact with EMR systems that are 

currently in use in healthcare settings. Our goal was not to replicate an entire modern EMR 

but to have a useful prototype for displaying patient data that mimics a real EMR in 

important ways that would support our conducting studies of it in a laboratory setting.

The LEMR system consists of three main components: (1) a user interface implemented in a 

web browser using HTML, CSS, JavaScript, and Django, (2) a MySQL database for storing 

patient data, and (3) a module containing statistical models (Fig. 1). The system functions in 

two modes. In the training mode, the user reviews patient cases and selects data items that 

are relevant for a specified clinical task. In the evaluation mode, statistical models are 

applied to new patient cases to identify and highlight data items that are predicted to be 

sought by the user, and the user reviews highlighted data items in the context of the cases 

and provides responses to study questions.

The LEMR user interface displays a patient case in a compact manner. Structured data are 

shown in graphical time series plots and free-text notes are shown in a separate area in the 

interface (see Fig. 2). In addition to display of patient data, the interface can record 

selections made by the user (in training mode) and can highlight patient data that are 

predicted to be sought by the user through the application of statistical models (in evaluation 

mode). The LEMR user interface does not support all functionalities and accessibility 

standards of a commercial EMR system since it was developed to support research studies.

3.2. Clinical task

During ICU morning rounds, a multidisciplinary clinical team evaluates and makes 

decisions for each patient. For each patient, one member of the team typically reviews 

relevant data in the EMR system and prepares a summary of the patient’s clinical status. 

During rounds, this team member delivers an oral presentation of the summary to the team. 

The task of preparing the summary is often time-consuming, with the clinician laboriously 

combing the EMR system to identify and retrieve relevant data. To evaluate the LEMR 
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system, we chose the task of identifying relevant patient data for presenting a summary of 

the patient’s clinical status at morning rounds.

3.3. Training data set

Using the LEMR system in training mode, we showed a set of ICU patient cases to critical 

care medicine physicians who reviewed the cases and selected data items that were relevant 

to the task of preparing a summary of each case for presentation at morning rounds. One-

hundred seventy-eight patient cases were selected randomly from patients who were 

admitted between June 2010 and May 2012 to an ICU at the University of Pittsburgh 

Medical Center, with a diagnosis of either acute kidney failure (AKF; ICD-9 584.9 or 584.5; 

93 cases) or acute respiratory failure (ARF; ICD-9 518.81; 85 cases). EMR data were 

extracted from a research database [25] and a clinical data warehouse [26]. The procedure 

for case review and selection of data items included three tasks:

Task 1 (familiarization): A random day between day two of admission to the ICU and the 

day before discharge from the ICU was selected as the “past patient stay.” All available 

EMR data up until 8:00 am on the day selected for the past patient stay were displayed to the 

reviewer. The reviewer was instructed to “use the available information to become familiar 

with the patient case as if they are one of your own patients.” After becoming familiar with 

the case, the reviewer clicked on a button to advance to Task 2.

Task 2 (preparation): An additional day (from 8:00 am on the day selected for the past 

patient stay to 8:00 am on the next day i.e., “current time”) of the patient’s EMR data were 

added to the display. The reviewer was prompted with a dialog box that stated “24-hours 

have passed” and directed to “use the available information to prepare to present the case 

during morning rounds.” After preparation was complete, the reviewer clicked on a button to 

advance to Task 3.

Task 3 (selection): For this task, each available data item (e.g., glucose levels, insulin dosage 

regimen) was shown with an accompanying checkbox. The reviewer was directed to “select 

the information you consider pertinent when preparing to present this case at morning 

rounds.” The reviewer selected relevant data items by toggling the accompanying checkbox 

to the checked state. Data on information-seeking behavior were collected during Task 3; 

data selections made by the reviewers were recorded in the LEMR database and used to 

create the training data set.

3.4. Derivation of statistical models

Patient data and selections made by reviewers recorded in the LEMR system were processed 

into a representation that is suitable for machine learning. We applied three machine learning 

algorithms and computed the performance of the models on the training data.

3.4.1. Data representation and processing—A predictor variable denotes any 

patient data item and includes observations, measurements, actions, or other information that 

are available from the EMR system. Examples of predictor variables include diagnosis, 

demographics, laboratory test results, vital sign measurements, ventilator settings, and 

medication administrations. A predictor value is the value that a predictor variable takes in a 
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patient. For example, consider a patient with diabetes mellitus in whom glucose levels are 

recorded in the EMR. Then diagnosis = diabetes mellitus denotes that the predictor variable 

diagnosis has the value diabetes mellitus and glucose = 85, 100, 90, 105 mg/dL denotes that 

the predictor variable glucose consists of a series of serum glucose levels over a period of 

time.

A target variable (or simply target) is any patient data item that a clinician can potentially 

seek as relevant for a specific task in a specific patient. Any observation, measurement, 

action, or other information that is available for a patient in the EMR and sought by a 

clinician is a target. To distinguish a target from a predictor variable with the same name, the 

word “target” is appended to the name of the target. Thus, glucose refers to a predictor 

variable that consists of glucose levels in a patient while glucose target refers to a target that 

encodes clinician information-seeking behavior. A target, in a given context, takes only two 

values; it is assigned the value yes if it is available for a patient and a clinician sought it for 

the given task, and it is assigned the value no if it is available for a patient, but a clinician did 

not seek it. It is not defined if it was not measured for the patient. For example, for a patient 

with diabetes mellitus, glucose target = yes denotes that the target variable glucose target 
contained clinical data and was sought by a clinician. Consider a different patient who has 

kidney failure and glucose levels are recorded but are not sought by a clinician. Then, 

glucose target = no denotes that the target variable glucose target contained clinical data 

but was not sought by a clinician. Finally, glucose target = missing denotes that glucose 

levels were not measured for a patient and, therefore, this target is not available for selection 

by a reviewer. Since target data are not readily available in currently deployed EMR 

systems, we obtained them from clinician reviewers in a laboratory setting using the LEMR 

system, as described in the previous section.

Predictor variables include simple atemporal variables (e.g., diagnosis), as well as more 

complex variables captured as time series measurements (e.g., glucose). We use the term 

variables to denote raw patient data items that are extracted from the EMR system (e.g., 

glucose levels) and the term features to denote functions of those variables (e.g., most recent 

measurement of a glucose time series). We construct features from predictor variables as 

described below [23]:

• Atemporal variables comprised of diagnosis and demographics that included age, 

height, weight, body mass index, sex, race and length of ICU stay. For each 

atemporal variable, we generate a single feature that is assigned a single value 

for a patient for the duration of ICU stay (e.g., sex = female).

• Complex variables consisting of time series data, including laboratory test 

results, vital signs, ventilator settings and medication administrations. For each 

medication variable, we generate four features including an indicator of whether 

the drug is currently prescribed, the time elapsed between first administration 

and the current time, the time elapsed between the most recent administration 

and the current time, and the dose at the most recent administration. For each 

laboratory test result, vital sign and ventilator setting, we generate up to 35 

features including an indicator of whether the event or measurement ever 

occurred, the value of the most recent measurement, the highest value, the lowest 
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value, the slope between the two most recent values, and 30 other features. The 

complete list of features derived from each type of complex variable is shown in 

Supplementary Table 1.

Target variables are treated like atemporal predictor variables when they are translated into 

features. Thus, the glucose target (i.e., whether glucose levels are sought in a given context) 

is translated into a single target feature (glucose target = yes, no, or undefined) in contrast 

to the glucose predictor which is expanded into a set of 35 features.

A patient instance (or simply instance or sample) is a vector of (predictor) feature values and 

corresponding target values derived from data from a subinterval of a patient’s ICU stay 

defined from the time of admission to the ICU to the current time. The vector of feature 

values summarizes the evolution of the patient’s clinical status from the time of admission to 

the current time. A data set (e.g., a training data set) is a collection of patient instances.

3.4.2. Model derivation—In the data representation just described, the temporal aspects 

of the predictor variables are implicitly summarized in the vector of feature values, and such 

a representation enables standard machine learning methods to be applied. To train a 

predictive model for the glucose target, for example, we train on all feature values and the 

corresponding glucose target values (yes or no) of a set of instances to predict if glucose 

level is relevant. By changing the target, a predictive model is trained for each laboratory 

test, vital sign, and ventilator setting, and medication.

Two practical challenges with deriving models in this data set are the large number of 

missing values and high dimensionality. We imputed missing values of features using two 

different methods. In the first method, they were imputed with the median. In the second 

method, continuous predictor variables were imputed with linear regression and discrete 

predictor variables were imputed with logistic regression. Both regression methods used all 

available features to predict a feature of interest. Both imputation methods were applied, 

creating two distinct data sets (a median imputed data set and a regression imputed data set).

To reduce dimensionality, we applied a two-step feature selection procedure that is similar to 

the procedure described in Hauskrecht et al. [23] First, for each set of features constructed 

from a single variable (e.g., blood glucose levels that is translated into a set of features that 

include the value of the most recent measurement, the slope between the two most recent 

values, and other features), we evaluate if the set is predictive of the target by itself. Any set 

of features with an area under the Receiver Operator Characteristic (AUROC) curve of less 

than 0.6 is removed. The features that remain after the first step are reduced further using 

recursive feature elimination and cross-validation (RFECV in scikit-learn version 0.19 [27]). 

The final set of features is used for model construction. Feature selection is target specific, 

so it was done separately for each target variable.

Three different machine learning algorithms were applied: lasso logistic regression, support 

vector machines, and random forests. Models were constructed and evaluated using leave-

one-out cross-validation. Imputation and feature selection steps were performed within the 

cross folds. For all methods, we used implementations in scikit-learn Version 0.19 [27]. The 
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best performing combination of imputation method and machine learning algorithm for each 

target was considered for inclusion in the evaluation study.

3.5. Evaluation

To evaluate the LEMR system, we applied high performing models derived from the training 

set to an evaluation data set, and the model predictions were assessed by critical care 

medicine physicians.

We randomly selected 18 ICU patients who were not included in the training data set and 

who were admitted between May 2012 and December 2012 to an ICU and had a diagnosis 

of either AKF (9 patients) or ARF (9 patients). Models that obtained a cross-validated 

precision of at least 0.67 and recall of at least 0.50 on the training data set were applied to 

the new cases. We chose these thresholds to balance between highlighting accuracy and 

completeness. Using the LEMR system in evaluation mode, we showed the evaluation 

patient cases (with predicted-to-be-relevant data items highlighted) to critical care medicine 

physicians who reviewed the cases and provided feedback using the following procedure:

The evaluation consisted of three arms that included a control arm and two intervention 

arms. In the control arm, the procedure for reviewing the case was similar to the procedure 

used in the training phase. In the highlights in place intervention arm, the selected models 

were applied to the case and patient data that were predicted to be relevant were highlighted 

using a orange-colored box (see Fig. 3, top panel). In the highlights only intervention arm, 

patient data were highlighted as in the other intervention arm, and, in addition, data that 

were not predicted to be relevant were removed from the interface (see Fig. 3, bottom panel).

The LEMR system was used in the evaluation mode and reviewers completed the following 

tasks. An overview of the tasks that constitute the case review procedures for the three arms 

is shown in Fig. 4, and we give details of the tasks below.

Task 1 (familiarization; for all three arms). This task is equivalent to the familiarization task 

in the training data collection (see Section 3.3).

Task 2 (preparation; for all three arms). An additional day (from 8:00 am on the day selected 

for the past patient stay to 8:00 am on the next day i.e., “current time”) of the patient’s data 

were added to the display. The reviewer was prompted with “24-hours have passed” and 

directed to “use the available information to prepare to present the case during morning 

rounds.” After preparation was complete, the reviewer clicked on a button to advance to 

Task 3.

Task 3 (presentation; for all three arms). The reviewer was prompted with “now that you are 

up to date with this patient’s problems and latest data, please present the patient as if you 

were presenting during morning rounds, including pertinent positives and negatives, as well 

as your assessment and management plan for the day. Try to make it concise.” The verbal 

presentation was recorded with an audio recorder. After completing the presentation, the 

reviewer clicked a button that either advanced to Task 4 (if in the control arm), advanced to 

the next patient case (if in the highlights in place arm), or advanced to Task 5 (if in the 

highlights only arm).
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Task 4 (selection; for the control arm). This task is equivalent to the selection task in the 

training data collection when data on information-seeking behavior were collected (see 

Section 3.3). In the interface, each available data item (e.g., glucose levels, insulin dosage 

regimen) was shown with an accompanying checkbox. The reviewer was directed to “select 

the information you consider pertinent when preparing to present this case at morning 

rounds.” The reviewer selected relevant data items by toggling the accompanying checkbox 

to the checked state. The reviewer then clicked a button to advance to the next patient case.

Task 5 (revision; for the highlights only arm). The goal of this task was to identify relevant 

data that was previously hidden. The reviewer was shown the case using the highlights in 
place interface version - i.e., the hidden data were revealed - and was prompted with 

“additional information is now displayed. Considering the additional information, if you 

would like to revise your presentation, please do so now.” Revisions to the rounding 

presentation were recorded using an audio recorder. After finishing the revisions (or opting 

not to revise), the reviewer clicked on a button to advance to Task 6.

Task 6 (rating; for the highlights only arm). The goal of this task was to assess the clinical 

impact of relevant data that were previously hidden. The reviewer was prompted with “if 

you revised your presentation, rate the clinical impact those revisions would have on patient 

care.” Clinical impact was selected on a three-point scale: “no impact”, “minor impact”, and 

“major impact”, and included a fourth option labeled “no revisions.” The reviewer then 

clicked a button to advance to the next patient case.

In the control arm, a reviewer completed Tasks 1, 2, 3, and 4 in order; in the highlights in 
place arm, a reviewer completed Tasks 1, 2, and 3 in order; and in the highlights only arm, a 

reviewer completed Tasks 1, 2, 3, 5, and 6 in order (see Fig. 4). Data collected during the 

evaluation included time to task completion during Task 2, a list of relevant data items in 

Task 4, and, based on data revealed in Task 5, a rating of the LEMR system’s clinical impact 

in Task 6.

3.6. Data analysis

For evaluation, we used a fractional factorial design to assign 12 reviewers to each complete 

case review tasks for all of 18 patient cases using, where a given reviewer reviewed a given 

case using only one of the three arms (see Supplemental Fig. 1). We performed several 

analyses to evaluate several aspects of the LEMR system including model performance, 

impact on time to task completion, adequacy of data items that were highlighted, and 

clinical impact of items that were not highlighted.

We report the performance of models using precision and recall calculated on the evaluation 

data set. For example, for a glucose model that predicts if glucose level is relevant or not, 

precision is the number of patient cases for which glucose was predicted to be relevant and 

was indeed relevant divided by the number of patient cases in which glucose was predicted 

to be relevant. Similarly, recall is the number of patient cases in which glucose was predicted 

to be relevant and was indeed relevant divided by the number patient cases in which glucose 

was indeed relevant. The data items selected in Task 4 served as a gold standard for 

relevancy in calculating precision and recall.
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The impact of the highlighted items on time to task completion was calculated using one-

way ANOVA with post hoc analysis. Homogeneity of variance by Bartlett's test was 

calculated before performing ANOVA to verify that the variance did not differ among 

groups. Post hoc analysis was performed using Tukey’s Honest Significant Difference test 

which also assumes homogeneity of variance. For the statistical analyses, we used the 

following functions implemented in R version 3.3.3: Bartlett.test() from the stats package, 

aov() from the stats package, and HSD.test() from the agricolae package.

Adequacy of highlighted data was evaluated by comparing and summarizing the number of 

patient data items displayed, highlighted, and manually selected in each case during Task 2 

through Task 4. We compared the performance of model-based highlighting to the 

performance of random highlighting. For random highlighting, for each case, we randomly 

selected h data items (where h is the number of items highlighted by the models) from a set 

of n data items (where n is the total number of displayed items). We also evaluated the 

clinical impact of items that were not highlighted from the ratings that reviewers provided in 

Task 6.

4. Results

4.1. Reviewers

All reviewers were ICU physicians trained in critical care medicine, including fellows and 

attending physicians. Details of the reviewers are shown in Table 1 for both the training and 

evaluation phases. Five reviewers who participated in the training phase also participated in 

the evaluation phase.

4.2. Performance of models

Details of the training and evaluation data sets are shown in Table 2. The training data set 

was assembled from 178 patient cases and 1864 raw predictor variables. After feature 

construction, there were a total of 30,770 features. A feature was removed if it was missing 

in every patient case, had no variability, or the values were identical to the values of another 

feature in every case. Application of these criteria provided a final set of 6935 predictor 

features.

The data set contained 865 target features. A model was constructed for a target feature if it 

was available in 20 or more cases and if it was selected in 5 or more patient cases. We 

constructed models for the 80 targets for which sufficient training data were available. The 

performance of some of these models has been published previously [28]. We selected 25 

high performing models that had precision ≥0.67 and recall ≥0.50 and used them in the 

evaluation study (see Fig. 5). Precision ranged from 0.11 to 0.91 and recall ranged from 0.30 

to 0.97. For three of the models (ampicillin-sulbactam, positive end-expiratory pressure 

(PEEP), and red blood cells) precision and recall are not reported because the target variable 

of each model was not measured in an adequate number of patient cases in the evaluation 

data set.

King et al. Page 10

J Biomed Inform. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.3. Time to task completion

Time to task completion was measured in Task 2 when a reviewer spent time in preparing to 

present the case at morning rounds. The Bartlett test of homogeneity of variances showed no 

statistically significant difference in the variance of time to task completion among the three 

arms (Bartlett's K-squared = 2.17, df = 2, p-value = 0.34); therefore, both ANOVA and 

Tukey’s tests are appropriate. Summary statistics of the time to task completion in each arm 

are shown in Table 3.

The ANOVA test showed a statistically significant difference in time to task completion 

among the three arms (F2,213 = 3.82; p-value = 0.02). Pairwise results of Tukey’s Honest 

Significant Difference test are as follows: the times in the control arm and the highlights in 
place arm were not statistically significantly different (α = 0.1; p-value = 0.87), but the time 

in the highlights only arm was statistically significantly lesser than the times in the control 
arm (α = 0.1; p-value = 0.09) and in the highlights in place arm (α = 0.1; p-value = 0.03). 

Overall, the results provide evidence that clinicians used less time when preparing a 

summary for presentation at morning rounds when fewer data are available, as was the case 

in the highlights in place arm.

4.4. Adequacy of highlighted data items

Fig. 6 shows the number of data items available for each of the 18 patient cases, the number 

of data items highlighted for each case, and the minimum, maximum, and average number 

of data items that were selected as relevant. We expected the number of items selected to be 

substantially smaller than the number of items available, and the LEMR system is based on 

the premise that only a subset of all available patient data is relevant and will be sought by 

clinicians in the context of a task. Supporting this premise, we found that the cases had, on 

average, 108.9 data items available, and reviewers selected 22.6 of those items.

We examined the correspondence between the number of highlighted data items and the 

number of items sought as relevant for each case. We found the number of highlighted items 

to be within the range of the number of items selected for 14 of the cases (average 

highlighted = 15.1 and average selected = 15.7). The remaining four cases were within two 

and three items of the maximum, and two and five items of the minimum number of selected 

items (average highlighted = 14.5 and average selected = 17.4).

The precision and recall of the LEMR system based on all 25 models were computed under 

three scenarios and are shown in Table 4. In the first scenario, ‘Model active patient data,’ 

precision and recall were computed using only 25 types of data items for which a predictive 

model was available in the evaluation study (i.e., the 25 models shown in Fig. 5). The 

performance in this scenario provides an estimate of the performance of the LEMR system if 

the system had usable predictive models for every data item and can be considered as an 

upper bound for the performance.

In the second scenario, ‘All patient data,’ precision and recall were computed using all data 

items (i.e., including targets for which models were not available). Note that in this scenario 

precision is the same as before at 0.52 because the number of highlighted items is 

unchanged. However, recall decreases from 0.77 to 0.43 because the number of relevant data 
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items that are considered has increased. In the third scenario, ‘Randomly selected 

highlights,’ precision and recall were computed using data that were randomly selected from 

the available data. The precision and recall in this scenario are statistically significantly 

lower than in the previous two scenarios and can be considered as a lower bound for the 

performance of the LEMR system.

4.5. Clinical impact

In the highlights only arm, reviewers rated the clinical impact of data items that were not 

highlighted by the LEMR system. After completion of the rounding presentation using the 

highlights only version of the interface (highlights only arm, Task 3), reviewers were shown 

ah patient data and provided the opportunity to revise the rounding presentation (highlights 
only arm, Task 5), and were then asked to rate the impact of those revisions (highlights only 
arm, Task 6). The ratings are shown in Table 5. In 54.1% of the cases, the unseen data did 

not lead to a revision of the presentation or the revision was considered to have had no 

clinical impact (see Table 5). However, in 18.1% of the cases, the reviewers made a revision 

to the rounding presentation that would have had a major impact on clinical care of the 

patient.

5. Discussion

We developed a learning EMR system that captures clinician information-seeking behavior 

and uses it to display relevant and context-sensitive data to the user. In a laboratory setting, 

we collected training data for a set of patient cases, constructed statistical models of 

clinician information-seeking behavior, and prospectively applied the models to a new set of 

cases to evaluate the performance of the LEMR system. Our results showed that the 

precision of the LEMR system was 52%, which is significantly better than random of 15% 

(see Section 3.4), and recall was as high as 77% when considering only those data items for 

which a model was available. With more training data we expect to train more usable 

models, which would likely increase the recall of the system.

The time to task completion decreased significantly when fewer data items were shown 

(highlights only arm), but did not decrease when all data were shown with highlighting 

(highlighting in place arm). This result is consistent with other research that has evaluated 

emphasizing certain aspects of a patient’s record [29]. Although the reduced time in the 

highlights only arm is encouraging, reviewer comments regarding the potential impact of 

data not highlighted suggest that this improvement comes at a cost. As reviewers identified 

18% of the data items not shown as having a major clinical impact (see Table 5), the 

highlights only situation has the risk of hiding potentially important data. The highlighting 

approach is also limited by the accuracy of the models: the LEMR system did not highlight 

all of the data that clinicians considered to be relevant, but, when compared to random 

highlighting, the system performed substantially better (see Table 4).

In light of these results, it is important to emphasize that we do not expect a deployed LEMR 

system to ever completely ‘hide’ information as in the highlights only arm, which was 

introduced for experimentation purposes. In a deployed system, we expect that clinicians 

will always retain access to all of the data on a patient. However, highlighting in some 
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situations might be done in-place, as it was in the highlights in place arm, and, in other 

situations, the highlighted data may be presented separately in an independent display area 

[30] or even on a separate screen.

Even when used with displays containing all available patient data, the LEMR approach may 

present risks of unanticipated consequences. Highlights suggesting that certain items are 

more relevant than others may introduce automation bias (32). Specifically, the clinician 

might not notice omissions (when relevant data are not highlighted) or commissions (when 

irrelevant data are incorrectly highlighted). Studies to investigate the possible impacts of this 

automation bias are currently underway.

Overall, the results support the feasibility of developing a LEMR system that adaptively 

identifies and highlights patient data that a clinician is likely to seek for a specific task like 

preparing for morning rounds.

5.1. Limitations

The LEMR system that we evaluated has several limitations. One limitation is the moderate 

levels of precision and recall of the models that were derived from the training data set. In a 

previously published analysis, we showed that model performance improved as the number 

of training cases increased, and it is likely that additional training samples will improve the 

performance [28]. Larger amounts of training data are needed to not only improve the 

performance of models but to also improve coverage of the range of clinical conditions. In 

our experimental setting, we collected training data by having clinicians review patient cases 

and select relevant data items. This method has the advantage that the selections are highly 

specific but has the disadvantage of cost (i.e., the clinicians must be compensated for their 

time). High throughput methods for collecting training data are possible. For example, 

commercial EMR systems already capture metadata, such as page-visit, mouse, and 

keyboard logs [31,32]. These logs may be leveraged to automatically infer what data 

clinicians seek and, therefore, may be useful for building LEMR system models. Eye-

tracking is another conceivable method for automatically capturing data items viewed by the 

user, which we have begun to explore [33]. Assuming that clinicians look at the data they 

seek, eye-tracking may be used to infer clinician information-seeking behavior. Because 

EMR systems are used in a wide variety of contexts, a fully trained LEMR system will likely 

require data from a large number of interactions to develop accurate models.

The LEMR system was evaluated in the context of only two clinical conditions, namely, 

AKF and ARF; further research is needed to evaluate the generalizability of the models to 

additional clinical conditions and the applicability of this approach to uncertain and multiple 

concurrent disease states. In the current study, the predictor and target variables were limited 

to structured EMR data. Broadening the scope of the models to include clinical text using 

natural language processing has the potential to improve their performance and to extend the 

highlighting to clinical text. Another limitation is that the LEMR system was assessed on a 

single clinical task of developing a clinical summary for morning rounds, and in future work 

the system will be evaluated on a range of additional tasks.
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It is likely that clinicians do not always agree on which data are relevant for a task in the 

context of a patient. Hence, models that are constructed using data from many clinicians 

may not perform well because they may not capture the preferences of individual clinicians. 

If there is considerable variability among information-seeking behavior among clinicians, 

then models that are clinician-specific will be needed. Further research is required to 

characterize variability among information-seeking behavior among clinicians. The design 

of the LEMR user interface itself could have affected the information-seeking behavior and 

time to task completion; however, it is likely that the differences between highlighting and 

not highlighting will generalize to displays that are used in deployed EMR systems. 

Additional research is needed to evaluate our findings in EMR systems that are in actual use.

Another limitation is that the adequacy of the LEMR system for the task of preparing for 

morning rounds was self-reported by the reviewers in the evaluation study and was not 

objectively rated by other clinicians. Thus, the results may be systematically biased if the 

majority of the reviewers were for or against the idea of a computer trying to guide them to 

relevant clinical data.

5.2. Future work

While the modeling methods used produced positive results, the study was limited to 

patients with either AKF or ARF and a single clinical task was considered (critical care 

medicine physicians preparing to present at morning rounds). Future work will investigate a 

wider range of contexts that include different types of clinicians, performing different 

clinical tasks, for a range of clinical diagnoses.

The current study examined a single mode of highlighting. Future work will explore other 

highlighting approaches such as presenting relevant data in a separate area or a combination 

of in-place highlighting with the use of a separate area. Furthermore, in future work we plan 

to design and evaluate better ways to present patient data in the user interface.

In this study, we did not measure the LEMR system’s impact on clinician cognitive load. 

Future studies will evaluate if the LEMR system highlights affect clinician cognitive load, if 

clinicians using the LEMR system succumb to automation bias and become over-reliant on 

highlighting [34], and if the LEMR system highlights improve medical decision making.

Implementation of LEMR functionality in a deployed EMR system will need to be evaluated 

in a live clinical environment. While the development of models can be done off-line using 

data that are either obtained directly from an EMR or indirectly from a clinical data 

warehouse, it will be more challenging to apply the models in real-time in the EMR. Models 

may either be implemented directly in the native EMR environment with custom display 

modifications or may reside in an independent environment and be applied to data that are 

acquired through a Fast Healthcare Interoperability Resources (FHIR) interface.

6. Conclusion

To enable improved perception of relevant patient data, we designed a LEMR system that 

employs a data-driven approach to identify and highlight relevant patient data in a context-
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specific manner. The LEMR system had moderate precision and recall in highlighting 

relevant data given a limited number of training cases. With more training data and other 

developments outlined above, the precision and recall are expected to increase. Clinicians 

deemed that the data missed by the system would have no or minor impact on patient care in 

about 82% of the cases. The system has the potential to improve EMR usability and reduce 

clinician time by intelligently drawing the clinician’s attention to the right data, at the right 

time. Future work will explore the extensions needed to more fully realize this potential.
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Fig. 1. 
Components of the LEMR system.
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Fig. 2. 
The LEMR user interface displays patient data in scrollable columns. Patient data are 

arranged in four vertical columns: the left-most column displays vital sign measurements, 

ventilator settings, and fluid intake and output; the second column shows medication 

administrations; the third column displays laboratory test results; and the right-most column 

displays free-text notes and reports. Study-related instructions are shown in the lower right-

hand corner.
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Fig. 3. 
The LEMR user interface showing highlighted data. The top panel shows the highlights in 
place version of the LEMR interface, which has in-place, orange highlighting of patient data. 

The bottom panel shows the highlights only version of the interface, in which only the 

highlighted patient data are shown. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Tasks that constitute the case review procedure in the three arms of the evaluation. The 

standard interface is shown in Fig. 2, and the highlights in place and highlights only versions 

of the interface are shown in Fig. 3. The last row shows data that were collected during three 

of the tasks.
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Fig. 5. 
Performance of models in the evaluation study. Each row represents a distinct model that 

was tested in the evaluation study. The name of the target variable with precision and recall 

(in parenthesis) of the model on the evaluation data set is on the left. The color bar on the 

right shows the number of true positives, false positives, false negatives, true negatives, and 

“not measured” for each model. “Not measured” denotes the number of cases where the 

target variable was either not measured or not available in the evaluation data set. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 6. 
Number of data items that were highlighted, displayed, and manually selected (average, 

minimum, and maximum) for each case in the evaluation study. Reviewers selected data 

items manually that they considered are relevant for the task of presenting at morning 

rounds.
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Table 4

Summary of performance of models in the evaluation study under three scenarios.

Scenario Precision [95% CI] Recall [95% CI]

Model active patient data 0.52 [0.49, 0.54] 0.77 [0.75, 0.80]

All patient data 0.52 [0.49, 0.54] 0.43 [0.41, 0.45]

Randomly selected highlights 0.15 [0.00, 0.33] 0.14 [0.00, 0.29]
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Table 5

Clinical impact of not seeing the data that were not highlighted by the LEMR system.

Did not
revise

No impact Minor
impact

Major
impact

Number of patient cases (percent) 33 (45.8%) 6 (8.3%) 20 (27.8%) 13 (18.1%)
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