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We propose in this paper a prophylactic treatment strategy for a predator-prey system.
The objective is to fight against the propagation of an infectious disease within two
populations, one of which preys on the other. This propagation is modeled by means of
an SIS (susceptible-infectious-susceptible) epidemic model with vital dynamics and
infection propagation in both species through contact and predation, including mor-
tality rates in both populations due directly to the disease. Treatment strategies are
represented by new parameters modeling the uptake rates in the populations. We
analyze the effect of various treatment strategy scenarios (prey only, predator only, or
both) via their uptake rates and possible cost structures, on the size of the infected
populations. We illustrate if and when applying such preventive treatments lead to a
disease prevalence drop in both populations. We conduct our study using an optimal
control model seeking to minimize the treatment cost(s), subject to the transmission
dynamics and predator-prey dynamics.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The decrease in Earth’s natural resources and the depletion in the ecology of wildlife increase rapidly because of the
massive expansion of human urbanization areas, the water/air pollution, and deforestation. Consequently, there is a
noticeable increase in the rate of infectious diseases that are affecting the wild animal populations (for example see
(Leighton, 2011)). In this regard, numerous studies have discussed the dynamics of the population of wildlife animals
with respect to infectious diseases. For instance, a significant study in (Wiethoelter, Beltr�an-Alcrudo, Kock, & Mor, 2015)
sheds light on infectious diseases in wildlife and livestock. In contrast, the pathogen outbreak and long-term prevalence
in populations as in (Becker & Hall, 2014) is developed in an explicit model to discuss the influence of the interaction of
three provisions: host demography, contact behavior, and the immune defense.

There is a considerable and significant effort to study the natural animal population dynamics by using disease
modeling, as well as the impact on the human population. Two noticeable mathematical analyses are presented in (Han,
Ma, & Hethcote, 2001), based on predator-prey models with stable equilibria. The predator’s population could acquire an
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infection from the prey population through the predation process. Along these lines, the epidemiological model in
(Chauhan, Misra, & Dhar, 2014) looked at the stability analysis of an SIR model (susceptible-infected-recovered), with and
without a preventive treatment, depending on the basic reproduction number R0. An SIS epidemiological model that is
discussed in (Zhou & Liu, 2003), presents the dynamical behavior of an impulsive system to characterize the pulse
preventive treatment process.

Our research is inspired by several existing diseases and pathogens. The epidemics caused by pathogens extensively
affect the fauna of many areas around the world, including North America. The work in (Sapp et al., 2016) studies a
roundworm (Baylisascaris procyonis) which infects many species like raccoons and birds. This type of roundworm can
produce a fatal neural larva in the host’s blood and is known to be transmissible to humans as well (Bauer, 2013). This
pathogen can be lethal for transient hosts (like mice, humans, etc.) and, to a lesser extent, for definitive hosts (raccoons,
bears, panda bears). Chronic wasting disease in deer, and occasional cows, is fatal to most deer. It is unclear if it is
transmitted to predators or humans (Belay et al., 2004; Oraby, Vasilyeva, Krewski, & Lutscher, 2014). In a “worst-case”
scenario the infection could move to apex predators and/or humans. Finally, toxoplasmosa gondii (T. gondii) (Bevins et al.,
2012; Flegr, Prandota, Sovi�ckov�a, & Israili, 2014) is a parasite common for instance in populations of deer and cougars, and
is transmitted by both predation and contact. It is also common in domestic felines from which it can be transmitted to
humans - especially during pregnancy. However, T. gondii is suspected to be fatal to sea otters (see (Miller et al., 2002), a
study based on data and correlation discovery between T. gondii presence in brains of dead sea otters). In (Miller et al.,
2002) the authors infer that the otters may acquire the parasite from coastal freshwater runoffs carrying the parasite, but
there is no specific information on inter-species transmission by predation: it is known that otters eat rodents and birds,
and T. gondii is highly prevalent in rodents, thus they could acquire the parasite by predation.

The preventive treatments are introduced in our epidemic model as controls in the form of treatment uptake rates.
The history of optimal control problems goes back to the 50s (Leitmann, 1962), when Pontryagin et al., studied the
calculus of variations depending on Euler-Lagrange equations. Since then, extensive studies have been conducted to
enrich the concept of the classical optimal control problem with necessary conditions such as the Pontryagin Maximum
Principle (Barbu, 2012). In most cases, when the differential system of the control problem is nonlinear, the analytical
solution is too difficult to be reached in closed form. Hence, a numerical approach is needed. The numerical method we
use is the steepest descent method, which belongs to the class of indirect method (see (Kirk, 2012; Wang, 2009)).

The rest of this paper is organized as follows. In Section 2, we discuss the predator-prey model considered in this
paper. In Section 3, the initial model is modified to introduce treated compartments in both populations and infection
specific death rates. In Section 4, we introduce an optimal control formulation which aims at highlighting scenarios of
minimizing the cost of treatment while reducing the infection. In Section 5, we present numerical results for the optimal
control formulation. Finally, we conclude in Section 6 with some discussions on the results and future work ideas.
2. Description of the predator-prey model with infection

2.1. The predator-prey model with infection

We analyze a mathematical model that describes an infectious disease in predator-prey populations by building on the
model proposed in (Han et al., 2001), with some important modifications. We consider the prey’s population to be of size N1
and to consist of the susceptible prey group S1 and the infected prey group I1. Correspondingly, the predator’s population is of
size N2 and consists of the susceptible predator group S2 and the infected predator group I2. The differential equations that
reflect the SIS predator-prey model with standard incidence, vital dynamics and predation are given by:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

dS1
dt

¼ b1

�
1� ðS1 þ I1Þ

K1

�
ðS1 þ I1Þ � d1S1 þ d1

ðS1 þ I1Þ
K1

ðS1 þ I1Þ

� aðS2 þ I2ÞS1 � b1
S1I1

S1 þ I1
þ g1I1;

dI1
dt

¼ b1
S1I1

S1 þ I1
� g1I1 � d1I1 � aðS2 þ I2ÞI1 � m1I1;

dS2
dt

¼ kaðS1 þ I1ÞðS2 þ I2Þ � a
S2I1

S2 þ I2
� d2S2 � b2

S2I2
S2 þ I2

þ g2I2;

dI2
dt

¼ b2
S2I2

S2 þ I2
� g2I2 þ a

S2I1
S2 þ I2

� ðd2 þ m2ÞI2;

where S1 þ I1 ¼ N1 and S2 þ I2 ¼ N2. The parameters used to describe the model are sum up in Table 1 below.
Equivalently, we can write the system as:



Table 1
The parameters of the SIS predator-prey model.

Parameter Description

b1 The prey’s natural birth rate
di , i ¼ 1;2 The natural death rate in each population
r1 ¼ b1 � d1 The net growth rate in prey
K1 The carrying capacity of the prey
a Predation rate
k The efficiency of predation
bi , i ¼ 1;2 The transmission coefficient
gi; i ¼ 1;2 The recovery rate in each population
a The transmission coefficient from prey to predator
mi; i ¼ 1;2 The death rates in population i due directly to infection
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8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

dN1

dt
¼ r1

�
1� N1

K1

�
N1 � aN1N2 � m1I1;

dI1
dt

¼ b1
ðN1 � I1ÞI1

N1
� g1I1 � d1I1 � aN2I1 � m1I1;

dN2

dt
¼ kaN1N2 � d2N2 � m2I2;

dI2
dt

¼ b2
ðN2 � I2ÞI2

N2
� g2I2 þ a

ðN2 � I2ÞI1
N2

� ðd2 þ m2ÞI2:

(1)
In the sequel, we will focus on (1) as it simplifies the presentation. The solutions of the system (1) can be found in the
nonnegative orthant:

H¼
n
ðN1; S1; I1;N2; S2; I2Þ2R6

þ
��� S1 þ I1 ¼N1 �K1; S2 þ I2 ¼N2

o
:

2.2. Equilibrium states of the system

We highlight all possible equilibrium states of this system, as they arise following a closed-form analysis using
straightforward substitution methods. We will denote a generic equilibrium point of (1) by: ðN�

1; I
�
1;N

�
2; I

�
2Þ. The immediate
Fig. 1. The solution trajectory of system (1) reaching P4 with values from Table 2 starting from ðN1ð0Þ; I1ð0Þ;N2ð0Þ; I2ð0ÞÞ ¼ ð900;200;10;5Þ and time T ¼ 7000
days. In this case, the conditions above are giving the following equilibrium point P4 : ð281:87; 83:24; 2:28; 2:25Þ.
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equilibria to deduce are P1 : ð0;0;0;0Þ, and P2 : ðK1;0;0;0Þ. Outside of these two evident guesses, let us use equations (1)
and (3) from system (1) to isolate:

I�1 ¼
N�
1

m1

�
r1

�
1�N�

1
K1

�
� aN�

2

�
; m1s0;

and
I�2 ¼
N�
2

m2

�
kaN�

1 � d2
�
; m2s0:
We see that if both I�1 ¼ 0 and I�2 ¼ 0 in equilibrium, then we are left with

P3 :
�
N�
1; 0; N

�
2;0

�¼
�
d2
ka

;0;
r1
m1a

�
1� d2

kaK1

�
;0

�
:

Looking at the possibility of equilibria in which either: I�1 ¼ 0 and I�2s0, or I�2 ¼ 0 and I�1s0 leads to contradictions, which
means that the only other possible equilibria are the endemic ones of the type

P4 :
�
N�
1 > 0; I�1 > 0;N�

2 > 0; I�2 > 0
�
where N�

1s
d2
ka

:

To illustrate the emergence of P4 numerically, we present in Fig. 1 the trajectories of the system (1) with the parameters
given in Table 2 and with ðN1ð0Þ; I1ð0Þ;N2ð0Þ; I2ð0ÞÞ ¼ ð900;200;10;5Þ as an initial point.

From this figure, we can see that the system reaches an endemic equilibrium point where the disease in both populations
persists. Therefore, we aim to introduce an optimal preventive treatment plan to this model by treating the prey population to
minimize the total infected populations in both prey and predator.

3. Introducing a preventive treatment into the SIS predator-prey model

We propose that the preventive treatment is offered to the prey and the predator. The treated subgroups have to now be
modeled in the system (1) via new compartments. Thus, (1) can be rewritten as follows:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

dN1

dt
¼ r1

�
1� N1

K1

�
N1 � aN1N2 � m1I1;

dI1
dt

¼ b1

�
1� I1 þ V1

N1

�
I1 � g1I1 � d1I1 � aN2I1 � m1I1;

dV1

dt
¼ �d1V1 � aN2V1 þ u1ðN1 � I1 � V1Þ;

dN2

dt
¼ kaN1N2 � d2N2 � m2I2;

dI2
dt

¼ b2

�
1� I2 þ V2

N2

�
I2 þ a

�
1� I2 þ V2

N2

�
I1 � ðd2 þ m2 þ g2ÞI2;

dV2

dt
¼ �d2V2 þ u2ðN2 � I2 � V2Þ;

(2)

where now N1 ¼ S1 þ V1 þ I1 and N2 ¼ S2 þ I2 þ V2. The parameters u1 and u2 represent the treatment uptake rates and the

variables V1 and V2 are the “vaccinated” compartments (for details see (Zhou & Liu, 2003)).

Remark 3.1. By considering fixed parameter values u1; u2 in the equilibrium conditions above we obtain additional expressions
for the endemic equilibria as follows:
Table 2
Specific parameters of the SIS predator-prey model with mass action incidence.

b1 d1 d2 K1 a k b1

0.0367 0.03 0.0023 1000 0.0016 0.0056 0.1
g2 a m1 m2

0.0334 0.02 0.01 0.025 0.00334 0.00034



Table 3
Size of each population from the system (2) with parameter values from Table 2, starting from ðN1ð0Þ; I1ð0Þ;V1ð0Þ;N2ð0Þ; I2ð0Þ;V2ð0ÞÞ ¼ ð900;200;0;10;5;0Þ
after T ¼ 7000 days for several values of u1;u2.

N1ðTÞ I1ðTÞ V1ðTÞ N2ðTÞ I2ðTÞ V2

u1 ¼ u2 ¼ 0 281.87 83.23 e 2.28 2.25 e

u1 ¼ 0:2;u2 ¼ 0 258.14 0.00 219.75 2.94 1.08 e

u1 ¼ 0;u2 ¼ 0:2 265.02 77.96 e 2.36 1.03 1.32
u1 ¼ 0:2;u2 ¼

0:2
243.20 0.00 206.94 3.01 0.00 2.97
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V�
1 ¼

u
�
N�
1 � I�1

�
d1 þ aN�

2 þ u1
; and V�

2 ¼
u2

�
N�
2 � I�2

�
d2 þ u2

:

In Fig. 2, we show the evolution of the system for fixed values of u1 and u2 in three different cases. First, we consider the
model with one treated compartment only for prey (so V2ðtÞ ¼ 0), second we consider a model with one treated compart-
ment only for predators (V1ðtÞ ¼ 0) and lastly, we consider the model with treated compartments for both prey and predator.

This preliminary experiment is done in an ideal case in the sense that we do not consider the cost of treatment. In the
following section, we consider an optimal control model to include a cost function forms for the treatments to be imple-
mented. We will specifically look at treatment costs for the prey population first, then at treatment costs for the prey pop-
ulations second, presenting our specific considerations for these two scenarios.

4. Optimal control of infectious populations

4.1. Optimal control formulation

We can now reformulate system (2) as part of an optimal control problem as in (Barbu, 2012). The general idea in the
control theory is to minimize some cost functionJ : Rn � Rm/R governed by a system of ordinary differential equations. A
general form of this problem is as follows:

min
x;u

Jðx;uÞ¼
ZT

t0

LðxðtÞ;uðtÞ; tÞdtþ [ðxðTÞÞ (3)

s:t:

8<
:

uðtÞ2U4Rm;
_x ¼ f ðxðtÞ;uðtÞ; tÞ a:e: t2½0; T�;
xð0Þ ¼ x0;

where L : Rn � Rm � ½0; T�/R is the Lagrangian functional, [ : Rn/R is a final time cost, and f : Rn � Rm � ½0;T �/ Rn.
In our case, xðtÞ ¼ ðN1ðtÞ; I1ðtÞ;V1ðtÞ;N2ðtÞ; I2ðtÞ;V2ðtÞÞ, the ordinary differential equation is the state system (2) while our

performance measure with respect to the infection is given by:

JIðx;uÞ : ¼
ZT

0

I1ðtÞ
N1ð0Þ

þ I2ðtÞ
N2ð0Þ

dt:
Furthermore, we assume that the cost of treatment is given by a quadratic function of the form

Juðx;uÞ : ¼1
2

ZT

0

�
u1ðtÞ2 þu2ðtÞ2

�
dt:
The quadratic cost, with a U-shape, is a classical example of an average cost function. Close to zero the cost is relatively low
to encourage the investment while it begins rising more rapidly as the investment becomes larger. Hence, the cost function
becomes



Fig. 2. The solution trajectory of system (2) with values from Table 2 starting from ðN1ð0Þ; I1ð0Þ;V1ð0Þ;N2ð0Þ; I2ð0Þ;V2ð0ÞÞ ¼ ð900;200;0;10;5; 0Þ and time T ¼
7000 days for several values of u1ðtÞ ¼ 0:2; u2ðtÞ ¼ 0 (upper panel), u1ðtÞ ¼ 0; u2ðtÞ ¼ 0:2 (middle panel), u1ðtÞ ¼ 0:2; u2ðtÞ ¼ 0:2 (lower panel). Final values are
given in Table 3.

M.-G. Cojocaru et al. / Infectious Disease Modelling 5 (2020) 1e116
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Jðx;uÞ : ¼1
2

ZT

0

�
u1ðtÞ2 þu2ðtÞ2

�
dt þ

ZT

0

I1ðtÞ
N1ð0Þ

þ I2ðtÞ
N2ð0Þ

dt:
We presume that the initial condition of the system (2) and the initial time t0 ¼ 0 are clearly identified with xð0Þ ¼ x0. On
the other hand, we suppose that the control vector is defined as:

u : ½0; T�/½0; 1�2:
Hence, we can rewrite the problem (3) with respect to our SISV model in the following way:

min
x;u

Jðx;uÞ
8> the system ð2Þ;
s:t:
><
>>:

uðtÞ2½0;1�2;
xðtÞ ¼ ðN1ðtÞ;V1ðtÞ; I1ðtÞ;N2ðtÞ; I2ðtÞÞ2R6

þ:
(4)
In the following section, we compute the numerical solution of the optimal control (4).

4.2. Numerical solution of the optimal control problem

A classical approach to compute the numerical solution of the optimal control (4) consists of solving the first-order
optimality conditions of the problem derived via the Pontryagin’s Maximum Principle. This is known as an indirect
approach in the difference with the direct approach which consists of a discretization of the control problem. The numerical
determination of the optimal control and optimal trajectory of a nonlinear control problemwith necessary conditions can be
found for instance in (Kirk, 2012) in detail. A numerical method to solve this problem is the steepest descent (SD) method
whose algorithm is presented in (Kirk, 2012) and (Wang, 2009). We used this method in similar work to solve an optimal
control of a social norm game in (Jaber & Cojocaru, 2018) and to solve the optimal control of a preventive treatment game in
(Cojocaru & Jaber, 2018) to maximize the number of players who choose to vaccinate in an epidemiological model.

The Hamiltonian which is crucial converting (4) into a two-point boundary-value problem is defined as follows:

HðxðtÞ; rðtÞ;uðtÞ; tÞ¼ LðxðtÞ;uðtÞ; tÞ þ f ðxðtÞ;uðtÞ; tÞTrðtÞ;
where r : ½0; T�/R6 is the costate. Consequently, we can define the necessary conditions for the problem (4) as follows:
8>>>>>>><
>>>>>>>:

_xðtÞ ¼ vHðxðtÞ; rðtÞ;uðtÞ; tÞ
vr

;

_rðtÞ ¼ �vHðxðtÞ; rðtÞ; uðtÞ; tÞ
vx

;

0 ¼ vHðxðtÞ; rðtÞ; uðtÞ; tÞ
vu

:

Combining the optimality conditions and the transversality condition, we can formulate the following two-point
boundary-value problem:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

system ð2Þ;
xð0Þ ¼ x0;

_rðtÞ ¼ �vHðxðtÞ; rðtÞ; uðtÞ; tÞ
vx

;

rðTÞ ¼ vHðxðTÞÞ
vx

;

vHðxðtÞ; rðtÞ;uðtÞ; tÞ
vu

¼ 0:
For a given u and r, the first two conditions constitute a classical ordinary differential equation with an initial condition,
while for u and x fixed, the third and fourth conditions constitute a backward differential equation. Both can be solved using a



Table 4
Comparison of the infection and the costs for the optimal control vaccine formulation starting from
ðN1ð0Þ; I1ð0Þ;V1ð0Þ;N2ð0Þ; I2ð0Þ;V2ð0ÞÞ ¼ P4 ¼ ð281:87;83:23;0;2:28;2:25;0Þ after T ¼ 365 days.

Cases N1 I1 V1 N2 I2 V2

no treatment 281.87 83.23 e 2.28 2.25 e

u1 ¼ 0:2;u2 ¼
0

333.51 0.00 284.51 2.70 1.00 e

u1 ¼ 0;u2 ¼
0:2

277.24 81.79 e 2.36 1.34 0.99

u1 ¼ u2 ¼ 0:2 327.99 0.00 279.76 2.78 0.04 2.69

model Ju JI J

no treatment e 467.97 467.97
u1 ¼ 0:2;u2 ¼

0
7.30 229.11 236.41

u1 ¼ 0;u2 ¼
0:2

7.30 375.67 382.97

u1 ¼ u2 ¼ 0:2 14.6 116.44 131.04

M.-G. Cojocaru et al. / Infectious Disease Modelling 5 (2020) 1e118
classical ordinary differential equation solver. Following (Wang, 2009), we use MATLAB© to solve the differential equations.
The constraint on the control is handled using a Lagrangian penalization.

We now consider the resolution of the optimal control problem introduced above with a required precision of ε ¼ 10�3.
For the numerical experiment we use a scaled version of the systemwhere the variables are ðn1;i1;v1;n2;i2;v2Þ ¼

�
N1

N1ð0Þ;
I1

N1ð0Þ;V1
N1ð0Þ;

N2
N2ð0Þ;

I2
N2ð0Þ;

V2
N2ð0Þ

�
.

5. Numerical solution of the optimal control of the predator-prey SISV

We now run the numerical approach described previously on the optimal control formulation of the 2-species infectious
disease model. In particular, we observe how the endemic equilibrium reacts to our treatment strategies. In all of the
following experiments, we consider the equilibrium P4 above as an initial point at t ¼ 0 for the control problem (4) and we
consider a time horizon of T ¼ 365 days.
5.1. Constant uptake rates of treatment

We first study controlling the infection assuming enough resources, to sustain an average constant uptake rate of treat-
ments: u1ðtÞ :¼ const:; u2ðtÞ ¼ const: over a 1 year time horizon.

For an easier read of our results, we present first our results in tabulated form (Table 4), where we highlight the new,
controlled, endemic equilibria arising from each of the three cases highlighted above and we note that the simulated results
were already presented in Fig. 2.

From these results, we can draw a few conclusions. Overall, treatment reduces the infection in both the preys and the
predators’ populations. Treatment at a fixed cost allows us to eliminate the infection in the preys. However, the infection is
persistent in the predators, especially when treatment is only applied to the prey population (Case 1 above). As expected, the
scenario in which both populations are treated achieves the lowest infected population fractions, but the vaccination cost is
higher than the other scenarios.
Table 5
Comparison of the infection and the costs for the optimal control vaccine formulation starting from
ðN1ð0Þ; I1ð0Þ;V1ð0Þ;N2ð0Þ; I2ð0Þ;V2ð0ÞÞ ¼ P4 ¼ ð281:87;83:23;0;2:28;2:25;0Þ after T ¼ 365 days.

Cases N1 I1 V1 N2 I2 V2

no treatment 281.87 83.23 e 2.28 2.25 e

OC of u1 332.64 0.00 256.78 2.58 1.02 e

OC of u2 280.68 82.87 e 2.29 2.23 0.03
OC of u1,u2 330.90 0.00 255.30 2.62 0.20 2.08

model Ju JI J

no treatment 0 467.97 467.97
OC of u1 4.91 286.19 291.10
OC of u2 0.0029 464.79 464.80
OC of u1,u2 5.08 232.71 237.79



Fig. 3. The solution trajectory of system (2) with values from Table 2 starting from ðN1ð0Þ; I1ð0Þ;V1ð0Þ;N2ð0Þ; I2ð0Þ;V2ð0ÞÞ ¼ ð281:87; 83:23;0;2:28;2:25;0Þ after
T ¼ 365 days for several scenarios from the top to the bottom: with only u1, only u2, and both controls. Final values are given in Table 5.

M.-G. Cojocaru et al. / Infectious Disease Modelling 5 (2020) 1e11 9
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5.2. Optimally controlled uptake rates of treatment

Following our analysis so far, we see that it confirms the need to search for an optimal uptake strategy (i.e. finding an
optimal u�ðtÞ and u�2ðtÞ). As before, the base scenario is the endemic equilibrium state P4 which corresponds to the case
without any treatment strategy. The next three cases apply the optimal control techniques described in the previous section
to find u�ðtÞ and u�2ðtÞ), costs JI and Ju, as well as the states ðN�

1ðtÞ; I�1ðtÞ;V�
1ðtÞ;N�

2ðtÞ; I�2ðtÞ;V�
2ðtÞÞ in three different cases:

1. The case of u1ðtÞs0; u2ðtÞ ¼ 0;V2ðtÞ ¼ 0 (OC of u1);
2. The case of u2s0; u1ðtÞ ¼ 0; V1ðtÞ ¼ (OC of u2);
3. The case of u1ðtÞs0; u2ðtÞs0 (OC of u1u2)

We tabulated our results below (see Table 5), whereas in Fig. 3, we show the evolution of the populations using the optimal
strategy for the vaccine rates in the three scenarios described above.

From these results, we can see that the optimized control achieves a tradeoff between the reduction of the infection and
reducing the costs. As in the previous experiment, the vaccination of the prey seems the most efficient to reduce the infection
in both populations.

6. Conclusion

In this paper we studied a well-known model of predator-prey populations with an infectious disease that can affect both
species, and where transmission happens both by contact and by predation. We highlight two frameworks in which possible
treatments could be analyzed, once they are introduced to either populations or to both. In the first framework, we chose to
ignore costs of treatment implications, assuming that there are enough resources and treatments available to both species.
The expected conclusion here was that treating both species leads to lower levels of infection, at the highest cost.

In the second framework, we used an optimal control formulation which allows to minimize the treatment costs and the
infectious levels in both populations. We find that there is a tradeoff between reducing the infection in both species versus
controlling the treatment cost.

In both frameworks, with fixed rates and with optimal rates, vaccinating the preys only is an efficient way of also lowering
the infection among the predators, while keeping the cost away from maximal levels.

This model is immediately amenable to further investigations. First off, to inform decision making, the model needs to be
applied to real populations. Our inspiration for the numerical values were populations of white-tale deers and cougars in
British Columbia, Canada (Negri & Hornocker, 2010; Robinson, Wielgus, & Gwilliam, 2002). The tradeoff between treating
only the prey rather than both populations would depend on the specific populations, as well as on the availability and ease of
implementation of the treatments in question. For this purpose, our model can also be generalized, for instance, including a
time delay for the reproduction of predators after predation. Although this type of extension modified the equilibria and the
stability of the system (Xiao & Chen, 2001), it is compatible with our vaccination strategy and alters only the strategies
involving a vaccination in the predators. The differential equation in the optimal control problem might become harder to
solve. Second, there are immediate multiyear, budget-type scenarios that can be simulated. For instance, the treatment could
be seasonally applied, depending on the pathogen, which may necessitate the inclusion of resource allocation scenarios over
several years. Last but not least, cost functions need not be as regular as assumed here (note we assumed a quadratic function,
which is convex and twice differentiable, which makes the numerical method for solving the optimal uptake rate somewhat
simpler). Another possible and widely used cost function is of logistic type, which generally is neither convex nor concave,
thus making solving for the optimal uptake rate more difficult.
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