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Stroke is a leading cause of cognitive impairment and dementia, but the mechanisms that underlie post-stroke cognitive decline are

not well understood. Stroke produces profound local and systemic immune responses that engage all major innate and adaptive

immune compartments. However, whether the systemic immune response to stroke contributes to long-term disability remains ill-

defined. We used a single-cell mass cytometry approach to comprehensively and functionally characterize the systemic immune

response to stroke in longitudinal blood samples from 24 patients over the course of 1 year and correlated the immune response

with changes in cognitive functioning between 90 and 365 days post-stroke. Using elastic net regularized regression modelling, we

identified key elements of a robust and prolonged systemic immune response to ischaemic stroke that occurs in three phases: an

acute phase (Day 2) characterized by increased signal transducer and activator of transcription 3 (STAT3) signalling responses in

innate immune cell types, an intermediate phase (Day 5) characterized by increased cAMP response element-binding protein

(CREB) signalling responses in adaptive immune cell types, and a late phase (Day 90) by persistent elevation of neutrophils,

and immunoglobulin M + (IgM + ) B cells. By Day 365 there was no detectable difference between these samples and those from an

age- and gender-matched patient cohort without stroke. When regressed against the change in the Montreal Cognitive Assessment

scores between Days 90 and 365 after stroke, the acute inflammatory phase Elastic Net model correlated with post-stroke cognitive

trajectories (r = �0.692, Bonferroni-corrected P = 0.039). The results demonstrate the utility of a deep immune profiling approach

with mass cytometry for the identification of clinically relevant immune correlates of long-term cognitive trajectories.
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Introduction
After suffering a stroke, a patient’s cognitive and functional

trajectory is complex. Cognitive outcomes vary widely be-

tween patients, even for those who suffer similar acute def-

icits, and initial recovery can be followed by later insidious

declines (Ivan et al., 2004; Levine et al., 2015; Corraini

et al., 2017; Dhamoon et al., 2017). Because the biological

mechanisms of recovery from stroke remain poorly under-

stood, therapeutic interventions to improve outcomes are

lacking. Identifying a set of post-stroke biomarkers that

predicts functional and cognitive outcomes after stroke

would provide a powerful step forward. These biomarkers

could help identify patients at the greatest risk for impaired

recovery or delayed-onset decline and furthermore, could

set a foundation for understanding the biological mechan-

isms that underlie outcome trajectories. Both will be critical

for future endeavours aimed at improving recovery from

stroke and preventing post-stroke cognitive decline/

dementia.

Peripheral blood immune cells and secreted inflammatory

mediators provide a promising and easily accessible biolo-

gical substrate to search for such biomarkers and under-

stand the mechanistic underpinnings of stroke recovery.

Stroke induces an acute immune response that engages

both local and peripheral immunological compartments.

Previous studies in humans (Mena et al., 2004; Doyle

et al., 2015) and rodent models (Jin et al., 2010) have

predominantly focused on the local and short-term (hours

to days) immune response to stroke. These studies have

demonstrated that in the first few days after stroke, resident

brain cells (astrocytes and microglia) and invading innate

immune cells (primarily neutrophils and monocytes) are

implicated in mechanisms that determine stroke outcomes

weeks to months later (Iadecola and Anrather, 2011).

Additionally, chronic adaptive immune responses detectable

in the stroke core cause delayed cognitive impairment after

stroke in mice, manifesting 7–12 weeks after the infarct

(Doyle et al., 2015; Doyle and Buckwalter, 2017). One

major concern is the lack of applicability of findings

based on rodent models to humans. For example, a

recent clinical trial showed that natalizumab failed to

reduce infarct volumes despite promising results from stu-

dies in animal models (Elkins et al., 2017). Having more

data on long- as well as short-term peripheral immune re-

sponses in humans may thus be helpful in understanding

which animal findings will translate to humans in the

future.

Several lines of evidence suggest that immune responses

detectable in peripheral blood relate to early innate and

later adaptive immune responses in the brain (Fassbender

et al., 1997; Becker et al., 2005; Mayer et al., 2013;

Chamorro et al., 2016). Numerous studies have focused

on circulating plasma cytokines and the distribution of per-

ipheral immune cells after stroke (Kim et al., 1996;

Bustamante et al., 2016). Although modest correlates of

clinical recovery after stroke were reported—notably an

association between interleukin (IL)-6 plasma levels early

after stroke and worse clinical outcomes (Kim et al.,

1996; Waje-Andreassen et al., 2005)—bulk cytokine re-

sponses alone provide little mechanistic insight into the

biology that drives recovery. Instead, analysing the specific

types of immune cells that are responding to these circulat-

ing cytokines and chemokines might provide greater insight

into the biological mechanisms of recovery. The advent of

single-cell techniques, furthermore, provides an opportunity

to investigate these specific immune cell types and their

functional attributes with a high level of granularity.

We therefore chose mass cytometry to profile the periph-

eral immune response to stroke in patients over the course

of 1 year. Mass cytometry is a powerful single-cell technol-

ogy that comprehensively monitors the functional state of

the immune system. It merges traditional flow cytometry

with inductively-coupled plasma mass spectrometry to

assess up to 50 phenotypic and functional parameters on

a cell-by-cell basis. As such, mass cytometry allows the

simultaneous quantification of multiple attributes in all

major immune cell types, including cell phenotype and fre-

quency as well as the activity of key intracellular signalling

pathways. The concept of using mass cytometry ‘at the

bedside’ for the deep profiling of immune mechanisms asso-

ciated with disease pathogenesis has been demonstrated in

multiple clinical contexts, including ageing (Mrdjen et al.,

2018), malignancies (Wogsland et al., 2017), pregnancy
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(Aghaeepour et al., 2017; Ghaemi et al., 2018) and trau-

matic injury (Gaudillière et al., 2014; Tárnok, 2015).

Here, we combine a deep immune profiling mass cytome-

try approach with an unbiased elastic net analysis of

immune signalling networks to comprehensively and func-

tionally characterize patients’ peripheral immune cell re-

sponses over a 1-year period after stroke. The primary

goal of the study was to determine if mass cytometry

could be used to detect and describe the chronology of

the peripheral immune response over the course of 1 year

after stroke. A secondary goal was to ascertain whether the

magnitude of specific immune responses is associated with

the long-term cognitive trajectory after stroke.

Materials and methods

Subjects

The study was conducted at Stanford School of Medicine
(Stanford, CA, USA) and was approved by Stanford’s
Institutional Review Board. Informed consent was obtained
from patients and their surrogates in person. Twenty-five pa-
tients were enrolled within 24 h of stroke onset (patient demo-
graphics are listed in Table 1). Serial whole blood samples were
collected at up to nine time points over the course of 1 year
following stroke (Days 1, 2, 3, 5, 7, 14, 30, 90, and 365).
Recruitment occurred between March 2015 and June 2016.
Enrolled patients met the inclusion criteria: age 18 or older,
acute stroke as diagnosed by Stanford neurologists based on
clinical assessment and confirmation of acute infarction on CT
or MRI imaging, ability to sign informed consent, ability to
return for follow-up visits, and ability to undergo serial
blood draws and cognitive assessment. Exclusion criteria were
a history of autoimmune disorder, use of immunosuppressant
drugs within 6 months prior to the study, and life expectancy
590 days. One subject died prior to the 1-day time point and
was not included in the mass cytometry study. Of the five
subjects in the study who did not complete the 1-year time
point, one died, one was lost to follow-up, two refused blood
draws, and one moved out of the country and was unable to
return for follow-up. Screening logs were not kept for this
study, but patients were recruited sequentially according to
clinical coordinator availability for consent and blood draws.

A separate healthy cohort of 24 sex- and age-matched con-
trols undergoing hip replacement surgery was also included to
allow comparing the magnitude of immunological change
observed in response to ischaemic brain injury and in response
to traumatic injury. Banked samples from the surgical cohort
were analysed for this study (Supplementary Table 1).

Cognitive testing

A cognitive battery that included the Montreal Cognitive
Assessment (MoCA), a 30-item cognitive screen, was adminis-
tered on Days 3, 30, 90 and 365. Subjects were excluded from
the cognitive testing if they did not speak English as a primary
language or if they exhibited significant aphasia, delirium,
blindness, or other factors that limited their ability to partici-
pate in the cognitive assessment. Three alternate forms of the

MoCA were administered across time points to prevent learn-
ing effects (Day 3, version 2; Day 30, version 1; Day 90, ver-
sion 3; Day 365, version 2). Cognitive improvement or
stability was classified as positive or no change in MoCA
scores from Days 90 to 365, while decline was classified as
a negative change.

Subjects were given hard copy surveys of the Center for
Epidemiological Studies-Depression (CES-D) and fatigue ques-
tionnaires to fill out. The CES-D scale is a validated self-report
questionnaire intended to detect symptoms and severity of de-
pression in the general population (Radloff, 1977). Research
technicians provided reading or writing assistance as needed.
In the event that subjects were unable to complete these ques-
tionnaires due to receptive aphasia, close family members were
asked to provide answers. We used the short-form Neuro-
QOL Fatigue Scale to assess current levels of fatigue (Cella
et al., 2012). This brief 8-item self-report measure uses a
Likert rating scale. Scores range from 8 to 40 with higher
scores indicating higher levels of fatigue.

Determination of stroke size and
location

Stroke volumes and locations were assessed by a reader
blinded to the immunological data on the diffusion-weighted
sequence of a clinical MRI scan obtained during hospital ad-
mission for index stroke. If an MRI was not obtained, the
infarct was assessed on non-contrast CT instead (n = 3).
Lesions were manually outlined using the polygon region of
interest tool in Osirix software (version 8.0), and total infarct
volumes were calculated based on these outlines in Osirix.
Lesions 51 cm3 were assigned a volume of 1 cm3 for the
statistical analyses.

Sample collection and whole blood
processing

Whole blood was collected in 10 ml heparin-containing tubes
at several time points over the course of 1 year, with at least
two and up to eight time points per patient (Fig. 1A and B).
Within 30 min of collection, samples were divided into 1 ml
aliquots (Smart Tube, Inc.). Samples were stored at �80�C
until further processing. The processing protocol for mass
cytometry analysis was similar to that of previous clinical stu-
dies (Gaudillière et al., 2014).

Erythrocyte lysis

Fixed samples were thawed for 30 min on ice and then for
15 min at room temperature. Samples were then filtered
using a 100 mm membrane into a hypotonic erythrocyte lysis
buffer (Smart Tube, Inc.) and incubated for 10 min at room
temperature. Samples were centrifuged to pellet leucocytes, and
the supernatant was removed. Samples were resuspended in
the lysis buffer for an additional 5 min, then centrifuged
again to obtain a leucocyte pellet for subsequent processing.

Sample barcoding

After erythrocyte lysis, leucocytes were barcoded as previously
described (Behbehani et al., 2014). In summary, cells were
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transferred to a 2 ml deep-well block and washed once with
Cell Staining Media [phosphate-buffered saline (PBS) supple-

mented with 0.5% bovine serum albumin (BSA) and 0.02%

NaN3], once with PBS, and once with 0.02% saponin in PBS.
Barcode plates, prepared with 20 unique combinations of three

of six Pd isotopes (102Pd, 104Pd, 105Pd, 106Pd, 108Pd, or 110Pd),

Table 1 Population and clinical characteristics of stroke cohort

Demographics

Age, years, mean � SD [median (min–max)] 63.3 � 17.4 [65.5 (24.0–88.0)]

Female sex, n (%) 10 (41.7)

Body mass index, kg/m2, mean � SD 29.1 � 7.3

Race, n (%)

White (Europe, Middle East, North Africa) 17 (70.8)

Asian [Far East, Southeast Asia, or the Indian subcontinent (includes Philippine Islands)] 3 (12.5)

Black or African American 0 (0.0)

Other (American Indian, Alaskan Native, Central/South American, Native Hawaiian or other Pacific Islander) 4 (16.7)

Ethnicity, n (% Hispanic, Latino or Spanish origin) 4 (16.7)

Stroke parameters

Stroke size, median, cm3 (min–max) 7.75 (1–102)

Acute treatments, n (%)

IV-tPA) 5 (20.8)

Intra-arterial therapy (IAT) 1 (4.2)

IAT and IV-tPA 8 (33.3)

Locationa, n (%)

Right hemisphere lesion 16 (66.7)

Brainstem 0 (0.0)

Caudate 9 (37.5)

Cerebellum 3 (12.5)

Frontal 5 (20.8)

Insula 6 (25.0)

Lentiform 5 (20.8)

Occipital 1 (4.2)

Parietal 5 (20.8)

Temporal 8 (33.3)

Thalamus 1 (4.2)

Left hemisphere lesion 9 (37.5)

Brainstem 1 (4.2)

Caudate 0 (0.0)

Cerebellum 1 (4.2)

Frontal 2 (8.3)

Insula 2 (8.3)

Lentiform 0 (0.0)

Occipital 1 (4.2)

Parietal 2 (8.3)

Temporal 0 (0.0)

Thalamus 3 (12.5)

Comorbidities, n (%)

Arterial hypertension 16 (66.7)

Diabetes mellitus 4 (16.7)

Atrial fibrillation 4 (16.7)

Hyperlipidaemia 6 (25.0)

Coronary artery disease 2 (8.3)

Tobacco use 3 (12.5)

Outcome measures

MoCA score at 1 year post-stroke, median (min–max) 26.5 (16–30)

NIHSS, median (min–max)

Day 1 2 (0–20)

Day 90 0 (0–11)

Day 365 0 (0–10)

aOne patient had bilateral lesions, which were separated here.

IV-tPA = intravenous tissue plasminogen activator.
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were thawed and diluted in 1 ml of 0.02% saponin in PBS
(Zunder et al., 2015). Diluted barcode reagents were trans-
ferred to each of 20 separate leucocyte samples per prepar-
ation. Leucocytes were incubated with barcoding reagents at
room temperature for 15 min, washed twice with cell staining
media, then pooled for antibody staining. All samples collected
from each patient were barcoded and pooled in the same prep-
aration with a gender- and age-matched healthy control
(Supplementary Table 1).

Antibody staining

In addition to barcode and iridium-based DNA markers, the
panel included 27 antibodies for the phenotyping of all major
immune cell subsets and 11 antibodies for the functional char-
acterization of each immune cell (Supplementary Table 2).
Antibodies were either obtained pre-conjugated (Fluidigm,
Inc.) or were obtained as purified, carrier-free (no BSA or

gelatin) versions, which were then conjugated in-house with

trivalent metal isotopes using the MaxPAR antibody conjuga-

tion kit (Fluidigm, Inc.).
Pooled barcoded cells were washed with cell staining media

before being incubated with Fc block (BioLegend) for 10 min
at room temperature. Cells were stained with phenotypic (sur-

face) marker antibodies for 30 min with gentle shaking at

room temperature. Cells were washed twice with cell staining

media and permeabilized with 700ml of 100% methanol for
10 min at 4�C. Cells were washed twice with PBS, once with

cell staining media, and then stained with functional (intracel-

lular) marker antibodies for 30 min with gentle shaking at
room temperature. Cells were washed twice with cell staining

media and incubated at 4�C overnight in PBS containing an

iridium-based DNA intercalator (Fluidigm, Inc.) and 1.5%
paraformaldehyde (Electron Microscopy Sciences). Cells were

washed twice with ultrapure water (Milli-Q, Millipore

Corporation), added to an aqueous suspension of

Figure 1 Experimental workflow and predictive modelling. (A) Twenty-four patients with acute ischaemic stroke participated in the

study. A whole blood sample was obtained at up to nine time points (1, 2, 3, 5, 7, 14, 30, 90, and 365 days) following stroke onset. Samples were

processed and analysed using mass cytometry (CyTOF). (B) Representation of blood collection from each of the 24 enrolled subjects. Blue dots

indicate days on which blood was obtained for each subject. (C) The mass cytometry data formed a correlation network that visually segregated

into 18 communities containing inter-correlated immune features that changed together during the stroke recovery process. Clusters were

annotated based on immune feature attributes (cell subset, signalling property or frequency) that were most commonly represented within each

community. pDC = plasmacytoid dendritic cells; ncMCs = CD14�CD16 + non-classical monocytes.
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normalization beads (Fluidigm, Inc.), and filtered through a
35 mm membrane prior to mass cytometry analysis.

Mass cytometry

Barcoded and antibody-stained cells were analysed on the Helios
mass cytometer (Fluidigm, Inc.) at a rate of 600 to 1000 events
per second. The resulting data were normalized using
Normalizer v0.1 MATLAB Compiler Runtime (MathWorks)
(Finck et al., 2013). Files were then de-barcoded with a
single-cell MATLAB debarcoding tool (Zunder et al., 2015).
Gating was performed using Cytobank flow cytometry analysis
software (Cytobank, Inc.) according to the gating strategy in
Supplementary Fig. 1. The following cell types were included
in the analysis: neutrophils, B-cells, immunoglobulin (Ig)M+ B-
cells, CD4+ naı̈ve T (Tnaı̈ve) cells, CD4+ memory T (Tmem) cells,
CD8+Tnaı̈ve cells, CD8+Tmem cells, Tbet+CD4+CD45RA+ cells,
Tbet+CD4+CD45RA� Helper T (Th1) cells,
Tbet+CD8+CD45RA+T cells, Tbet+CD8+CD45RA� cells, reg-
ulatory T-cells (Tregs), CD66�CD3�CD19�CD14�CD7+ [this
parent population referred to as CD14�CD7+ cells includes
both CD56loCD16+ and CD56+CD16� natural killer (NK)
cell subpopulations], CD14+CD16� monocytes, CD16+CD14�

non-classical monocytes, CD14+CD16+ intermediate mono-
cytes, monocytic myeloid-derived suppressor cells (M-MDSCs),
myeloid dendritic cells, and plasmacytoid dendritic cells.

Statistical analysis

Using the elastic net regularized regression method, which per-
forms feature selection while creating mathematical models, 36
models that comprehensively compared each of the nine time
points to each of the other eight were generated (Zou and
Hastie, 2005). Missing data points were not included in elastic
net analysis. Signalling responses were quantified as the
arcsinh transformed value for elastic net analysis. Univariate
P-values for individual immune features (frequencies and func-
tional responses) were obtained using a Wilcoxon test.
Spearman’s correlations for associations between change in
(�)MoCA, stroke volume, and elastic net model values were
determined using SPSS. P-values were Bonferroni-corrected for
three comparisons (�MoCA or stroke volume compared to
elastic net model values of each of the three models).
Confounding variables were controlled for using linear regres-
sion in SPSS.

Based on previous data documenting the activation of
STAT3 and MAPK signalling pathways in monocytes
subsets (M-MDSCs) 24 h after surgery (Gaudillière et al.,
2014) we estimated that a sample size of 24 patients would
be sufficient to provide 95% power at P50.05 to detect a
440% change in STAT3 phosphorylation in monocyte sub-
sets (effect size of 1.96) using student’s t-statistic, at the 24-h
time point. This power analysis was performed using
G*Power (Faul et al., 2007). In addition, for exploratory
analysis, we excluded the multivariate models which failed
to produce statistically significant results on previously
unseen patients during cross-validation. This combination of
power analysis based on historical data (for study design) and
stringent cross-validation once the dataset is available minim-
izes the risk of false positive discoveries due to small sample

size and enables exploratory analysis at key time points with
sufficient effect sizes.

Data availability

Raw data are publicly available at http://flowrepository.org
under experiment ID FR-FCM-ZYSB. Anonymous access is
provided at http://flowrepository.org/id/FR-FCM-ZYSB.
Sample annotations are provided in an attachment uploaded
to the repository. Extracted features are available at https://
nalab.stanford.edu/wp-content/uploads/strokedata.zip.

Results

Study cohort and workflow

Patient characteristics are listed in Table 1. Nineteen of 24

subjects were studied for the entire 1-year post-stroke

period. One subject died prior to the Day 90 collection

and four subjects were lost to follow-up. A study workflow

with comprehensive sample collection is shown in Fig. 1A

and B.

Single-cell profiling of the systemic
immune response to acute ischaemic
stroke

Using a 47-parameter mass cytometry assay (Supplementary

Table 2), 240 immune features were measured in 20 per-

ipheral immune cell subtypes representative of both adap-

tive and innate immunity. Features collected included cell

frequencies and the activity of 11 intracellular signalling

proteins, including phosphorylated (p) signal transducer

and activator of transcription (STAT)1, STAT3, STAT5,

STAT6, protein(P)38, extracellular signal-regulated kinases

(ERK), Mitogen-activated protein kinase-activated protein

kinase 2 (MAPKAPK2), plastid ribosomal protein S6

small ribosomal subunit (S6), cAMP response

element-binding protein (CREB), and nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-�B),

as well as total nuclear factor of Kappa-light-polypeptide-

gene-enhancer in B-cells inhibitor (I�B) degradation. These

features allow for the functional assessment of canonical

cellular signalling responses implicated in the sterile inflam-

matory response observed in the context of traumatic

injury (Gaudillière et al., 2014), as well as ischaemic

brain injury (Wang et al., 2007). For instance, danger-asso-

ciated molecular patterns (DAMPs), such as peroxiredoxin

and high mobility group protein B1 (HMGB1), produced

by the necrosing brain cells are released, bind to Toll-like

receptors (TLRs), and activate key elements of the myeloid

differentiation primary response-88 (MyD88, including

P38, ERK, MAPKAPK2, S6, CREB) and NF-�B pathways

in innate immune cell subsets. Innate immune cells in turn

produce proinflammatory cytokines such as IL-6, IL-12,
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and IL-23, which promote the survival, proliferation, and

recruitment of additional innate and adaptive immune cells,

via activation of the JAK/STAT signalling pathways

(Konoeda et al., 2010; Shichita et al., 2012; Pavlov et al.,

2018). Signalling responses were measured in samples that

were minimally perturbed experimentally (i.e. whole blood

was processed within 30 min of collection), allowing the

assessment of endogenous immune responses close to

in vivo conditions.

The mass cytometry data formed a network of correlated

immune features (cell frequencies or cell-specific immune

signalling responses) at each time point, demonstrating

the interconnectivity of the immunological dataset

(Fig. 1C). The network was visually segregated into 18

communities to highlight the modularity of the mass cyto-

metry data. Communities were described based on the cell

types, cell frequency change, or functional attributes that

appeared most frequently within each module.

The interconnected and highly modular nature of the

data justified the use of an elastic net algorithm to identify

short- and long-term systemic immune features that were

significantly different between specified time points after

acute stroke (Zou and Hastie, 2005; Aghaeepour et al.,

2017). To assess how immune responses change over time,

we chose the 1-year (Day 365) time point as a reference

time point for the elastic net analyses of time-dependent

immune responses after stroke, allowing each patient to

serve as his/her own internal control, rather than a cross-

sectional assessment at each time point. The results

showed no differences in these immune features between

samples collected at Day 365 following stroke and in pre-

surgical samples collected from patients (Supplementary

Fig. 2).

An elastic net analysis identifies three
distinct inflammatory phases
following an acute ischaemic stroke

The high-dimensional immunological dataset generated at

each time point was compared to the 1-year dataset using

the multivariate elastic net approach. The analysis demon-

strated that a common immune response is detectable in

peripheral immune cells for at least 3 months following

stroke. Three models were selected for further discussion

as they passed stringent cross-validation. Each model con-

tains individual features representative of how the immune

response to stroke was different at that time point com-

pared to the 1-year time point (Fig. 2). These are non-

overlapping immune features representative of three distinct

phases of the systemic immune response to stroke: an acute

phase emphasizing immune responses occurring at Day 2,

an intermediate phase (Day 5), and a late phase (Day 90).

The first model was built on 84 features comparing Day 2

to the 1-year time point, and it had a cross-validated P-

value of 6.02 � 10�5 (Supplementary Table 3). The second

model was built on 21 features comparing Day 5 to the 1-

year time point and had a cross-validated P-value of

0.0125 (Supplementary Table 4). The third model was

built on seven features from the Day 90 to the 1-year

time point comparison and had a cross-validated P-value

of 5.67 � 10�9 (Supplementary Table 5).

To provide an estimate of the relative magnitude of the

aggregate immunological features represented by each

model over time, each elastic net model was projected

onto the immunological dataset from all the time points

(Fig. 3). Results from these projections demonstrate that

the three elastic net models represent acute (Fig. 3B), inter-

mediate (Fig. 3C), and late phase (Fig. 3D) inflammatory

responses, as each model peaks around the appropriate

time point.

Elastic net model components reveal
sequential engagement of innate and
adaptive immune cell responses

Taken together, the analysis revealed a chronology of inter-

related immune events that characterized three distinct in-

flammatory phases following stroke. We examined the

three most informative components of each inflammatory

phase (Fig. 4). The most informative components of the

acute phase elastic net model consisted of signalling re-

sponses in innate immune cell types (Fig. 4A and

Supplementary Table 3). In comparison to the 1-year

time point, an increase in pSTAT3 was observed in HLA-

DRlo M-MDSCs, CD14 + CD16� monocytes, and plasma-

cytoid dendritic cells.

The rapid activation of the transcription factor STAT3 in

M-MDSCs, primarily in response to increasing IL-6 plasma

concentrations, is a hallmark of the sterile inflammatory

response to neurological as well as non-neurological

injury (Mayer et al., 2013; Gaudillière et al., 2014). To

estimate the effect of stroke on this innate immune re-

sponse, we compared the pSTAT3 signal in M-MDSCs in

samples collected from patients within 1 day after stroke

and in samples collected from patients within 1 day after

major surgery (Supplementary Fig. 3, the demographics of

the surgical patient cohort are summarized in

Supplementary Table 1). The results showed comparable

pSTAT3 levels in M-MDSCs after stroke and after major

surgery.

The most informative components of the intermediate

phase model consisted of signalling responses measured in

adaptive immune cells (Fig. 4B and Supplementary Table

4). Specifically, pCREB levels were increased at Day 5 after

stroke compared to Day 365 in CD4 + CD25 + FoxP3 + Tregs

and Tbet + CD4 + CD45RA� Th1 cells.

The most informative components of the late phase

model consisted of a combination of innate and adaptive

cell events that differed between Days 90 and 365 (Fig. 4C

and Supplementary Table 5). These features included the

frequency of neutrophils, pMAPKAPK2 levels in Th1 cells,

and pSTAT5 levels in plasmacytoid dendritic cells.
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The analysis identified a set of cell-specific immunological

events characterizing the peripheral immune state of pa-

tients over time after an acute stroke. The magnitude of

observed immune responses was surprisingly large.

Indeed, it was comparable to immune responses observed

in patients undergoing major surgery (Supplementary Fig.

3). However, there was also wide quantitative variability in

immune responses among patients after stroke, which

prompts the question of whether this variability represents

‘background noise’ or reflects patient-specific differences

that could correlate with differences in stroke severity or

outcomes.

Figure 2 An elastic net analysis identifies three phases characterizing the systemic immune response to acute ischaemic

stroke. (A–C) Comparison of the immunological dataset generated at each time point to the 1-year dataset using elastic net analysis provided

three cross-validated elastic net models (P5 0.01) that characterized distinct phases of the systemic immune response to stroke. Features

selected in the acute (Day 2 versus Day 360, A), intermediate (Day 5 versus Day 365, B), and late phases (Day 90 versus Day 365, C) elastic net

models are graphically overlaid on the immune network representing the entire immunological dataset. Red nodes indicate features that are

elevated compared to the 1-year time point and blue nodes indicate features that are decreased. Size of node corresponds to the statistical

correlation between features and the two time points that make up each model, and intensity of red or blue colour represents the absolute value

of elastic net model coefficients at that node. EN = elastic net.
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The acute phase elastic net model
correlates with cognitive trajectories
after stroke

To determine the relationship between the multidimen-

sional immunological dataset and patients’ cognitive trajec-

tory after stroke, we quantified the change in MoCA scores

between Days 90 and 365 after stroke (�MoCA).

Importantly, cognitive trajectory varied greatly among pa-

tients (�MoCA, median 0, range �3 to 8, positive changes

indicate cognitive improvement; Fig. 5A). Interestingly,

�MoCA was independent of stroke volume (Fig. 5B).

This result is consistent with prior studies showing that

stroke size may not be the major determinant of cognitive

decline after stroke (Doyle and Buckwalter, 2017).

A correlation analysis was performed between the elastic

net model value generated for each model and the �MoCA

score. A strong negative correlation was observed between

the acute phase model values (Day 2) and cognitive trajec-

tory between Days 90 and 365 (r = �0.692, Bonferroni-

corrected P = 0.039, Fig. 5C). This remained significant

when accounting for other demographic and clinical vari-

ables (including age, sex, BMI, lesion location, and acute

treatment modality, Supplementary Table 6). Furthermore,

this negative correlation also remained significant and un-

changed after controlling for stroke size (r = �0.664,

P = 0.026, Supplementary Table 6), which we identified

as a confounding variable correlated with the acute phase

elastic net model (Fig. 5D and Supplementary Fig. 4). In

contrast, there was no correlation between the intermediate

or the late phase models and cognitive trajectory.

Thus, an exacerbated acute inflammatory phase shortly

after stroke, primarily defined by elevated pSTAT3 levels in

innate immune cell subsets, is associated with worse cogni-

tive outcomes and accounts for over 40% of inter-patient

variability.

Discussion
This study used a deep immune profiling approach to char-

acterize the systemic immune response of patients over a

period of 1 year following an acute ischaemic stroke. A

high-dimensional elastic net analysis of the longitudinal

mass cytometry dataset identified three immunological

phases that characterized the sequential engagement of

innate and adaptive immune compartments after stroke.

A strong correlation was observed between immune re-

sponses measured during the acute phase (Day 2 after the

stroke) and long-term cognitive trajectories. To our know-

ledge, this is the first report of simultaneously assessed

functional and phenotypic attributes of all major immune

cell subsets as they occur in vivo over a period of 1 year in

patients suffering from stroke. The results establish the

chronology of peripheral immune cell responses to stroke

and provide an analytical framework to identify immuno-

logical events associated with adverse clinical outcomes

after stroke.

The immune system functions through complex inter-

actions between a broad range of cell types and signalling

pathways. Deep profiling of millions of immune system

cells in clinical settings has only recently been enabled by

high-dimensional mass cytometry. However, computational

investigation of the resulting datasets has been limited by

two major challenges: (i) the highly interactive nature of the

immune system results in a large number of highly corre-

lated measurements; and (ii) the high number of

Figure 3 Time-projected elastic net model values reveals the relative magnitude of the acute, intermediate and late in-

flammatory phase. (A) Time span covered by each of the three models. (B–D) Immune features selected by the acute, intermediate and late

elastic net models were quantified at each time point and a time-projected value was inferred for each elastic net model. Box plots depict range of

elastic net model values over time, including maximum, minimum, median, and interquartile range, for the (B) acute phase model, (C) inter-

mediate phase model, and (D) late phase model. Time points used to derive each elastic net models are highlighted in blue. EN = elastic net.
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measurements and limited sample size is likely to result in a

larger number of false-positive discoveries. We addressed

both of these challenges using the elastic net analysis,

which is a supervised linear model designed to handle data-

sets with highly inter-correlated features. To ensure gener-

alizability of the results to previously unseen patients, a

cross-validation strategy was implemented to report the

performance of the models only on patients to which the

models where blinded during the training process.

The analysis identified three statistically stringent elastic

net models that highlighted acute (Day 2), intermediate

(Day 5), and late (Day 90) immunological phases after a

stroke. The components of the elastic net models were inte-

grated into communities of correlated immune features that

revealed the predominant biological characteristics of each

immunological phase. For example, components of the

acute phase model demonstrated shared activation of a spe-

cific transcriptional event (STAT3 phosphorylation) in

multiple innate immune cell subsets. In contrast, compo-

nents of the intermediate phase model demonstrated coor-

dinated activity of multiple elements of the CREB signalling

pathway in adaptive immune cells. In addition, the late

phase model identified several sustained immune responses

(neutrophil frequency, MAPKAPK2 activity in Th1mem

cells, and STAT5 activity in plasmacytoid dendritic cells).

Thus, the analysis emphasized entire cellular programs,

rather than isolated signalling events, that characterize the

chronology of the systemic immune response after stroke. It

also identified immunological features that persist for at

least 90 days after the stroke event. In combination with

late cognitive outcomes, this highlights the value of study-

ing the state of long-term peripheral immune systems in

stroke survivors for at least 3 months after stroke.

Aspects of the peripheral immune response observed in

this study resonated with prior characterization of

immune responses that occur in the brain after stroke

Figure 4 Elastic net components reveal time-specific alterations in innate and adaptive immune responses after acute is-

chaemic stroke. The components of each elastic net model were nested in communities of highly correlated features that changed concordantly

after stroke. The three most significant elastic net components are shown for (A) the acute phase model, (B) the intermediate phase model, and

(C) the late phase model. Diagrams on the left highlight communities containing the most informative elastic net components. Graphs to the right

depict the value of elastic net components at each time point (black dots represent individual samples; red lines and grey background represent

median and 95% confidence interval, respectively). EN = elastic net; cMCs = classical monocytes; pDCs = plasmacytoid dendritic cells.
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(Iadecola and Anrather, 2011). Consistent with the rapid

mobilization and recruitment of innate immune cells to the

ischaemic site, the acute phase model highlighted the early

and robust activation of the STAT3 signalling pathway in

innate immune cell subsets. Similarly, the predominance of

T cell immune responses (including CD4 + Tmem, Th1, and

Treg cells) in the intermediate phase elastic net model is

reminiscent of the delayed engagement of local adaptive

and antigen-specific mechanisms after stroke (Doyle and

Buckwalter, 2017). These immune cell signalling activities

reflect a stereotyped and tightly regulated systemic

immune response to stroke that is similar in timing

and magnitude to the canonical immune response to

tissue injury. In fact, the magnitude of the STAT3 signal-

ling responses of the acute phase elastic net models

was remarkably similar to the STAT3 signalling responses

observed in patients undergoing major surgery

(Supplementary Fig. 3).

Underlying these broad themes, we observed cell-specific

immune responses incorporated into each immunological

phase that revealed underlying complexity. For example,

in the acute phase model, pSTAT3 levels peaked simultan-

eously in CD14 + CD16� monocytes, plasmacytoid dendritic

cells, and M-MDSCs. This is particularly interesting as

STAT3 signalling promotes immunosuppressive functions

in MDSCs but, conversely, promotes acute-phase pro-

inflammatory responses in monocytes (Levy and Lee,

2002; Vasquez-Dunddel et al., 2013). STAT3 activation

drives the differentiation and maturation of plasmacytoid

dendritic cells, which has been implicated in autoimmune

responses, including in response to endogenous nucleic

acids (Swiecki and Colonna, 2015). This example may

shed light on simultaneous immune mechanisms that con-

tribute to the peripheral immune response to stroke—it is

well known that there is not only an immediate pro-

inflammatory response to stroke, but also post-stroke im-

munosuppression and later auto-immune responses

(Dirnagl et al., 2007; Iadecola and Anrather, 2011; Becker,

2012; Chamorro et al., 2012; Doyle and Buckwalter, 2017).

Similarly, key components of the intermediate phase elas-

tic net model included elevated pCREB levels in several T-

cell subsets including CD4 + Tmem, Tbet + CD4 + Th1 cells,

and Tregs. CREB plays a pivotal, but pleiotropic role in T-

cell-mediated immune responses and has been proposed to

alternately promote or limit the survival and proliferation

of T-cell subsets, including Th1, Th2, Th17 and Tregs (Wen

et al., 2010). The results suggest a dual requirement for

CREB in the modulation of pro-inflammatory (Th1-

mediated) and anti-inflammatory (Treg-mediated) responses

after stroke (Wen et al., 2010). Together, these findings

highlight the ability of the immune system to translate simi-

lar environmental cues (e.g. elevated plasma levels of JAK2/

Figure 5 Day 2 immune features comprising the acute phase elastic net model correlate with cognitive trajectories from Days

90 to 365. (A) Trajectory of MoCA scores between Days 90 and 365 after stroke. Cognitive stability or improvement is represented by black

lines, while cognitive decline is indicated by red lines. (B) Stroke volume, measured in log(cm3), did not correlate with changes in MoCA scores

(�MoCA). (C) Elastic net model values of the acute phase model (Fig. 2A) negatively correlate with �MoCA between Days 90 and 365

(Spearman’s r = �0.692, Bonferroni-corrected P = 0.039). (D) Acute phase elastic net values correlated with stroke volume (Spearman’s

r = 0.569, Bonferroni-corrected P = 0.018). EN = elastic net.
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STAT3 cytokines, such as IL-6 and IL-10) into cell-specific

functional responses implicated in the progression of the

ischaemic lesion, as well as in the resolution and recovery

after stroke. CREB activity in individual T cell subsets

could also be explored in future studies. A comprehensive

understanding of which genes CREB is regulating would

shed light on the question of how it functionally alters

the development or responses of T cells after stroke and

whether that promotes or suppresses auto-reactive re-

sponses to brain antigens released into the blood after

stroke.

The elastic net models captured a chronology of immune

events shared among patients following stroke. However,

the magnitude of each immunological phase varied greatly

among patients. Interestingly, the magnitude of the acute

(innate) immunological phase strongly correlated with long-

term cognitive trajectories, accounting for over 40% of the

observed variance in the change in MoCA scores between

the Day 90 and the 1-year time points (�MoCA). In con-

trast, elastic net model values for the intermediate phase,

primarily driven by adaptive immune responses, did not

correlate with cognitive trajectories. The relative contribu-

tion of innate and adaptive immunological events to the

pathogenesis of cognitive trajectory after stroke remains

poorly understood. Animal studies suggest that cognitive

decline after stroke is due to prolonged adaptive immune

responses in the brain that are modulated by early innate

immune events in the periphery (Doyle et al., 2015). In

some stroke survivors, these responses may also account

for late declines, such as in cognition and the ability to

perform activities of daily living (Ivan et al., 2004; Levine

et al., 2015; Corraini et al., 2017; Dhamoon et al., 2017).

Our findings in humans are consistent with these preclinical

models and suggest that elevated innate immune cell re-

sponses within 2 days of a stroke are associated with,

and perhaps contribute to, poor cognitive recovery after

stroke. However, we did not detect a correlation with the

intermediate phase model adaptive immune responses. This

may be because of small sample size at intermediate time

points, but also could be due to the immunological com-

partment sampled in our study—it is likely that immune

events detected in the peripheral blood do not fully reflect

the local events occurring in the brain, particularly at later

time points after the blood–brain barrier has begun to be

re-established.

Predicting the long-term cognitive trajectory in stroke

survivors is a significant clinical challenge. Even after con-

trolling for known risk factors—such as age, sex, common

dementia risk factors, stroke volume, and location—having

a stroke significantly increases the risk of being diagnosed

with cognitive dysfunction over at least the following

decade (Ivan et al., 2004; Levine et al., 2015; Corraini

et al., 2017). The correlation between the acute phase elas-

tic net model and cognitive recovery remained significant

when accounting for demographic (sex, BMI, age) and clin-

ical (CES-D, fatigue scores, NIHSS scores, lesion location,

acute treatment modality) variables. Importantly,

estimation of the entire acute phase elastic net model at

Day 2, rather than measurement of individual components

of the elastic net model, was required to detect a strong

correlation with patients’ long-term cognitive recovery.

This result emphasizes the advantage of integrating the

functional assessment of multiple immune cell subsets,

which act in concert, to identify biological mechanisms

associated with a clinically relevant cognitive recovery

outcome.

Prior studies have explored immune interventions to im-

prove cognitive function, including two recent studies with

natalizumab. Natalizumab blocks alpha 4 integrin on

immune cells to prevent their extravasation into tissues. A

phase 2 ACTION trial (Elkins et al., 2017) used acute

natalizumab (given up to 9 h after stroke) with the aim of

reducing infarct size at Day 5, but it failed to meet this

primary outcome. However, secondary analyses of two

functional scales at 30 and 90 days had mixed results,

with improved Rankin at 30 days and improved Barthel

Index at 90 days. The follow-up phase 2b study,

ACTION2, demonstrated safety in acute stroke patients

but was stopped for futility as it was unable to replicate

these results. Given our results on change in MoCA from

Day 90 to Day 365 we can speculate that natalizumab and

other anti-inflammatory treatments given in the acute to

subacute window after stroke may affect long-term cogni-

tive outcomes. However, much more remains to be learned

from studies of the human peripheral immune response and

trials in mouse models of post-stroke dementia before we

can do more than speculate on which immunomodulatory

agents might be useful in preventing post-stroke dementia.

This study is the first step towards understanding how the

peripheral immune response is associated with long-term

cognitive outcomes.

Our study has limitations. A small cohort (n = 24) re-

cruited from a single hospital may not be representative

of the entire population of acute ischaemic stroke survivors,

which limits the generalizability of the findings. Larger stu-

dies involving multiple recruitment centres and more pa-

tients will be required to validate our findings.

Additionally, a lack of power because of low sampling at

some intermediate time points may have resulted in bio-

logically relevant immune changes going undetected.

Furthermore, stroke onset is spontaneous so true baseline

samples are unobtainable. While we used the Day 365 time

point as an internal control for each individual patient,

patients may have undergone significant life-style changes

including, but not limited to, medications, diet, exercise,

and other activities that may have modulated their

immune status. Regardless of the cause, variations in the

immune response over time between patients may be asso-

ciated with cognitive outcome.

This study lays the foundation for more comprehensive

human studies in the future aimed at targeting specific mar-

kers and cell types. It was designed to answer the question

of whether stroke-related phenotypical and functional im-

munological changes could be tracked in peripheral blood
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over the course of 1 year. The antibody panel was de-

veloped to analyse all major immune components.

However, future studies are needed to capture all minor

immune cell subsets that may play a role in modulating

the immune response, specifically some neutrophil and B-

cell subsets. Including intracellular cytokine assays to evalu-

ate additional functional variables in these cell types would

also be informative, and stem cell markers could also pro-

vide insight into ischaemia-induced multipotent stem cells

and their role in neuronal repair following stroke

(Tatebayashi et al., 2017). Additionally, the elastic net ap-

proach used a priori-defined (literature-based) manual

gates; another approach is to agnostically cluster immune

cells and potentially identify novel cell subsets associated

with stroke immune response and recovery.

Our study revealed three immunological phases that rep-

resented the systemic immune response of patients during a

1-year recovery period after a stroke. The findings were

enabled by high-content, single-cell mass cytometry coupled

with an elastic net algorithm that accounts for the dimen-

sionality of the mass cytometry data and the modular struc-

ture of the immune system. A strong correlation was

observed between the magnitude of the acute immunolo-

gical phase and long-term cognitive trajectory. Our results

were predominantly driven by pSTAT3 levels in innate

immune cell subsets measured within 2 days of stroke

onset. The analytical framework and timing of cell-specific

immune signalling responses that we provide here lays the

foundation for future work aimed at determining immune

predictors of long-term functional and cognitive trajectories

after stroke.
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